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Abstract. The objective of this paper is to provide an analytical framework
to study the whole process of diffusion of innovations, new products or ideas:
we take into account knowledge transfer in a complex society, decisional pro-
cess for adoption and key features in the spread of new technologies. For this
purpose, we propose a probabilistic model based on an interacting popula-
tion connected through new communication channels (such as social media)
where potential adopters are linked with each other at different connection
degrees. Our diffusion curve is the result of an emotion driven decision pro-
cess following the awareness phase. Finally, we are able to recover stylized
facts highlighted by the extant literature in the field.
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1 Introduction

Diffusion of innovations is a process related to the spread of a new idea,
product or technology through the members of a social system. It is one
of the more discussed topics in the fields of behavioral science, including
anthropology, sociology and marketing. Two of the milestones widely rec-
ognized in this field are the models developed by Rogers (1962) and Bass
(1969). The former identifies different steps through which the innovation
decision process develops (knowledge, persuasion, decision, implementation,
confirmation) and different adopters categories as ideal types, i.e., innovators
(venturesome), early adopters (respectable), early majority (deliberate), late
majority (skeptical) and laggards (traditional). The latter proposes an ana-
lytical model for the timing of initial purchase of new products; he assumes
that the population consists of “innovators”, who typically early adopt inde-
pendently of the others, and “imitators”, who are influenced in their choice
by the media and by the number of previous buyers.

In the last decade audience fragmentation, consumers’ empowerment, me-
dia convergence and technology development have affected both demand and
supply sides changing consumption patterns and brand/product communica-
tion. The prominent role of new media and communication channels (inter-
net, social media and social networks) calls for a revision of the classical dif-
fusion models. We believe, in particular, that some minimal features must be
included: (i) heterogeneous connection degrees influencing awareness; (ii) a
multilevel diffusion mechanism recalling the original Rogers’ diffusion stages;
(iii) behavioral motives such as imitation and peers’ pressure, driving the
emotional decision process; (iv) fragmentation of the population of potential
adopters.

The aim of this paper is to provide a general (and tractable) framework
that encompasses all these ingredients. Our main result is a closed form
equation driving the adoption curve. It is derived relying on large deviation
techniques, as the limit of aggregate statistics describing a population of in-
teracting agents. With this respect, we can say that our approach is inspired
by Schelling’s Micromotives and Macrobehavior (1978). Indeed, we firstly
implement the single agent decision process, where characteristics such as
connectivity degree, private willingness to adopt and imitation propensity
are considered. Secondly, we choose appropriate state variables, identifying,
at the micro level, awareness (knowledge) and adoption, and we study their
time evolution, depending on agents’ characteristics. Finally, a convergence
result over the population size, i.e., when the number of actors grows to infin-
ity, provides, at the macro level, the awareness and the adoption dynamics.

There are recent contributions that focus separately on some of the as-
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pects highlighted above (connectivity, delayed adoptions, behavioral motives
and heterogeneous agents). Among the others, Goldenberg et al. (2009) ana-
lyze the role of hubs (highly interconnected individuals in a social network) in
the adoption process. Van Den Bulte and Joshi (2007) allow for heterogeneity
in the population’s characteristics, taking into account influential and non
influential agents. New trends and directions within the marketing literature
on the field are reviewed in Peres et al. (2010). A different strand of literature
develops agent-based models (see Kiesling et al. (2011) for a survey); the aim
of these papers is to model the micro-motives behind the decision process,
thus introducing specific characteristics of single actors that are difficult to
capture by means of a macro/aggregate equation. The price they pay is the
loss of tractability and the need to use numerical methods in order to provide
intuition about dynamics and equilibria. In Fanelli and Maddalena (2012),
a delayed equation is used in order to model the gap between awareness
and adoption. The task is pursued directly at the aggregate level, without
addressing the decision process itself.

