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1. Introduction: Green Chemistry 

 
1.1. The history of Green Chemistry 

Several Green Chemistry concepts and manufactures, as well as, green research fields were already 

investigated and utilised before the term Green Chemistry came into use. This is because chemists 

have always pursued the aim to be at the service of humanity with idea of improving the lifestyle of 

humankind. An emblematic example is the Solvay process for the production of Na2CO3.  

Leblanc process came to dominate alkali production in the early 1800s and consisted of the reaction 

of salt, limestone, sulphuric acid, and coal to produce soda ash (sodium carbonate).  

However, the expense of its reagents and its polluting by-products (HCl) called for the development 

of new processes. Thus, in 1860s Ernest and Albert Solvay developed a new process. The 

ingredients used for this process were readily available, inexpensive and green: salt brine (NaCl) 

and limestone (CaCO3 from mines) to produce soda ash and as by-product calcium chloride (CaCl2) 

in aqueous solution. An important key point to be mentioned is that the reaction between NaCl and 

CaCO3 does not occur directly as it needs a series of steps involving at least five reactions and six 

chemical intermediates: NH3, NH4Cl, CaO, Ca(OH)2, CO2, and NaHCO3. The Solvay process is 

very efficient mainly because the intermediates are all reclaimed and reused. 

 

More recently, but still prior to the exploitation of Green Chemistry, there were other poignant 

examples of sustainability in chemistry: 
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 Alkyl polyglycosides for the synthesis of fatty alcohols. Fatty alcohols can be obtained either 

from petrochemical sources (synthetic fatty alcohols) or from natural renewable resources 

such as fats and oils. They have several applications as surfactants in hard surface cleaners 

and laundry detergents. Since the 1980s, the production of alkyl polyglycosides has relied 

completely on sugars: renewable raw materials. The research and development work in this 

field led to the solving of chemical, performance, and technical problems related to the use 

of renewable materials. As a result, alkyl polyglycosides became available in industrial 

quantities (Cognis industries) and a multitude of patents, scientific papers and articles 

appeared in specialist scientific journals.  

 

 Phase-transfer catalysis as a green approach to waste minimization in chemical industry (1). 

This key synthetic methodology was developed in the 1970s and it makes use of 

heterogeneous two-phase systems i.e. water and organic solvent. Importantly it is applied 

and applicable to a great variety of reactions (for more details see the paragraph on use of 

alternative solvents – water) and it is a good example of the transfer of know-how from 

academia to industry. 

 

 Chlorofluorocarbon (CFC) substitution. Paul J. Crutzen, Mario J. Molina and F. Sherwood 

Rowland, conducted investigations on the ozone layer depletion for which they were jointly 

award the Nobel Price for Chemistry in 1995. Their work ultimately led to the substitution 

of chlorofluorocarbons. A CFC is an organic compound that contains only carbon, chlorine, 

and fluorine, commonly known by the DuPont trade name Freon. Many CFCs have been 

widely used as refrigerants, propellants (in aerosol applications), and solvents, the most 

common being dichlorodifluoromethane (Freon-12). However, since the late 1970s, the use 

of CFCs has been heavily regulated after Crutzen, Molina and Sherwood Rowland reported 

on their destructive effects on the ozone layer (due to the presence of chlorine in these 

molecules). The manufacture of such compounds has been phased out by the Montreal 

Protocol (1987). Work on alternatives for chlorofluorocarbons led to the use of 

hydrochlorofluorocarbons (HCFCs) which are less stable in the lower atmosphere, enabling 

them to break down before reaching the ozone layer. More recently alternatives lacking the 

chlorine, the hydrofluorocarbons (HFCs) have demonstrated an even shorter lifetimes in the 

lower atmosphere. Along with ammonia and carbon dioxide, hydrocarbons have negligible 

environmental impacts and are also used worldwide in domestic and commercial 

refrigeration applications, and are becoming available in new split system air conditioners. 
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The first seeds of Green Chemistry were sown in the early 1960s when environmental statutes and 

regulations began to proliferate at an exponential rate especially after the publication of the book 

