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1 Introduction

Diffusion dynamics applied to social sciences has been studied in a huge number of papers
and books, covering a wide range of perspectives, from marketing (see e.g. [1], [13], [12]) to
agent based modeling (see e.g. [14], [9]) and sociophysics [5].

The point of view adopted in this paper is based on a model proposed by Galam for
information spreading among agents of a population [5]. In this model the agents can have
one of two opposite opinions and each of them has the same impact on the others’ opinion
by means of repeated discussions in subgroups. In our proposal we suitably recast Galam’s
model, in order to introduce “opinion-leader” agents, who can drive the opinion of the
agents joining the same discussion group.

The interest in opinion leaders has been increasing in recent years due to the exponential
growth of social networks and the Web 2.0, since a small group of opinion leaders may
accelerate, or even stop, information spreading, especially in the initial phase of the process.

In fact, as originally observed by [11], some members of a social network are “likely to
influence other persons in their immediate environment” and enhance diffusion processes.
They affect the spreading of information or the diffusion and adoption of a new product
through different communication channels. In the literature, opinion leaders are also called
influentials, mavens, hubs, and they are convincing experts, or have a large number of social
ties [15], [10], [16], [3].

The opinion leaders we consider in our models are able to convince all the agents they
meet in a discussion group and keep their opinion forever. We both provide theoretical
motivations to justify our proposal, and preliminary results which carry out the role of
opinion-leaders. In particular, we focus on their effectiveness in modifying the dynamics of
information spreading.

This paper is organized as follows: Section 2 partially reviews Galam’s model [5], de-
tailing some of its peculiarities along with possible limits. Then, in Section 3 we describe
some preliminaries to our model, including the definition of opinion leaders, which is es-
sential to our analysis. Section 4 is devoted to report some properties of our model, and
Section 5 includes a comparative analysis of the dynamics of the model. Finally, a section
of Conclusions completes the paper, along with an Appendix of basic key-note results.

2 The original Galam’s model

This section briefly reviews Galam’s model in [5], [6], along with some of its features. In
order to introduce the latter model we preliminarily consider the following process. There
are N independent individuals (agents) who synchronize their behaviour and periodically
meet into subsets (say subgroups) of individuals. Each subgroup, at period t ≥ 1, has
cardinality k, with k ranging from 1 to L, being L a positive integer. Each individual either
thinks ‘+’ or ‘−’, and N+(t) [N−(t)] corresponds to the overall number of people thinking
+ [−] at period t, among the N individuals. Thus, we have the consistency relation

N = N+(t) +N−(t), ∀t = 1, 2, . . .

Observe that at period t, with t ≥ 1, there may be in general several subgroups of size k,
with 1 ≤ k ≤ L. At period t, with probability ak, k = 1, . . . , L, the N people gather into
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k-sized subgroups; thus, again for consistency reasons, the relation

L
∑

k=1

ak = 1, ak ≥ 0, k = 1, . . . , L (1)

trivially holds. Then, at the outset of the following period t+ 1, after a discussion in each
k-sized subgroup, each individual can reverse their opinion to the opposite one (say ‘+’
becomes ‘−’ or viceversa), according with a majority rule (in each subgroup). The rule for
reversing opinion is slightly biased in favor of the opinion ‘−’, since in case of parity in a
subgroup ‘−’ will prevail over ‘+’. In symbols, if Nkℎ

+ (t) [Nkℎ
− (t)] denotes the number of

individuals thinking ‘+’ [‘−’] at period t in the ℎ-th subgroup of size k, then1

∙ if Nkℎ
+ (t) > Nkℎ

− (t) then at the outset of the period t + 1 the Nkℎ
− (t) individuals’

opinion will reverse from ‘−’ to ‘+’;

∙ if Nkℎ
+ (t) ≤ Nkℎ

− (t) then at the outset of the period t + 1 the Nkℎ
+ (t) individuals’

opinion will reverse from ‘+’ to ‘−’.