Our methodology allows us to take advantage of the micro-structure of the
decision process (as in the agent-based approach) while maintaining tractabil-
ity. On the other hand, relying on the closed form equation for the adoption
curve, we recover some of the stylized facts suggested by previous empirical
studies (see Goldenberg et al. (2009) and Van Den Bulte and Joshi (2007))
such as delayed adoptions compared to awareness trends and atypical (non S-
shaped) adoption curves. Finally, thanks to the general setup for population’s
characteristics we are able to disentangle hubs and influentials (characters
that are often overlapped); empirical evidence suggests in fact that their role
in the diffusion process is different (see Goldenberg et al. (2009)). Our model
provides an analytical support for this hypothesis.

The paper is organized as follows. Connectivity, the behavioral rationale
of possible adopters and the two-stage diffusion mechanism are introduced
in Section 2. In Section 3 we find the asymptotic aggregate awareness’ and
adoption’s dynamics. Section 4 describes a baseline example, where we divide
agents in subgroups with respect to their connectivity degree and their taste
for innovation. Section 5 concludes the paper. Appendix A contains all
technical proofs.

2 Awareness and adoption

We assume that an innovative product/service is launched through a new
communication channel such as a social network. Nowadays, social media are
more and more common in the marketing mix chosen to sustain the launch of
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a new product/service. We consider a population of N actors linked within
the network. They form the population of possible adopters.
To summarize information concerning agents’ characteristics, we define iden-
tity vectors as follows.

Definition 2.1 (Identity vector)
Let θi = (βi, pi, qi), for i = 1, . . . , N , be the identity vector of actor i, where

• βi ≥ 0, measures the connection degree (connectivity);

• pi ≥ 0, represents the propensity to adopt (innovation coefficient);

• qi ≥ 0, represents the propensity to conform (imitation coefficient).

θi, i = 1, . . . , N , are i.i.d. random vectors with distribution ηθ.

The identity vector collects the basic parameters useful to represent in a
simple way the features highlighted in the introduction (network structure
and emotional motives behind the adoption). We will see in the sequel how
these parameters are used in order to characterize the awareness process and
the decision problem behind adoption.

We aim at monitoring a two-stage diffusion process : awareness and adop-
tion. Awareness shows whether an actor has been reached so far by the
information. Being aware represents a necessary step for the agent to con-
sider the possibility of adopting the innovation. We now describe the two
levels diffusion process on a time window [0, T ] (possibly T = +∞).

Definition 2.2 (Awareness and adoption) We define the awareness and
the adoption processes, respectively x = {(x1(t), . . . , xN (t)) , t ∈ [0, T ]} and
y = {(y1(t), . . . , yN(t)) , t ∈ [0, T ]} where
{

xi(t) = 1 if agent i has been reached by the information by t;
xi(t) = 0 otherwise.

{

yi(t) = 1 if agent i has adopted by t;
yi(t) = 0 otherwise.

We are interested in studying the joint evolution of (x,y), based on char-
acteristics of the agents and of the network. In particular, we now propose
suitable transition intensities1 for the awareness and the adoption processes

1Transition intensities are the rates of probability of having a jump in one component
of a jump process. For instance, the transition intensity λx

i (t) for process x at time t is
defined as

λx
i (t) = lim

h→0

1

h
P(xi(t+ h) 6= xi(t)|x(t),y(t), θi).

.

4



taking into account the whole network structure and the emotional motives
driving the adoption process of the single agents.

The spread of information (awareness)

In the first stage we study the information exposure and its diffusion process.
The awareness process spreads by contagion through the social network as
follows

xi : 0 7→ 1 with intensity λx
i = exp(βi ·m

x
N ), (1)

where

mx
N =

1

N

N
∑

j=1

xj (2)

denotes the (cumulative) proportion of actors reached by the information2

and where βi ≥ 0 is the parameter measuring the level of popularity of agent
i in the network; we call it connectivity3.
The rationale is the following: the more an actor is interconnected within the
network, the higher is the probability of becoming aware of the innovation.
Intensities as in (1) are suitable to model a viral effect as in classical contagion
models (see Barucci and Tolotti (2012) or Dai Pra and Tolotti (2009)), taking
into account heterogeneity in the identity vectors of the agents. In Section 4
we will see how to reproduce significant examples such as the hub vs. non-hub
world analyzed in Goldenberg et al. (2009).