Silent Spring published by Rachel Carson, which stimulated widespread public concerns with 

respect to pesticides and pollution of the environment (2). These regulations established restrictions 

on the use of chemicals, imposed toxicity tests of chemical substances and finally provided 

incentives for industry to eventually find replacements, substitutes, or alternatives for polluting 

reagents. So, the public’s demand for more information about chemicals had grown rapidly (2). In 

the United States, this culminated with the establishment of the Emergency Planning and 

Community Right-to-Know Act (EPCRA), which made public relevant data on chemicals being 

released to the air, water, and land by industry (1980) (3). As a consequence, industry was 

confronted by tremendous pressure, not only to reduce the release of toxic chemicals into the envi-

ronment, but also to reduce the use of hazardous chemicals overall. Each of these incentives has 

combined to make the 1990s the decade during which green chemistry was introduced and it has 

found implementation and commercialization on a wide industrial scale. In particular, since 1990 in 

the USA, sustainable chemistry has been a focus area by the Environmental Protection Agency 

(EPA) (4), involving a great deal of activity in research, symposia, and education. At same time, the 

scientific community was also strongly involved in exploiting sustainable chemistry. In 1993 P. T. 

Anastas and C.A. Farris published the first book of the ACS Symposium series: “Benign by Design, 

Alternative Synthetic Design for Pollution Prevention” (5). The book was based on the symposium 

“Physical Chemistry and the Environment” sponsored by the Division of Environmental Chemistry 

at the 206th National Meeting of the American Chemical Society in Chicago (22-27 August 1993, 

Illinois). The book provided a great opportunity for several chemists who were pioneers in the field 

of “benign by design” chemistry to present their basic research in addition to encouraging many 

scientists to become involved in environmentally responsible chemistry (6). In the same year in 

Italy (1993), the Consorzio Interuniversitario Nazionale “La Chimica per l’Ambiente”, INCA was 

established, with the aim to unite the academic groups concerned with chemistry and the envi-

ronment (7). One of its focus areas being pollution prevention through research for cleaner 

reactions, products and processes with both academia and industrial applications (Figure 1).  

Besides, INCA remains constantly involved in the dissemination of Green Chemistry as 

demonstrated by the numerous books published (Green Chemistry Series) (8), school awards for 

undergraduate students (9), publication of a magazine for young green chemists (10) and the 

organization of ten editions of the Summer School in Green Chemistry (Figure 2) (11). 
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Figure 1. Picture representing the chemistry at the service of the environment (picture taken from the cover 
of “Introduzione alla Chimica Verde (Green Chemistry) "eds P. Tundo, S. Paganelli - Lara Clemenza. In 
Italian) (8). 
 

Despite the continued involvement of the industrial and scientific community in the field of 

sustainable chemistry, it was only between 1996 and 1997 that the term green chemistry was first 

used. Other terms have been proposed, such as “chemistry for the environment” but this 

combination of words does not capture the economic and social implications of the concept of 

sustainability. Herein the term Green Chemistry will be used according to the IUPAC definition 

(International Union of Pure and Applied Chemistry) that states: “Green Chemistry includes the 

invention, design and application of chemical products and processes to reduce or to eliminate the 

use and generation of hazardous substances” (12). This definition well represents the importance of 

fundamental research as a base for Green Chemistry development. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Tenth Edition of the Summer school on Green chemistry Organized by INCA (Cà Dolfin, Cà 
Foscari University, Venezia, 2008) 
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In this context, Paul Anastas (EPA), and John C. Warner developed the twelve principles of Green 

Chemistry (13), which illustrate the definition of this new field in a practical and easy to understand 

sense. The principles cover the main concepts of the Green Chemistry that are still valid today: 1) 

prevention, 2) atom economy, 3) hazard-free chemical syntheses, 4) safer chemicals and 5) 

solvents, 6) energy efficiency, 7) renewable feedstocks, 8) reduce derivatives, 9) catalysis, 10) 

degradation, 11)  pollution prevention and 12) inherently safer chemistry (14). 