We respectively indicate with P+(t) [P−(t)] the ‘estimated’ probability, at period ‘t’, to find
individuals who think ‘+’ [‘−’] among the N individuals. Thus, for any t ≥ 1 the quantity
P+(t) [P−(t)] may possibly differ from the ‘actual’ value of the probability P̃+(t)[P̃−(t)] to
find individuals thinking ‘+’ [‘−’] among the N individuals, the latter being

P̃+(t) =
N+(t)

N

P̃−(t) =
N−(t)

N

with
P̃−(t) + P̃+(t) = 1.

Then, given the parameters L and a1, . . . , aL, and the quantity P+(t), Galam’s model
may be recursively used to estimate the probability P+(t+1) of having individuals thinking
‘+’ at period t+ 1, using the formula

P+(t+ 1) =

L
∑

k=1

ak

k
∑

j=⌊k

2
+1⌋

Ck
j P+(t)

j{1− P+(t)}k−j. (2)

Note that in (2) the quantity ⌊z⌋ indicates the largest integer which approximates z from
below, and Ck

j is the binomial coefficient

Ck
j =

k!

j!(k − j)!
, k = 1, . . . , L, j ≤ k.

Moreover, due to a natural consistency reason we set P̃+(0) = P+(0) and P̃−(0) = P−(0).
Now, following the observations in [5] and [4], we can represent the recursive expression (2)
in the space (P+(t), P+(t + 1)), so that the special point (P̂+, P̂+) in the resulting graph
may be appointed (namely the killing point), satisfying the conditions

1Note that with an obvious use of the symbols we have
∑

L

k=1

∑
ℎ
N

kℎ

+ (t) = N+(t) and
∑

L

k=1

∑
ℎ
N

kℎ

−
(t) =

N−(t).
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if P+(0) > P̂+ then lim
t→∞

P+(t) = 1,

if P+(0) = P̂+ then P+(0) = P+(t), for each period t > 0,

if P+(0) < P̂+ then lim
t→∞

P+(t) = 0.

In the next Section we are going to propose and study the introduction of special individuals
among the N members of the group.

3 A new perspective introducing Opinion Leaders

We consider now the special individuals called opinion leaders. In order to study their effect
on the information spreading process defined by Galam, we modify formula (2). We need
to introduce the following preliminary definition of opinion leaders.

Definition 3.1 Suppose that at the outset of the period t, when the agents gather into
subgroups, the k agents i1(t), . . . , ik(t) form the k-sized subgroup Gk(t). Then agent j in
Gk(t) is said to be an op-leader (opinion leader) if

1. j always thinks ‘+’, for any t ≥ 1;

2. at the end of the period t all agents of the subgroup Gk(t) think ‘+’.

Broadly speaking an op-leader is one of the individuals thinking ‘+’ for any t ≥ 1 who is
able to convince all the other individuals in a subgroup to think ‘+’. Thus, from Definition
3.1 the role of the op-leaders we have just introduced partially summarizes some informal
definitions given in the literature.

Similarly to the original Galam’s model in (2), given the parameters L and a1, . . . , aL,
along with the quantity P+(t) and the number of op-leaders Nop, we want to estimate the
probability P+(t+ 1) of having individuals thinking ‘+’ at period t+ 1. With this aim we
propose the following model

P+(t+ 1) = 1−
L
∑

k=1

ak

⌊k

2⌋
∑

j=0

Ck
j {P+(t)− s}j{1− P+(t)}k−j (3)

where s is the probability for an agent to be an op-leader.
The quantity {P+(t) − s}j{1 − P+(t)}k−j approximates the probability that in a k-

sized subgroup j individuals think ‘+’ without being op-leaders and the remaining k − j
individuals think ‘−’. Since we consider the majority rule also adopted in Galam’s model,

the quantity
∑⌊ k

2⌋
j=0 Ck

j {P+(t)− s}j{1− P+(t)}k−j in (3) approximates the probability that
an individual of a k-sized subgroup will think ‘−’ at the end of period t.