The emotion driven decision process (adoption)

Once reached by the information, the actor has to decide whether to adopt or
not, optimizing his/her own utility function: any agent compares the utility
of adoption and non adoption and chooses for the highest. To describe the
decision process we take into account the emotional motives that guide the
agent in his/her choice. Considering new and social media it is evident that
engagement and emotional drivers play a crucial role. Thus we consider
utility functions U[i,t] : {0; 1} → R for i : 1, . . . , N and t ∈ [0, T ] defined as
follows.

U[i,t](y) = y ·
[

xi(t) · (pi + qi m
y
N(t) + εi)

]

, (3)

2Note that in principle we could use the statistics m̃x
N = 1

N−1

∑

j 6=i x
j , excluding xi

by the sum. Eventually, the marginal contribution of the single xi will disappear at the
limit, so the two formulations are basically equivalent.

3We can think of βi as a popularity measure increasing with the network degree di > 0,
i.e., the number of links departing from node i. We prefer to avoid a proper graph structure
to maintain tractability.

5



where

my
N (t) =

1

N

N
∑

j=1

yj(t) (4)

is the proportion of adoptions occurred up to time t. This utility is time
dependent and it is formed by three components: a private component, a
social one and a random term4. In particular, the parameter pi ≥ 0, expresses
the propensity to adopt (taste for innovation), qi ≥ 0 describes the measures
the propensity to conform (imitation coefficient). Note that parameters pi
and qi recall Rogers’ classifications and Bass’ modeling ideas. εi is a random
term which introduces heterogeneity at the level of the utilities of the actors
in the network. We assume εi, i = 1, . . . , N are i.i.d. with distribution
function ηε, where ηε(z) = P(ε ≤ z) attributes positive mass on the negative
numbers. Note, moreover, that the identity vector θi = (βi, pi, qi), as in
Definition 2.1, and εi play two different roles. Although both θi and εi are
agent’s characteristics, θi is known at time zero and is related to the “actors’
personality”, whilst εi is revealed only at the time where the decision takes
place and is “decision related”.
Some remarks about utilities U[i,t] are needed.

• If xi(t) = 0, U[i,t](·) = 0. In other words, if the agent is not aware,
his/her utility is zero.

• If xi(t) = 1, U[i,t](1) = pi + qi m
y
N (t) + εi, which is increasing in both

the innovation and imitation coefficient and in the proportion of adop-
tions already occurred. Note, moreover, that U[i,t](1) could be negative,
because of εi.

• U[i,t](0) = 0. Utility of non-adoption is zero. This means that, in
deciding whether to adopt, any agent compares U[i,t](1) with zero5.

• In facing an instantaneous utility, actors are somewhat myopic. This
assumption, although rather simplistic, can be justified in the context
of new media: agents acting in such a context experience very fast and
emotional decision-making processes (see Berger and Milkman (2012)).
With this respect, the contribution of future utility can be neglected.

4This approach is referred to as random utility model. See, for instance, Brock and
Durlauf (2001) for more details.

5Adoption based on utilities U[i,t] can be seen as obeying a threshold model. Given
pi, qi and εi, as soon as m

y
N(t) is large enough, it becomes worth for agent i to adopt.

With this respect, εi can be seen as a term introducing a random (idiosyncratic) threshold
level for adoption.
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Following Blume and Durlauf (2003) and Barucci and Tolotti (2012) we
assume that agents may decide to adopt at random times according to util-
ities as in (3). This is in line with Rogers’ seminal idea of implementation
and confirmation (see Rogers (1962)). The actor can adopt the new product
or reject it and decide to postpone the decision to a future time. Under these
assumptions, transition rates for the adoption process are described in the
following proposition.

Proposition 2.3 Consider agents whose utilities are given by (3). Assume,
moreover, that agents are randomly asked to adopt at exponentially distributed
random times with parameter 1. Then, the transition intensities of process
y, defined in definition 2.2, are

λy
i (t) = xi(t) · (1− ηε(−pi − qim

y
N(t))). (5)

Proof. See Appendix A.