 
--------------------------------------------------------- Blue Box 1 ----------------------------------------------------------- 
 

- An Outstanding  Father Figure of the Green Chemistry - 
 

Joseph Breen - born in Waterbury, Connecticut in 1942, dedicated his entire 
life to public service: he served in the Marine Corps during the Vietnam War, 
he then moved into the Peace Corps, and finally he spent 20 years at the U.S. 
Environmental Protection Agency. 
Joe Breen played a major role in creating the “Design for the Environment” 
and “Green Chemistry” Programs. Both these programs were funded with the 
intent to reduce risk and protect human health and the environment. After 20 
years at the EPA, he retired in 1997 and co-founded (and served as Executive 
Director of) the Green Chemistry Institute (GCI), a nonprofit organization in 
Rockville dedicated to research and education on environmentally friendly 

chemical synthesis and processing. The GCI promoted Green Chemistry through information and 
dissemination; research and fellowships; participation in conferences, workshops and symposia; 
international outreach; awards and recognition; and education. The Green Chemistry Institute now 
operates as an independent institute within the American Chemical Society. The GCI also provides 
national recognition for outstanding student contributions to furthering the goals of green chemistry. 
The most famous awards, in fact, are the ones established in memory of  Kenneth G. Hancock and 
Joseph Breen (died in 1999) (15). 
------------------------------------------------------------------------------------------------------------------------ 
 
In August 1996 International Union of Pure and Applied Chemistry (IUPAC) (16) began its 

involvement in the Green Chemistry field by the foundation of the Working Party on Synthetic 

Pathways and Processes in Green Chemistry (17). In September 1997 the First International 

Conference on “Challenging Perspectives on Green Chemistry” was held in Venice (Figure 3) (18). 

Since then IUPAC has been actively involved in several projects related to Green Chemistry (19). 

In July 2001, IUPAC approved the establishment of the sub-Committee on Green Chemistry 

(Division III). The committee's primary focus is to establish and carry out educational Green 

Chemistry programs. Since its conception, the subcommittee has actively organized international 

workshops, symposia and conferences, in addition to the preparation and dissemination of 

numerous books on global topics related to green/sustainable chemistry specifically aimed at 

university students (20). 
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Figure 3. Poster of the First International Conference on “Challenging Perspectives on Green Chemistry” 
(Venezia 1997) 
 

In 1997, after more than a year of planning by individuals from industry, government and 

academia, the Green Chemistry Institute (GCI) was incorporated as a not-for-profit corporation 

devoted to promoting and advancing green chemistry. In January 2001, GCI joined the American 

Chemical Society (ACS) in an increased effort to address global issues at the cross road of 

chemistry and the environment.  

In the late nineties with the new millennium looming, interest in Green Chemistry became 

widespread. In 1998 upon an EPA proposal, the Organization for Economic Co-operation and 

Development (OECD), instituted a Directive Committee for the development of sustainable 

chemistry and finalised a programme called “Sustainable Chemistry” that included chemistry aimed 

at pollution prevention and better industrial performance. The activity commenced with a survey of 

the Steering Group [USA, Italy, Japan, Germany, Belgium, Canada, Mexico, Sweden, UK, and 

Business and Industry Advisory Committee to the OECD (BIAC)] on programs and initiatives on 

Green Chemistry launched worldwide by governments, industries and academia. The USA and 

Japan were nominated co-leaders in the field of research and development while Italy was 

appointed leader of the Educational Act. In consideration of the survey results, the policy and 

programmatic aspects of the sustainable chemistry activity were discussed at the Venice Workshop 

(October 1998) in the presence of representatives from government, industry and academia from 22 

countries and subsequently approved at the OECD meeting in Paris (June 6, 1999). 
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As a result of this meeting the following seven research areas in green/sustainable chemistry were 

identified: 

 Use of Alternative Feedstocks: the use of feedstocks, which are renewable rather than 

depleting and less toxic to human health and the environment. 

