-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Archivio istituzionale della ricerca - Universita degli Studi di...

Approximate Axial Symmetries
from Continuous Time Quantum Walks

Luca Rossi!, Andrea Torsello!, and Edwin R. Hancock?

! Department of Environmental Science, Informatics and Statistics,
Ca’ Foscari University of Venice, Italy
2 Department of Computer science, University of York, UK

Abstract. The analysis of complex networks is usually based on key
properties such as small-worldness and vertex degree distribution. The
presence of symmetric motifs on the other hand has been related to re-
dundancy and thus robustness of the networks. In this paper we propose
a method for detecting approximate axial symmetries in networks. For
each pair of nodes, we define a continuous-time quantum walk which is
evolved through time. By measuring the probability that the quantum
walker to visits each node of the network in this time frame, we are able
to determine whether the two vertices are symmetrical with respect to
any axis of the graph. Moreover, we show that we are able to success-
fully detect approximate axial symmetries too. We show the efficacy of
our approach by analysing both synthetic and real-world data.
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1 Introduction

The study of complex networks [I] has recently attracted considerable interest
because of the large variety of complex systems that can be modeled and analysed
using graphs. A non-exhaustive list of examples includes metabolic networks [2],
protein interactions [3], brain networks [4], vascular systems [5], scientific collab-
oration networks [6] and road maps [7]. Properties such as small-worldness and
the power-law distribution of vertex degrees [I] have been observed in several
real-world networks, suggesting a marked difference with Erdés-Rényi random
graphs [g].

More recently there has been some interest in characterizing the presence
of symmetries in networks [9] [I0]. Recall that, given a graph G = (V, E), an
automorphism is a permutation o of the set of vertices V' of the graph which
preserve the adjacency relations, i.e. if (u,v) € E then (o(u),o(v)) € E. Hence
we can view the group of automorphisms Aut(G) of a graph as a representation
of its symmetries. MacArthur et al. [9] observe that many real-world graphs
possess a very large automorphism group, in contrast to classical random graph
models. In particular the authors observe the presence of a certain number of
small symmetric subgraphs, such as tree-like or clique-like structures, and relate
this to the redundancy and thus robustness of real-world networks. Note however
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that the problem of finding the set of automorphisms of a graph is actually an
instance of the graph isomorphism problem, and thus it belongs to the NP class.
Xiao et al. [10] study the origin of symmetry in real-world networks. In common
with [9], their work is based on the analysis of local symmetric motifs such as
symmetric bicliques, i.e. an induced complete bipartite subgraph, denoted as
Kv, v,, in which every vertex of V; is connected to every vertex of V5. Their
analysis reveals that the symmetry of complex networks is a consequence of
a particular linkage pattern, where vertices with similar degrees tend to share
common neighbors. It is also worth mentioning the work of Mowshowitz [11],
which links the complexity of a graph to the entropy of the distribution of
symmetric orbits.

Recently there has been a considerable interest in quantum walks, as an al-
ternative to the well studied classical random walks. Although similar in its def-
inition, the quantum walk is remarkably different from its classical counterpart.
Most notably, its evolution is governed by a unitary matrix instead of a stochas-
tic one and the state vector is complex valued instead of real valued. This in turn
produces interference effects which yield completely different probability distri-
butions on the graph. Moreover, these interference effects seem to be enhanced
by the presence of symmetrical motifs in the graph. Emms et al. [I2] showed
that quantum commute time embeddings are tightly related to the presence of
symmetries. In particular the authors found that the embedding co-ordinates
of nodes are degenerate in dimensions that correspond to global symmetries. In
a related paper, Emms et al. [I3] demonstrate how to lift the cospectrality of
strongly regular graphs using the third power of the support matrix derived from
a discrete time quantum walk. Thus it seems reasonable to investigate the use
of quantum walks as a means of detecting symmetries in networks.