We observe that model (3) considers three independent events: ‘the agent thinks +
without being an op-leader’, ‘the agent thinks −’ and ‘the agent is an op-leader’. This
implies that the model (3) is based on a more general trinomial distribution where the
probability to have, in a group of size k, j ‘+ agents (not op-leader)’, ℎ ‘op-leaders’ and
k − j − ℎ ‘− agents’ is:

Ck
j C

k−j
ℎ {P+(t)− s}j(s)ℎ{1− P+(t)}k−j−ℎ. (4)

3



The probability (4) reduces to

Ck
j {P+(t)− s}j{1− P+(t)}k−j (5)

since in our special case, ℎ = 0.

4 Preliminary properties

In this section some theoretical properties of (2) and (3) are partially described.

Proposition 4.1 Consider relation (3) with aL = 1, s = 0 and where L is odd. Then (3)
coincides with (2) and we have for any t ≥ 1

P+(t) =
1

2
=⇒ P+(t+ 1) = P+(t). (6)

Proof

When s = 0, since P+(t) = 1/2 then for any j

{P+(t)}j{1− P+(t)}L−j =
1

2L
.

Moreover, since L is odd, the binomial theorem yields

L
∑

j=0

CL
j = 2L,

⌊L

2 ⌋
∑

j=0

CL
j = 2L−1.

Therefore, P+(t+ 1) = 1/2. □

Remark 4.1 Observe that also in case L is even and the majority rule holds, without a
bias for ‘−’, i.e. in case of parity, the two opinions have the same probability to prevail,
then a result similar to Proposition 4.1 holds.

Further properties on the computation of the killing point, for some special values of L may
be found in Section 7.

5 Dynamics of the model

In this section we consider some properties of the dynamics of the model also in order to
compare it with the original Galam’s model (2). On this purpose, suppose we indicate with
PL the function

P+(t+ 1) = PL(P+(t))

of P+(t + 1) vs. P+(t) as defined in model (2), and let be PL
m the function PL where we

set ak = 0, for any k ∕= m, 1 ≤ m ≤ L, and am = 1. Then, from (2) we immediately realize
that

Property 5.1 Let us consider the nonnegative coefficients ak, k = 1, . . . , L, such that (1)
holds. Then, the function PL is given by the weighted sum

PL =
L
∑

k=1

akPL
k .
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Thus, in order to study some of the general properties of (2) and (3) it might suffice to
consider what happens setting ak = 0, for any k ∕= m, 1 ≤ m ≤ L, and am = 1. To this
end, we preliminarily give in Figure 1 the graphs of P+(t+1) vs. P+(t), as described by (2)
(or equivalently setting s = 0 in (3)), choosing respectively m ∈ {5, 7, 9} (i.e., values for m
which are in a set of odd indices). Recalling Property 5.1 and Proposition 4.1, from Figure
1 we deduce the following result.

Property 5.2 In case in (2) we have ak = 0, for any even k, with 1 ≤ k ≤ L, then the
function PL has the killing point

(P̂+, P̂+) =

(

1

2
,
1

2

)

.

0 0.2 0.4 0.6 0.8 1
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0.2
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0.5

0.6

0.7

0.8

0.9

1

L=5, s=0

L=7, s=0

L=9, s=0

Figure 1: Galam’s formula (2) with ak = 0, for any k ∕= L, and L ∈ {5, 7, 9} (with no
op-leader, i.e. s = 0). Since L is ‘odd’, in all the three cases the killing point is always
(1/2, 1/2).

The same result of course does not hold if ak ∕= 0, for some even k, 1 ≤ k ≤ L. An example
is given in Figure 2, where we respectively set m ∈ {4, 6, 8} in (2). Observe that due to
the bias of the majority rule in favor of ‘−’, the killing point when m is even must be not
smaller than 1/2. In particular, from Figure 2 and using the Property 5.1, we deduce that
the killing point of the graph PL is bounded from below by 1/2 and bounded from above
by the killing point of PL

p , where

p = min
1≤i≤L

{i : i is even and ai ∕= 0}.

Therefore, if a2 = 0 then (1 +
√
13)/6 is an upper bound for the killing point, as proved in

Section 7 (see also [2])2.