 Use of Innocuous Reagents: the use of reagents that are inherently less hazardous and are 

catalytic whenever feasible. 

 Employing Natural Processes: use of biosynthesis, biocatalysis, and biotech-based chemical 

transformations for efficiency and selectivity. 

 Use of Alternative Solvents: the design and utilization of solvents, which have reduced 

potential for detriment to the environment and serve as alternatives to currently used volatile 

organic solvents, chlorinated solvents, and solvents which damage the natural environment. 

 Design of Safer Chemicals: use of molecular structure design - and consideration of the 

principles of toxicity and mechanism of action - to minimize the intrinsic toxicity of the 

product while maintaining its efficiency of function. 

 Developing Alternative Reaction Conditions: the design of reaction conditions that increase 

the selectivity of the product and allow for dematerialization of the product separation 

process. 

 Minimizing Energy Consumption: the design of chemical transformations that reduce the 

required energy input in terms of both mechanical and thermal inputs and the associated 

environmental impacts of excessive energy usage.  

 
Despite being issued in 1998, these areas of research are still current as they vividly represent the 

main lines of development of green chemistry.  

In 1999, the Royal Society of Chemistry introduced a new journal entirely dedicated to sustainable 

chemistry: Green Chemistry. This journal, as it is stated on the RSC webpage, provides a unique 

forum for the publication of original and significant cutting-edge research that reduces the 

environmental impact of the chemical enterprise by developing alternative sustainable 

technologies. Since then several new journals dedicated to Green Chemistry have appeared, such as: 

ChemSusChem (21), Energy and Environmental Science (22), Environmental Chemistry (23), 

Journal of Environmental Monitoring (24) to mention but a few. 

In 2006 following the launch of the IUPAC Green Chemistry Subcommittee within the III Division, 

the Consorzio INCA in collaboration with the German Chemical Society (GDCh) organized the 

first International IUPAC Conference dedicated to Green-Sustainable Chemistry (ICGC-1), 

currently in its 3rd edition (Figure 4) (25). 

 



 8

 
 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4. 1st, 2nd and 3rd International IUPAC conferences on Green Chemistry (13). 
 

It is also important to mention the foundation of the Cost Action D29 (Sustainable/Green Chemistry 

and Chemical Technology), which is a network comprising of 26 COST (European Cooperation in 

Science and Technology) countries. This network aims to develop sustainable industrial chemicals 

and chemical based consumer products utilising sustainable and environmentally friendly processes 

and to establish a common understanding of the current status and the future research, development, 

and educational needs of Sustainable/Green Chemistry and Chemical Technology for Europe. The 

achievements of this Action have been disseminated through Action workshops and Working Group 

meetings, presentations in international conferences and the publication of many research articles in 

peer-reviewed journals. 

Finally it should be mention that another important step in the history of green chemistry has been 

realised by the introduction of Registration, Evaluation and Authorisation of Chemicals Regulation 

(REACH), which was formally adopted on the 18th of December 2006 by the European Council of 

Environment Ministers. This new regulation aims to improve the protection of human health and 

the environment through improved assessment of chemical substances.  