In real-world data, however, we have to deal with the presence of noise, which
will eventually break the symmetries of the network. In this paper we propose
a new method for detecting the approximate axial symmetries of a graph using
continuous time quantum walks. The remainder of this paper is organised as
follows. First we review the definition of the continuous time quantum walk on
a graph, then we show how to exploit the interference patterns to detect both
exact and approximate axial symmetries and then we briefly discuss the proposed
algorithm. Finally our approach is evaluated on a set of synthetic graphs and
real-world networks.

2 Continuous-Time Quantum Walks

Quantum walks are the quantum analogue of classical random walks [14]. In this
paper we consider only continuous-time quantum walks, as first introduced by
Farhi and Gutmann in [I5].

As in the classical random walk, given a graph G = (V, E), the state space
of the continuous-time quantum walk defined on G is the set of the vertices
V of the graph. Unlike the classical case, where the evolution of the walk is
governed by a stochastic matrix (i.e. a matrix whose columns sum to unity), in
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the quantum case the dynamics of the walker is governed by a complex unitary
matrix i.e., a matrix that multiplied by its conjugate transpose yields the identity
matrix. Hence the evolution of the quantum walk is reversible, which implies that
quantum walks are non-ergodic and do not possess a limiting distribution. Using
Dirac notation, we denote the basis state corresponding to the walk being at
vertex u € V as |u). A general state of the walk is a complex linear combination
of the basis states, such that the state of the walk at time ¢ is defined as

) = 3 () Ju) (1)
ueV
where the amplitude o, (t) € C and [t/;) € CIVl are both complex.

At each point in time the probability of the walker being at a particular vertex
of the graph is given by the square of the norm of the amplitude of the relative
state. More formally, let X! be a random variable giving the location of the
walker at time ¢. Then the probability of the walker being at the vertex u at
time ¢ is given by

Pr(X! = u) = ay (o (t) (2)
where «;(t) is the complex conjugate of av,(t). Moreover )y v (t)ag;(t) = 1
and o, (t)ak(t) € [0,1], for all u € V, t € RT.

We now introduce the evolution operator of the quantum walk. First though,
recall that the adjacency matrix of the graph G has elements

_[1lif (w,v) € E
Auw = {0 otherwise (3)

n

Let D be the diagonal degree matrix with elements d, = >, A(u,v), where
n = |V| is the number of vertices of the graph. The Laplacian of G is then
defined as the degree matrix minus the adjacency matrix, i.e. L = D — A.

The evolution of the walk is then given by Schrodinger equation, where we
take the Hamiltonian of the system to be the graph Laplacian, which yields

d .
dt Y1) = —iL i) (4)

Given an initial state |¢g), we can solve Equation [ to determine the state vector
at time ¢

o) = e ¢ho) (5)
Given the Laplacian matrix we can compute its spectral decomposition L =
PAPT | where @ is the n x n matrix & = (¢1]¢p2|...|¢,) with the ordered eigenvec-
tors as columns and A = diag(A1, Ag, ..., A, ) is the n x n diagonal matrix with
the ordered eigenvalues as elements, such that 0 = A\; < Ay < ... < A,
Using the spectral decomposition of the graph Laplacian and the fact that
exp[—iLt] = ® " exp[—iAt]® we can finally write

) = T e M |yhy) (6)



Approximate Axial Symmetries from Continuous Time Quantum Walks 147

3 Approximate Axial Symmetries Detection

In order to detect the axial symmetries of a graph, we exploit the interference
properties exhibited by quantum walks. In particular, our analysis will rely on
the destructive interference which arises when a symmetrical structure is present.
Note, however, that we are interested in both exact and approximate axial sym-
metries. In fact, due to the presence of different noise sources, most real-world
networks are not perfectly symmetric. In consequence, the search for exact axial
symmetries would fail to discover those global symmetries which are more likely
to be affected by noise. On the other hand, we argue that our algorithm is ca-
pable of detecting both exact and approximate axial symmetries, thus making
it suitable for real-world network analysis.

3.1 Methodology

Given a pair of vertices u, v, we initialise the quantum walk as follows

Jr\}z ifj=u
a;(0) = *iz if j=v (7)
0 otherwise

If w and v are symmetrical with respect to a symmetry axis A, then it is easy
to show that when the walk is initialised as above we have a,,(t) = 0, Vw € A
and Vt.