2In Section 7 we prove that when L = 2 then P̂+ = 1.
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Figure 2: Galam’s formula (2) with ak = 0, for any k ∕= L, and L ∈ {4, 6, 8} (with no
op-leader, i.e. s = 0). Since L is ‘even’, in all the three cases the killing point differs from
(1/2, 1/2) and we always have P̂+ > 1/2.

From Figures 1-2 there is an empirical evidence that when P+(t) > 1/2 then P+(t+ 1)
increases with L.

Now we consider the case in which the formula (3) is used, in place of (2), and nonzero
values of the parameter s are selected. We want to use the same setting of the parameters
L and ak, 1 ≤ k ≤ L, used for the Figures 1-2. Moreover, recalling that when s = 0 the
equations (3) and (2) coincide, the Figure 3 (L is odd with L ∈ {5, 7, 9}) and Figure 4 (L is
even with L ∈ {4, 6, 8}) show the graph of P+(t+1) vs. P+(t) when s ∈ {0, 0.02, 0.04, 0.05}
(i.e., when no op-leader is included and when the probability of having op-leaders is respec-
tively raised to 2%, 4% and 5%). Observe that in the pictures where s ∕= 0, from (3) we do
have to consider for P+(t) values such that P+(t) > s. This explains why the latter graphs
are not defined for P+(t) < s. Also note that in (4), where L is even, the killing point
progressively decreases and approaches P̂+ = 1/2 when s increases.

Observe that in case s = 0 (see (2) and Section 7.1), then P+(t+1) = P+(t) if P+(t) = 0.
On the contrary, from Figures 3-4 it seems that in case s ∕= 0 then P+(t+ 1) = P+(t) only
if P+(t) > 0 (which recalls some similar results in [7]).

Interestingly enough, the observation of Figures 3-4 reveals also that there is a threshold
value for s such that the graph of P+(t+1) vs. P+(t) becomes tangent to the line P+(t+1) =
P+(t), above that threshold the killing point is P̂+ = 1, regardless of the choice of the initial
value P+(0). The latter observation deserves a special attention, also considering the large
number of applications where it could be fruitfully recast.

Finally, the effect of op-leaders appears to be clearly more evident when L is large, i.e.
when the discussions take place in large groups.
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Figure 3: Our proposal (3) where the values of L and s are given. Again, as in Figures 1-2,
we have ak = 0, for any k ∕= L. Here L is ‘odd’, being L ∈ {5, 7, 9}. The effect of op-leaders
is more evident when L is large.

6 Conclusions

This paper was devoted to preliminarily analyze some properties of Galam’s model [5],
along with introducing a new model for information spreading. In particular, the novelty
of the contribution of this paper consists of addressing special individuals, namely opinion
leaders, and their keynote role in information spreading, when the majority rule defined in
[5] holds.

We have described the novel models along with a few properties of them, and a partial
numerical experience. We think that in a broad sense a complete and motivated analysis is
yet mandatory, in order to carefully assess further properties and limits of our proposals.
Also possible generalizations of the model to the spreading of more than two opinions in
the populations could be developed (see also [8]).
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Figure 4: Our proposal (3) where the values of L and s are given. Again, as in Figures
1-2, we have ak = 0, for any k ∕= L. Here L is ‘even’, being L ∈ {4, 6, 8}. The effect of
op-leaders is more evident when L is large.

7 Appendix (some properties of (2))

Let us consider the following expression from the binomial theorem

(1− x)k−j =

k−j
∑

ℎ=0

(

k − j
ℎ

)

1ℎ(−x)k−j−ℎ =

k−j
∑

ℎ=0

(

k − j
ℎ

)

(−1)k−j−ℎxk−j−ℎ.
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Hence, from (2) we have

P+(t+ 1) =
L
∑

k=1

ak

k
∑

j=⌊k

2
+1⌋

Ck
j P+(t)

j{1− P+(t)}k−j (7)

=
L
∑

k=1

ak

k
∑

j=⌊k

2
+1⌋

k−j
∑

ℎ=0

(

k
j

)(

k − j
ℎ

)

(−1)k−j−ℎP+(t)
k−j−ℎ+j

=
L
∑

k=1

ak

k
∑

j=⌊k

2
+1⌋

k−j
∑

ℎ=0

(−1)k−j−ℎ

(

k
j

)(

k − j
ℎ

)