3 Awareness’ and adoption’s dynamics

We have formalized the decision process behind the adoption and the dynam-
ics of awareness through the social network. In particular, we have provided
transition intensities for the processes x and y. We are ready to state the
main result of this paper. It provides the proper dynamics of the two-stage
system (awareness and adoption) when the number of actors goes to infinity.

Theorem 3.1 Consider the identity vectors θi = (βi, pi, qi), i = 1, . . . , N , as
in Definition 2.1 and the Markov process (x,y) characterized by the following
transition rates:

xi = 0 7→ xi = 1 with intensity λx
i = exp{βim

x
N},

yi = 0 7→ yi = 1 with intensity λy
i = xi ·

(

1− ηε(−pi − qim
y
N)

)

.
(6)

Assume, moreover, that at time t = 0, xi(0) = yi(0) = 0, for i = 1, . . . , N .
Then, for N → ∞, (mx

N (t), m
y
N(t)) weakly converges to the pair (mx

t , m
y
t ),

defined as

mx
t =

∫

mx
t (θ

′)dηθ(θ′); my
t =

∫

my
t (θ

′)dηθ(θ′), (7)

where θ′ = (β ′, p′, q′), (mx
0 , m

y
0) = (0, 0) and







ṁx
t (θ) = (1−mx

t (θ)) exp{β mx
t }

ṁy
t (θ) = (mx

t (θ)−my
t (θ))(1− ηε(−p− q my

t )).
(8)
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Proof. See Appendix A.

Some remarks are needed. First of all notice that this result is asymptotic.
It describes the behavior of a population of infinite (heterogeneous) agents.
Finite volume approximations could be computed, but this is out of the
scope of this paper. Indeed, equations (7)-(8) provide a generalization of the
standard Bass differential equation driving the adoption curve (see Example
3.2 below for a comparison with the seminal Bass model).

Example 3.2 (Back to Bass) The original Bass adoption curve (see Bass
(1969)) can be recovered as a special case of equation (8). Just consider the
following specifications:

• x ≡ 1, meaning that only adoption is considered, without treating any
network effect;

• pi = p, qi = q for all i = 1, . . . , N , dealing with no heterogeneity;

• concerning the noise terms, put εi ∼ Unif [−1, 1], i.e., assume that the
additional term added to the evaluation of private and social utility is
uniformly distributed across actors in the community.

Then, it is easy to see that (8) reduces to

ṁy
t = (1−my

t ) · (p+ q my
t ) , (9)

with initial condition my
0 = 0. This equation gives rise to the Bass adoption

curve, where my
t represents the cumulative proportion of potential buyers who

have already adopted.

Equations (8) are very general: they apply in principle to a continuum
of heterogeneous agents. To help the intuition and to recover some features
analyzed by recent empirical literature, in Section 4 we apply this result to
the case of a population of actors belonging to (few) different groups.

4 A significant case: hubs and innovators

We consider the case where the population can be split into four subgroups,
taking into account the degree of connectivity of each individual and his/her
propensity for innovation. In particular, we consider two connectivity levels
(hubs and non-hubs) and two innovativeness levels (innovators and follow-
ers). Therefore, we have innovative hubs, follower hubs, innovative non-hubs
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and follower non-hubs, each group characterized by a different identity vector
(see Table 1). In Table 1 we denote by αh ∈ (0, 1) and αI ∈ (0, 1), respec-
tively, the proportion of hubs and of innovators in the whole population.
Clearly, αn = 1− αh and αF = 1− αI .

Innovator (I) Follower (F)
hub (h) θhI = (βh, pI , qI) θhF = (βh, pF , qF ) αh

non-hub (n) θnI = (βn, pI , qI) θnF = (βn, pF , qF ) αn = 1− αh

αI αF = 1− αI

Table 1: Subgroups, relative identity vectors and their proportions.

We assume, furthermore, that εi are uniformly distributed over [−1, 1] as
in Example 3.2. Under these specifications, we obtain the following result.