Theorem 1. If u,v are symmetrical with respect to a symmetry azxis A and
a,(0) = —a,(0), then ay,(t) =0, Yw € A and Vt.

Sketch of Proof. Assume that the graph G has at least one symmetry axis A,
and w € A is a vertex of G. Then, for each path from u to w, there will be a
symmetrical path from v to w. As a consequence of this, both walkers starting
from v and from v will arrive at w at the same time t. Moreover, since we
initialised the amplitudes such that a,(0) = —a,(0), the two walkers will be in
antiphase and thus their contribution to the observation probability of w will
cancel out, i.e. Pr(X' = w) = 0, Vt.

Note that due to its oscillatory behaviour, the observation probability of the
quantum walker on any node might temporarily collapse to zero. However, only
if the vertex belongs to a symmetry axis its observation probability will remain
constantly null.

Hence the procedure to detect the symmetry axes in a graph is as follows. First
we define a quantum walk according to Equation [ We then let the quantum
walk evolve for a time interval T' and we measure the total observation proba-
bility m, = >, Pr(X* = w) for each node w # u, v during 7T'. If m,, = 0, then
we say that the node belongs to the symmetry axis. We repeat this procedure
for each pair of nodes of the graph, and we detect all the exact symmetry axes
of the network. Finally, we can estimate the symmetry axes sizes by counting,
for a given pair of nodes, the number of nodes w where m,, = 0.
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Fig. 1. When applied to a 3x3 grid, our algorithm is able to detect all its 4 symmetry
axes. Moreover, even if some noise is present, a suitable choice of 7 will still allow us
to detect the original axes

Figure shows the result of running the proposed algorithm on a 3x3
grid. If we initialise the bottom corners of the graph with equal but opposite
amplitudes, we see that the observation probabilities of the vertices belonging
to the vertical axis remain constantly equal to zero. In particular here we let
the quantum walk evolve from ¢ = 0 to ¢ = 10, sampling this time interval 100
times uniformly. For each axial node w we have m,, = 0, while the nodes with
initial non-zero amplitudes have the highest total observation probability. The
remainder of the vertices of the graph have m,, > 0, and symmetrically placed
nodes with respect to the vertical axis share the same 7,,. Note that we detect
the same axis if we choose another pair of vertices which are symmetrical with
respect to this axis, such as the top corners.

Moreover, we argue that we can detect approximate axial symmetries as well,
i.e., axial symmetries which are affected by noise, by selecting those vertices in
which 7 < 7, where 7 is a suitably chosen threshold. Figure shows what
happens if we add some noise the the 3x3 grid by removing one edge. Note that
due to the small size of the graph the deletion of one single edge can actually
deeply change the graph structure. Although the total observation probability
has clearly changed and it is now non-zero everywhere, we still see that it is
lower on the vertices corresponding to the vertical axis. Hence, by choosing a
suitable value for 7, we are still able to detect this approximate symmetry.

4 Experimental Results

In this section, we validate the proposed approach by performing a series of
experiments on both synthetic data and real-world data.

4.1 Synthetic Data

The synthetic data is composed of Erdés-Rényi random graphs [§], small-world
graphs, scale-free graphs, stochastic Kronecker graphs [16] (which exhibit both
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Fig. 2. Symmetry axes distribution. Note that as the threshold varies, the shape of
the strongly-regular graphs distribution remains unaltered, as the symmetry present
in this category are all exact.

small-world and scale-free properties), and strongly regular graphs. A regular
graph with v vertices and degree k is said to be strongly regular if there are
two integers A and g such that every two adjacent vertices have A common
neighbours and every two non-adjacent vertices have 1 common neighbors. We
choose strongly regular graphs because they are known to be highly symmetric
and this should be reflected in the experimental results.