P+(t)
k−ℎ

=
L
∑

k=1

k
∑

j=⌊k

2
+1⌋

k−j
∑

ℎ=0

(−1)k−j−ℎak

(

k
j

)(

k − j
ℎ

)

P+(t)
k−ℎ (8)

Proposition 7.1 Consider relation (7), where L is a positive integer and
∑L

k=1 ak = 1,
with ak ≥ 0, k = 1, . . . , L. For any choice of P+(t) ∈ [0, 1] and any choice of L, we have
P+(t+ 1) = P+(t) if and only if

a1 = 1
ak = 0, k = 2, . . . , L.

(9)

Furthermore, considering (7) and (8), for any L ≥ 1 the expression

P+(t) =
L
∑

k=1

k
∑

j=⌊k

2
+1⌋

k−j
∑

ℎ=0

(−1)k−j−ℎak

(

k
j

)(

k − j
ℎ

)

P+(t)
k−ℎ (10)

admits the solutions P+(t) = 0 (for any L ≥ 1) and P+(t) = 1 (for any L ≥ 2).

Proof

The sufficient condition is self-evident since (9) implies that P+(t + 1) = P+(t), for any
choice of the parameter L in (7). On the other hand, the necessary condition follows from
the fact that (8) must hold for any value of the integer L.

Finally, equation (10) is homogeneous with respect to P+(t) so that P+(t) = 0 is clearly
a solution. In addition, since in (7)

lim
P+(t)→1

{1− P+(t)}k−j =

⎧

⎨

⎩

0 if k ∕= j

1 if k = j,

we have

lim
P+(t)→1

L
∑

k=1

ak

k
∑

j=⌊k

2
+1⌋

Ck
j P+(t)

j{1− P+(t)}k−j = P+(t),

which proves that P+(t) = 1 is again a solution of (10). □.
Now, we want preliminarily to compute the killing point in the case where the model

(7) is used and L = 1, . . . , 4; then, we will have to extend the results to our proposals. The
cases where L = 1, . . . , 4 are important since several practical problems, where small groups
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of individuals are involved, are pretty common.

Let us examine the trivial case L = 1. This implies that the subsets of people may have
just one member; thus, each of the N individuals will preserve their initial opinion. The
killing point corresponds to P̂+ = 1 and the conclusions of Proposition 7.1 clearly hold.

Let now be L = 2 (the dance hall problem). According with (8) with L = 2 we have

P+(t+ 1) =

1
∑

j=⌊ 1

2
+1⌋

1−j
∑

ℎ=0

(−1)1−j−ℎa1

(

1
j

)(

1− j
ℎ

)

P+(t)
1−ℎ

+
2

∑

j=⌊ 2

2
+1⌋

2−j
∑

ℎ=0

(−1)2−j−ℎa2

(

2
j

)(

2− j
ℎ

)

P+(t)
2−ℎ

= a1P+(t) + a2P+(t)
2.

The killing point may be determined using relation
∑L

i=0 ak = 1 and by solving the equation

P+(t) = a1P+(t) + a2P+(t)
2.

If a2 = 0 we fall in the previous case where L = 1. Otherwise, from Proposition 7.1 we have
the two stationary points ‘0’ and ‘1’, where only ‘1’ is the killing point P̂+.

When L = 3 we have to consider the cases k = 1, 2, 3. Thus, (8) becomes

P+(t+ 1) =
1

∑

j=⌊1

2
+1⌋

1−j
∑

ℎ=0

(−1)1−j−ℎa1

(

1
j

)(

1− j
ℎ

)

P+(t)
1−ℎ

+
2

∑

j=⌊2

2
+1⌋

2−j
∑

ℎ=0

(−1)2−j−ℎa2

(

2
j

)(

2− j
ℎ

)

P+(t)
2−ℎ

+

3
∑

j=⌊3

2
+1⌋

3−j
∑

ℎ=0

(−1)3−j−ℎa3

(

3
j

)(

3− j
ℎ

)

P+(t)
3−ℎ

= a1P+(t) + a2P+(t)
2 − 3a3P+(t)

3 + 3a3P+(t)
2 + a3P+(t)

3

= a1P+(t) + (a2 + 3a3)P+(t)
2 − 2a3P+(t)

3.