Corollary 4.1 Let consider the system of four sub-populations θk, with k ∈
{hI, hF, nI, nF} as defined in Table 1. Assume, moreover, that εi are uni-
formly distributed over [−1, 1].
Then awareness and adoption (mx

t , m
y
t ) evolve according to the following dif-

ferential system:
{

ṁx
t = αhαI ·m

x
t (θhI) + αhαF ·m

x
t (θhF ) + αnαI ·m

x
t (θnI) + αnαF ·m

x
t (θnF )

ṁy
t = αhαI ·m

y
t (θhI) + αhαF ·m

y
t (θhF ) + αnαI ·m

y
t (θnI) + αnαF ·m

y
t (θnF )

where, for k ∈ {hI, hF, nI, nF},






ṁx
t (θk) = (1−mx

t (θk)) exp{βk m
x
t }

ṁy
t (θk) = (mx

t (θk)−my
t (θk))(pk + qk m

y
t ).

(10)

Note that equations (10) are the exact counterpart of (8) in the case
of four sub-groups of homogeneous actors (see Table 1); in particular, they
describe how the awareness and the adoption evolve in such a population.
Because of the introduction of coupled dynamics and the presence of hetero-
geneous actors, they cannot be analytically solved, thus, in order to discuss
some interesting stylized facts, we provide some numerical computations.

In this case example, parameters are the identity vectors θk = (βk, pk, qk),
with k ∈ {hI, hF, nI, nF}, and the population distribution α = (αh, αI). For
the numerical simulation we choose the following parameters based on the
extant literature:

• βh = 8× βn (assumption taken from Goldenberg et al. (2009));

9



• qI = 0 (extreme case: no imitative component in innovator actors);

• pF = 0 (extreme case: no innovative component in follower actors);

• αh = 0.1 (small proportion of hubs);

• αI = 0.25 (assumption taken from Van Den Bulte and Joshi (2007)).

Innovator (I) Follower (F)
hub (h) θhI = (4.0, 5, 0) θhF = (4.0, 0, 1) αh = 0.1

non-hub (n) θnI = (0.5, 5, 0) θnF = (0.5, 0, 1) αn = 0.9
αI = 0.25 αF = 0.75

Table 2: Values of the parameters used in Figures 1 and 2.

The particular values chosen are synthesized in Table 2.
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Figure 1: Different shapes for awareness’ and adoption’s curves

Figure 1 shows that the adoption (as predictable) is delayed and can have
a different shape compared to the awareness, which seems to be faster in this
case. Social media are useful for awareness campaigns as they are able to
find and target a specific group of people, implying furthermore, a social
aspect (see Harris and Rae (2009)). They mainly affect the first stage of the
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process. Observing diffusion data of such messages on Facebook or Youtube,
one can end up with steep (increasing and concave) curves for the awareness
similar to what represented in Figure 1. Actually, the speed of knowledge on
the social network does not necessarily imply that the adoption should grow
exponentially fast.

Figure 2 shows the different roles of innovator hubs and follower hubs in
the adoption process. We find that, as conjectured and found in Goldenberg
et al. (2009), the formers push the speed of adoption at the very beginning of
the process, giving an initial positive signal to the network, the follower hubs
make the adoption rates more persistent in time, having a strong impact on
the total number of adoptions. Moreover, we show that the adoption process
is not necessarily monotone in time, as conjectured and empirically found in
Van Den Bulte and Joshi (2007).

5 Conclusions

We proposed a framework for modeling diffusion of innovations through the
emotional web, taking into account, from one hand, a two-stage process
(awareness and adoption) and, from the other, the behavioral motives driv-
ing the adoption process.
We studied the process of aggregate awareness and adoption finding macro-
scopic equations that describe how these processes evolve over time.
Our results are twofold. From one side we enriched models à la Bass with
Roger’s paradigm of a complex adoption process (synthesized here by the
two-stage and emotion driven adoption process). From the other hand, our
micro founded approach enabled us to explain some stylized facts observed
in previous empirical works, such as Goldenberg et al. (2009) and Van Den
Bulte and Joshi (2007). Indeed, we discussed the different shapes of the
awareness’ and adoption’s curves, confirming the need to monitor both of
them to better describe the whole diffusion process. We have, also, proposed
a significant example, where the disentangled effects of innovator hubs and
follower hubs can be monitored; eventually, we showed in certain cases the
emergence of a non S-shaped adoption curve.
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tonicity in the adoption curve.
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A Proofs