For each graph in the dataset, we compute its symmetry axes together with
their sizes, as explained in the previous section. Figure 2l shows the distribution
of the symmetry axes length for each type of network, for different choices of the
threshold 7. Note that local symmetries correspond to larger axes, since the axis
size is equal to the number of nodes of the graph minus the size of the symmetric
orbit, which in the case of a local symmetry is clearly small. On the other hand,
a global symmetry will correspond to smaller symmetry axis. In other words,
a left peaked distribution indicates the presence of global symmetries, while a
right peaked distribution indicates the presence of local symmetries.

Note that the distribution for the strongly-regular graphs remains unaltered
when we change 7. This is because the graphs in this category possess exact
symmetries, due to their regular structure. Hence the probability of the walker
being found at a node belonging to a symmetry axis is exactly zero and we
recover the same axes independently of the threshold value. Note, moreover,
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Fig. 3. Sample cities embeddings and their corresponding axes length distributions.
Note how different layouts give rise to different symmetries.

that the high number of symmetry axes belonging to this class of graphs is
exactly what we would expect given the high degree of symmetry displayed by
strongly-regular graphs.

As for the other network models, Figure [2] shows that the number of exact
symmetries is clearly lower. We observe the presence of a high number of exact
local symmetries in the scale-free graphs, which are probably due to the presence
of small trees rooted in a hub node. It is interesting to note that the behaviour of
the stochastic Kronecker graphs, which possess both scale-free and small-world
properties, seems to be dominated by their scale-free behaviour, although the
number of local symmetries is clearly reduced. More generally, Figure [2 shows
that we can easily separate graphs belonging to different network models on the
basis of their symmetry axes distributions.
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Fig. 4. City maps embeddings obtained using the mean of the symmetry axes plot dis-
tributions for three different values of 7 as co-ordinates (left). The cities are coloured
according to the labels induced by k-means. The labeling is consistent when the embed-
ding is done using Communicability Distance [I], the classical Commute Time and the
zeta function as co-ordinates (right), but there are still some differences which suggest
that the information extracted with our algorithm is meaningful and novel.

4.2 Real-World Data

Road networks are a typical example of technological networks, i.e. man-made
networks designed for the distribution of resources. Other examples include
power grids, airline routes, river networks and the Internet. In this paper we
apply our algorithm to a dataset of 33 city maps. For each city, we compute the
approximate symmetry axes and their length. Figure Bl shows the embeddings
of 3 different cities and the corresponding plots. We observe that different lay-
outs of the cities give rise to different symmetries. As expected, the first city,
which shows a very regular grid-like structure, seems to possess only approx-
imate global symmetries, but no perfect symmetries. On the other hand, the
second city displays a wide variety of approximate symmetry axes, and a few
exact local symmetries, similarly to those displayed by the scale-free network
model. A visual inspection of its embedding confirms the presence of several
small hubs, as predicted. Finally, the third city shows a large number of local
symmetries, which arise as a consequence of its very particular linkage pattern,
where pairs of nodes are connected in an quasi-bipartite fashion.

In order to take the analysis on step further, we describe each city with a three-
dimensional feature vector whose co-ordinates are respectively the means of the
axes length distributions for decreasing thresholds. The resulting embedding is
shown in Figure [l (left). Here we can clearly see 3 well separated clusters, where
the labels of the clusters have been assigned using k-means. Note that each city of
Figure[3 actually belongs to a different cluster of Figure@dl Moreover, we compare
our embedding with the one obtained using the Communicability Distance [I],
the classical Commute Time and the zeta function ((s) = >_, _A; * associated
with the Laplacian eigenvalues as co-ordinates. Figure [l (right) shows that the
result is still quite consistent with our labeling, although we can clearly see
some differences. This indicates that the our algorithm is indeed extracting some
meaningful and novel information from the data.
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5 Conclusions

In this paper we proposed a method for detecting approximate axial symmetries
in networks. For each pair of nodes of the graph, we define a continuous-time
quantum walk which is evolved through time. By measuring the probability of
the quantum walker to visit each node of the network in this time frame, we are
able to tell whether if two vertices are symmetrical with respect to any axis of
the graph. Moreover, we showed that we are able to successfully detect approx-
imate axial symmetries as well. We demonstrated the efficacy of our approach
by analysing both synthetic and real-world data.
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