As Proposition 7.1 stated, from equation (10) we see that P+(t) = 0, for any t ≥ 0, is a
solution. Furthermore, the other two solutions of (10) are given by (the case a3 = 0 simply
yields the same results of L = 2)

1

4a3

[

a2 + 3a3 + (a23 − 2a2a3 + a22)
1/2

]

=
1

4a3
[a2 + 3a3 + (a3 − a2)] = 1

1

4a3

[

a2 + 3a3 − (a23 − 2a2a3 + a22)
1/2

]

=
1

4a3
[a2 + 3a3 − (a3 − a2)] =

a2 + a3
2a3

≥ 1

2
.

The latter formulae confirm two obvious considerations. First, the results of Proposition
7.1 hold. Then, in case the majority rule is adopted within each subset of individuals (with
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a bias for ‘−’ in case of ties), then the killing point P̂+ = (a2 + a3)/(2a3) is larger than 0.5.
Note also that in case a1 = a2 = 0 the results of Proposition 4.1 trivially hold.

When L = 4 we have the cases k = 1, 2, 3, 4. Thus, (8) becomes

P+(t+ 1) =
1

∑

j=⌊1

2
+1⌋

1−j
∑

ℎ=0

(−1)1−j−ℎa1

(

1
j

)(

1− j
ℎ

)

P+(t)
1−ℎ

+
2

∑

j=⌊2

2
+1⌋

2−j
∑

ℎ=0

(−1)2−j−ℎa2

(

2
j

)(

2− j
ℎ

)

P+(t)
2−ℎ

+
3

∑

j=⌊3

2
+1⌋

3−j
∑

ℎ=0

(−1)3−j−ℎa3

(

3
j

)(

3− j
ℎ

)

P+(t)
3−ℎ

+

4
∑

j=⌊4

2
+1⌋

4−j
∑

ℎ=0

(−1)4−j−ℎa4

(

4
j

)(

4− j
ℎ

)

P+(t)
4−ℎ

= a1P+(t) + (a2 + 3a3)P+(t)
2 + (4a4 − 2a3)P+(t)

3 − 3a4P+(t)
4.

In order to compute possible killing points for the case L = 4 we consider the solution of
equation

P+(t) = a1P+(t) + (a2 + 3a3)P+(t)
2 + (4a4 − 2a3)P+(t)

3 − 3a4P+(t)
4

and equivalently

(a1 − 1)P+(t) + (a2 + 3a3)P+(t)
2 + (4a4 − 2a3)P+(t)

3 − 3a4P+(t)
4 = 0.

Again from Proposition 7.1 and equation (10) we see that P+(t) = 0, for any t ≥ 0, is
a solution. Furthermore, since also P+(t) = 1 must be a solution of (10) by a simple
polynomial division we obtain

(a1 − 1)P+(t) + (a2 + 3a3)P+(t)
2 + (4a4 − 2a3)P+(t)

3 − 3a4P+(t)
4 =

P+(t) [P+(t)− 1]
[

3a4P+(t)
2 + (2a3 − a4)P+(t) + (a1 − 1)

]

,

so that the zeros (possible killing points) are

1

6a4

[

a4 − 2a3 + ((2a4 + 2a3)
2 + 3a4(3a4 + 4a2))

1/2
]

>
4a4
6a4

=
2

3

1

6a4

[

a4 − 2a3 − ((2a4 + 2a3)
2 + 3a4(3a4 + 4a2))

1/2
]

< 0. (11)

Then, in case the majority rule is adopted within each subset of individuals (with a bias for
‘−’ in case of ties), the left hand side of (11) is negative and therefore cannot be a killing
point.
Moreover, also observe that in case a4 = 1 (i.e. only subgroups with four individuals are
allowed), then the killing point is P̂+ = (1 +

√
13)/6.
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