Proof of Proposition 2.3

Consider an actor (say i), who, at time t, has been reached by the information
about the innovation (xi(t) = 1), but has not yet adopted (yi(t) = 0). We call
τ the next random time at which agent i is asked to decide whether to adopt
or not. We are interested in computing the (rate of) probability of adopting
on the interval (t, t + h], conditioned above current information. Note that
the event {to adopt on (t, t+h]} is the intersection of two events, respectively,
{τ ∈ (t, t+ h]} and {U[i,τ ](1) ≥ U[i,τ ](0)}. Concerning the former, the arrival
time is independent from the history of the process. Hence

P
(

τ ∈ (t, t+ h]|x(t),y(t), θi
)

= P
(

τ ∈ (t, t+ h]
)

= 1− e−h.

The probability of the latter, conditioned on the event {τ ∈ (t, t + h]}, can
be computed as follows.

P
(

U[i,τ ](1) ≥ U[i,τ ](0)|x(t),y(t), θi, τ ∈ (t, t+ h]
)

=

xi(τ) · P
(

pi + qim
y
N (τ) + εi ≥ 0

∣

∣τ ∈ (t, t+ h]),

where the term xi(τ) makes 0 the probability of adoption for a non-informed
agent. Therefore we have

lim
h→0

1

h
P
(

y(t+ h) = 1|x(t),y(t), θi
)

=

= lim
h→0

1

h

[

(1− e−h) · xi(τ) · P
(

pi + qim
y
N (τ) + εi ≥ 0|τ ∈ (t, t+ h]

)]

=

= xi(t) ·
(

1− ηε(−pi − qim
y
N (t))

)

,

where ηε is the distribution of εi. The last equality follows from the fact that,
the probability of having two jumps of the processes (x,y) shrinks when the
time interval tends to zero. Hence, xi(τ) = xi(t) and my

N(τ) = my
N(t).

Proof of Theorem 3.1

We split the main body of the proof into two technical lemmas. The first
one states a law of large numbers for a sequence (ρN )N of suitable empiri-
cal measures (see equation (12)). The second one characterizes the unique
limiting (deterministic) measure Π∗ such that

lim
N

ρN → Π∗.
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In particular, it provides a Fokker-Plank (forward) equation useful to describe
the time evolution of Π∗.

Before stating and proving the two lemmas, we refresh a couple of facts
about the process (x,y) and we introduce some useful notations. Condi-
tioned on a realization of the identity vector θ = (θ1, . . . , θN) (see Definition
2.1), (x,y) evolves as a continuous time Markov chain on the state space
{0, 1}2N with infinitesimal generator acting on functions h : {0, 1}2N → R as
follows

GN
[θ] h(x,y) =

N
∑

i=1

(1− xi)λ
x
i

[

h
(

xi,y
)

− h (x,y)
]

+

N
∑

j=1

(1− yi)λ
y
j

[

h
(

x,yj
)

− h (x,y)
]

,

(11)

where xi := (x1, . . . , 1−xi, . . . , xN ), analogously yj and where λx
i and λy

j are
respectively defined in (1) and (5). Note that the terms (1− xi) and (1− yi)
inhibit transitions of the kind 1 7→ 0.

We denote by xi[0, T ] (resp. yi[0, T ]) the trajectory of xi (resp. yi) on
[0, T ] and with D([0, T ]) the Skorohod space of right continuous, piecewise
constant functions defined on the interval [0, T ]. Finally, define the (random)
empirical measure.