This Regulation gives greater responsibility to industry as manufacturers and importers and 

ultimately calls for progressive substitution of the most dangerous chemicals by greener alternatives 

(26). 
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--------------------------------------------------------- Blue Box 2 ----------------------------------------------------------- 
 

NOP:  a handbook for green reactions 
 
Chemists are well aware that beside the theoretical knowledge, it is of the utmost importance to be 
equipped with a sound manual ability in the laboratory. In Germany, for instance, the Organisches 
Prakticum (OP) – a handbook for laboratory experimentation - is a must-have for organic synthesis. 
Now, a group of researchers have published on the net a new version of this handbook called NOP 
(N for Nachhaltigkeit: Sustainability). Naturally, the content revolves naturally around the concepts 
of energy consumption, atom economy and (eco)toxicity of organic reactions. It contains an 
introduction to Green Chemistry, a number of “green” experiments and exhaustive toxicity data of 
the compound employed. The website  is available in German, English, Arabic, Greek, Indonesian, 
Russian, Turkey and shortly also in Italian (27).  NOP is a very innovative and powerful tool for the 
acquisition of eco-friendly laboratory techniques for students and teachers. 
------------------------------------------------------------------------------------------------------------------------ 
 
 
1.2 Green Chemistry in the economy: the Chinese Circular Economy (CE) 
 
The rapid growth of China's material consumption poses profound challenges to sustainable 

development in the country and the rest of the world. China is now consuming about half of the 

world's cement, over 30 per cent of its steel and more than 20 per cent of its aluminium. It is also 

the leading consumer of fertilizers and the second largest importer of forest products in the world.  

Because of such rapid growth, the natural resources of China are depleting quickly.  To solve this 

problem, China’s leadership, inspired by Japanese and German Recycling Economy Laws, formed a 

Circular Economy (CE) initiative that started 10 years ago and that has major strategic importance 

worldwide (28). The Circular Economy approach to resource-use efficiency integrates cleaner 

production and industrial ecology in a broader system encompassing industrial firms, networks, 

eco-industrial parks, and regional infrastructure to support resource optimization (Figure 5).  

The three basic levels of the Circular Economy action are: 

 

 At the individual firm level, managers must seek much higher efficiency through the 

following three Rs of CE: Reduce consumption of resources and emission of pollutants and 

waste, Reuse resources, and Recycle by-products.  

 The second level is to reuse and recycle resources within industrial parks and clustered or 

chained industries, so that resources will circulate fully in the local production system (the 

Chinese use the term “eco-chains” for by-product exchanges).  

 The third level is to integrate different production and consumption systems in a region so 

the resources circulate among industries and urban systems.  
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Figure 5. A heart representing the concept of Circular Economy: a heart that recycle the waste into new 
useful green products. This image taken from the cover of Chemistry International (29) the newsmagazine of 
IUPAC. 
 
According to the principles of CE, state owned and private enterprises, government and private 

infrastructure and even consumers all have a role to play in achieving CE. CE in many ways 

resembles the concept of industrial metabolism. It focuses on the input-output analysis of material 

flows transformed by production and consumption. In fact, the Circular Economy concept brings 

together cleaner production and industrial ecology, with its application as eco-industrial 

development. 

The essence of the CE concept is the exchange of materials where one’s waste, including energy, 

water, materials - as well as information - is another facility’s input.  

Comparable to the Chinese concept of CE, is the idea of Green Economy, pursued in Europe and 

America. Green Economy is a new economic development model born in contrast to the existing 

black economic model based on fossil fuels. The Green Economy is based on ecological economics, 

which consider the impact of human economic activities on climate change and global warming. In 

the midst of the global economic crisis, the UNEP United Nations Environment Program called for 

a global Green New Deal according to which governments were encouraged to support their 

economic transformation into a greener economy. The Green economy supports green and 

renewable energy as a replacement for fossil fuels and promotes energy conservation for efficient 

energy use. The green economy aims to create green jobs, ensure real, sustainable economic 

growth, while preventing environmental pollution, global warming, resource depletion, and 

environmental degradation (30). 
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1.3 Award for Green Chemistry Research 

Green Chemistry research is supported by several awards that incentivises innovation and 

excellence in the Green Chemistry field. Some examples are (31): 

 

The Presidential Green Chemistry Challenge. In the USA, The Presidential Green Chemistry 

Challenge was established by President Clinton in 1995 to recognise and promote fundamental and 

innovative chemical methods that accomplish pollution prevention through reduction at source and 

that have broad applicability in industry. The Presidential Green Chemistry Challenge Awards 

Program was established to recognise technologies that incorporate the principles of green 

chemistry into chemical design, manufacture and use. The evaluation of the new technology's 

impact include consideration of the health and environmental effects throughout the technology's 

lifecycle with recognition that incremental improvements are necessary (4). 