ρN(x([0, T ]),y([0, T ]), θ) =
1

N

N
∑

i=1

δ{xi[0,T ],yi[0,T ],θi} . (12)

ρN ∈ M1, whereM1 denotes the space of probability measures onD2([0, T ])×
R

3 endowed with the weak convergence topology. Note, moreover, thatmx
N(t)

and my
N (t) are empirical averages of the form

1

N

N
∑

i=1

f(xi[0, T ], yi[0, T ], θi) =:

∫

f dρN .

Therefore, we now provide a law of large numbers for the sequence (ρN)N
(Lemma A.1), characterizing the limiting measure Π∗ (Lemma A.2).

Lemma A.1 There exists a unique Π∗ ∈ M1 such that

ρN → Π∗ almost surely

in the weak topology.

14



Lemma A.2 It holds Π∗ = Πθ
∗ ⊗ ηθ, where ηθ has been defined in Definition

2.1 and where Πθ
∗ can be characterized as follows. Let πx

t (θ) := Πθ
∗(x(t) = 1)

and πy
t (θ) := Πθ

∗(y(t) = 1), then (πx
t (θ), π

y
t (θ)) is the unique solution of























∂
∂t
πx
t (θ) = (1− πx

t (θ)) exp
{

β
∫

πx
t (θ

′)dηθ(θ′)
}

∂
∂t
πy
t (θ) = (πx

t (θ)− πy
t (θ))

(

1− ηε
(

−p− q
∫

πy
t (θ

′)dηθ(θ′)
))

πx
0 (θ) = πy

0(θ) = δ0

(13)

for t ∈ [0, T ] and for any fixed θ = (β, p, q).

The proofs of these results are postponed to the end of the section. As-
suming the validity of the two lemmas, we can prove Theorem 3.1.
Note thatmx

N(t) =
∫

xΠt(ρN)(dx, dy, dθ) andmy
N(t) =

∫

yΠt(ρN)(dx, dy, dθ).
Therefore, as a corollary of Lemma A.1, we have that (mx

N(t), m
y
N (t)) weakly

converges to the couple (mx
t , m

y
t ), where

mx
t =

∫

xΠt(Π∗)(dx, dy, dθ) ; my
t =

∫

yΠt(Π∗)(dx, dy, dθ)

and Πt(Π∗) is the time-t projection of Π∗.
It remains to show that (mx

t , m
y
t ) solve (7) and (8). These equations are de-

rived relying on Lemma A.2. Indeed, note that mx
t =

∫

mx
t (θ

′)dηθ(θ′), where
mx

t (θ) =
∫

xΠt(Π
θ
∗)(dx, dy) = πx

t (θ) (the same for my
t ). Therefore, equations

(7) and (8) immediately follow from (13).

Proof of Lemma A.1

To prove the law of large numbers, we need to define a new function F ,
F : M1 → R, where M1 is the space of probabilities on D2([0, T ])×R

3. This
function is crucial to specify the good rate function of the large deviation
principle used to derive the law of large numbers. To this aim, we need
to introduce an auxiliary process (x, y) on the state space {0; 1}2 evolving
according to the following rates of transition. For Q ∈ M1,

x : 0 7→ 1 with intensity (1− x(t)) · λx
Q(t),

λx
Q(t) = exp

{

β

∫

v(t)Q(dv[0, T ], dw[0, T ], dθ)

}

;

y : 0 7→ 1 with intensity (1− y(t)) · λy
Q(t),

λy
Q(t) = x(t)

(

1− ηε
(

− p− q

∫

w(t)Q(dv[0, T ], dw[0, T ], dθ)
)

)

.
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We denote by τx (resp. τy) the jump time of the process x (resp. y). Define
F (Q) as

F (Q) = E
Q [f(x[0, T ], y[0, T ], θ)] , (14)

where

f(x[0, T ], y[0, T ], θ) =

∫ T

0

(1− x(t)
(

1− λx
Q(t)

)

dt+ x(T ) ln
(

λx
Q(τ

−
x )

)

+

∫ T

0

(1− y(t)
(

1− λy
Q(t)

)

dt+ y(T ) ln
(

λy
Q(τ

−
x )

)

.