 

Award for Green Products and Processes (32). This award was presented by INCA to Italian 

Companies that excelled in developing green processes and products. Examples of companies that 

have received the award are: Enichem, Polimeri Europa, Ausimont, Ilva Polimeri, Lamberti, Lonza 

Group, Mapei and Valagro. 

 

The European Sustainable Chemistry Award (33). In 2010, EuCheMS (the European Association 

for Chemical and Molecular Sciences), with the backing of the European Environment Agency 

(EEA) and the support of SusChem (European Platform for Sustainable Chemistry) and CEFIC 

(European Chemical Industry Association), launched the European Sustainable Chemistry Award. 

This new award intends to raise the profile of sustainable chemistry and to stimulate innovation and 

competitiveness. The first Award, a prize of €10,000, was presented during the 3rd EuCheMS 

Chemistry Congress, on 29 August – 2 September 2010 in Nürnberg, Germany.  

 

The Institution of Chemical Engineers Award (34). The IChemE awards is given for Innovation and 

Excellence in the Green chemical technology and sustainability area. 

 

Green and Sustainable Chemistry Network Award (Japan).The Green & Sustainable Chemistry 

Network (35) as established in March, 2000 to promote research and development for the 

Environment and Human Health and Safety through the innovation of Chemistry. One of the 

activities, GSCN established in 2001 was the "GSC Awards". GSC Awards are to be granted to 

individuals, groups or companies who greatly contributed to promote GSC through their research, 
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development and their industrialization in the fields of development of industrial technologies, 

reduction of environmental bourdon (such as carbon dioxide, waste, landfill, harmful by-products 

etc.) and of establishing new philosophies/methodologies in research. The achievements are 

awarded either by the Minister of Economy, Trade and Industry, or by the Minister of the 

Environment, or by the Minister of Education, Sports, Culture, Science and technology, depending 

on their application. 

 

RACI Green Chemistry Challenge Award. The Royal Australian Chemical Institute Green 

Chemistry Challenge awards recognise and promote fundamental and innovative chemical methods 

in Australia that accomplish pollution prevention through reduction at source and that have broad 

applicability in industry.  They also recognise contributions to education in Green Chemistry. The 

Green Chemistry Challenge Awards are open to all individuals, groups and organisations, both non-

profit and for profit, including academia, and industry. 

 
--------------------------------------------------------- Blue Box 3 ----------------------------------------------------------- 

- Green Chemistry Research Institutions and Associations - 

Since 1996 when the term Green Chemistry was coined, several research centres and associations 
supporting this new research area have formed. Some examples of national and international 
organization in Green Chemistry are: 
 
 National/International Organizations 
 
  
IUPAC - Subcommittee on Green Chemistry 
Organic and Biomolecular Chemistry Division (III) (16) 
 

 
 

Interuniversity National Consortium "Chemistry for the 
Environment" (Italy) (7) 
 

 

Green Chemistry Network (UK) (36) 
 

 
 
 

Green & Sustainable 
Chemistry Network (Japan)  (35)  
 

 

Environment Protection Agency (USA) (4) 
The US EPA's Green Chemistry Program     

 
 
 

Green Chemistry Institute (USA) (37) 

 
 

Canadian Green Chemistry Network  (38)  
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European Association for Chemical and Molecular 
Science (EuCheMS) WP on Green and Sustainable 
Chemistry (39) 