Let PN be the law of the process induced by the generator (11) and PN the
probability distribution of ρN (x[0, T ],y[0, t], θ) under PN . Having defined a
suitable function F , we can apply Theorem 1 of Dai Pra and Tolotti (2009).
That result allows to characterize a large deviation principle for the sequence
of measures (PN)N , in the following sense. Define

I(Q) := H(Q|W )− F (Q), (15)

where W is the law of the process induced by the generator (11) assuming
independence (i.e., λx

i = λy
i = 1 for all i = 1, . . . , N) and where H(Q|W )

denotes the relative entropy of Q with respect to W . Then (PN )N satisfies a
large deviation principle with good rate function I. Therefore,

P
(

d(ρN ,Π∗) ≥ ε
)

converges to zero with exponential rate in N , where d(·, ·) is any metric that
induces the weak topology on M1. The law of large numbers follows from
this result, applying the Borel-Cantelli lemma.

Proof of Lemma A.2

The measure Π∗ as defined in Lemma A.1 is the unique element of M1 such
that Π∗ = Πθ⊗ηθ, where Πθ is the law of the Markov process on {0; 1}2 with

initial distribution δ0 ⊗ δ0 and time-dependent generator L
[Π∗; θ]
t defined as

L
[Π∗; θ]
t f(x, y) = (1− x) · eβ

∫
x(t)Π∗(dx[0,T ],dy[0,T ],dθ) ·

(

f(1− x, y)− f(x, y)
)

+

x · (1− y) · ep+q
∫
y(t) Π∗(dx[0,T ],dy[0,T ],dθ) ·

(

f(x, 1− y)− f(x, y)
)

(16)

(see Theorem 2 of Dai Pra and Tolotti (2009)). Since the marginals of a
Markov process are solutions of the corresponding forward equation, defining
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πt := Πt

(

Πθ
)

, the t−projection of Πθ, we have that π̇t = L
[Π∗; θ]
t where L

[Π∗; θ]
t

is the adjoint of L
[Π∗; θ]
t :

(L
[Π∗; θ]
t q)(x, y) = x · eβ

∫
x(t) Π∗(dx[0,T ],dy[0,T ],dθ) · q(1− x, y)−

(1− x) · eβ
∫
x(t) Π∗(dx[0,T ],dy[0,T ],dθ) · q(x, y)+

x · y · ep+q
∫
y(t) Π∗(dx[0,T ],dy[0,T ],dθ) · q(x, 1− y)−

x · (1− y) · ep+q
∫
y(t) Π∗(dx[0,T ],dy[0,T ],dθ) · q(x, y).

(17)

More specifically,

π̇t(1, 1) = eβ
∫
x(t) Π∗(dx[0,T ],dy[0,T ],dθ)πt(0, 1) + ep+q

∫
y(t) Π∗(dx[0,T ],dy[0,T ],dθ)πt(1, 0);

π̇t(1, 0) = eβ
∫
x(t) Π∗(dx[0,T ],dy[0,T ],dθ)πt(0, 0)− ep+q

∫
y(t) Π∗(dx[0,T ],dy[0,T ],dθ)πt(1, 0);

π̇t(0, 1) = −eβ
∫
x(t) Π∗(dx[0,T ],dy[0,T ],dθ)πt(0, 1);

π̇t(0, 0) = −eβ
∫
x(t) Π∗(dx[0,T ],dy[0,T ],dθ)πt(0, 0).

Note that πt(0, 1) ≡ 0, since π0(0, 1) = 0 and π̇t(0, 1)/πt(0, 1) ≤ 0. Therefore,
the unique non-negative solution is the null one. Put now πx

t = πt(1, 1) +
πt(1, 0) and πy

t = πt(1, 1), then it is easy to see that







π̇x
t = eβ

∫
x(t)Π∗(dx[0,T ],dy[0,T ],dθ)(1− πx

t )

π̇y
t = ep+q

∫
y(t) Π∗(dx[0,T ],dy[0,T ],dθ)(πx

t − πy
t )

πx
0 = πy

0 = 0

which are exactly equations (13).
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