 

 

 
          
Some Research Institutes (40) 
 

 Carnegie Mellon University Institute for Green Oxidation Chemistry (USA) 
 Centre for Green ChemistryUniversity of Monash (Australia) 
 Centre for Green ManufacturingUniversity of Alabama (USA) 
 Center for Sustainable and Green Chemistry (DK)   
 Chemical Process Engineering Research Institute Centre for Research & Technology 

(Greece) 
 Göteborg University's Centre for Environment and Sustainability (SE)  
 Green Chemistry Centre of Excellence at York (UK)   
 Green Chemistry Network Centre (Dehli Univ., India) 
 Greek network of Green Chemistry (Greece) 
 Institute of Applied Catalysis A research network for catalysis (UK) 
 Institute for a Sustainable Environment University of Oregon (USA) 
 NSF Science and Technology Center for Environmentally Responsible Solvents and 

Processes University of North Carolina; Chapel Hill (USA) 
 Queen's University Ionic Liquid Laboratories (QUILL)  Queen's University of Belfast (UK) 
 The Clean Technology Research Group University of Nottingham (UK) 
 University of Leicester Leicester Green Chemistry Group (UK) 
 University of Leeds Leeds Cleaner Synthesis Group (UK) 
 University of Notre Dame Energy Centre (Indiana, USA)  
 Green Chemistry Network of Spain REDQS (ES) 

------------------------------------------------------------------------------------------------------------------------ 

 

2. Areas of Green Chemistry 
In order to achieve the best possible results, the G8 Counties aim to exploit Green Chemistry in 

relation to the need of each individual Country. Thus, each Country requires Green Chemistry to be 

involved in solving specific questions: Latin America to the exploitation of renewable resources, the 

Arab Regions to water quality and treatment, the Far East Countries to anti- and de-pollution issues. 

Adoption of the Green Chemistry principles is now possible because present European technology 

has the capacity to build new protocols for manufacturing molecular species. 

Besides, despite the fact that more than ten years have passed since the seven research areas in 

green/sustainable chemistry were identified by the OECD, these thematic spheres remain the 

undisguised focus of Green Chemistry research (41).  

A short report on each thematic area highlighting their advances and future research follows.  
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2.1 Alternative feedstocks 

The synthesis and manufacture of any chemical substance begins with the choice of a starting 

material. In many cases, the selection of a starting material can be the most significant factor in 

determining the impact of the synthesis on the environment. Certainly, a first-level assessment of 

any starting material must be whether or not the substance itself poses a hazard in terms of toxicity, 

accident potential, possible ecosystem damage, or in another form. In this context, it is 

understandable that the feasibility and benefits of using bio-based, as opposed to petroleum-based, 

starting materials have been actively investigated in both academia and the chemical industry. To 

ensure a high degree of product safety for consumers and the environment, renewable resources 

have shown to have advantages when compared to petrochemical derived raw materials and can 

therefore be regarded as being the preferred source of raw material in Green Chemistry. Besides, 

the current high prices for petroleum and natural gas have spurred the chemical industry to examine 

alternative feedstock for the production of commodity chemicals. In this prospect, over the last 30 

years, alternatives to conventional petroleum and natural gas feedstock have been developed, in 

particular by the exploitation of biomass.  

Biomass is biological material derived from living, or recently living organisms, such as wood, 

carbohydrates, waste and gas (Figure 6). Biomass energy is derived from several distinct energy 

sources: refuse, wood, waste and landfill gases (42).   

There are a number of technological options available to make use of a wide variety of biomass 

types as a renewable energy source. Conversion technologies may release the energy directly, in the 

form of heat or electricity, or may convert it to another form, such as liquid biofuel or combustible 

biogas (43). The most conventional application of biomass still relies on direct incineration. 

Currently, the New Hope Power Partnership is the largest biomass power plant in North America 

(44). 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Biomass is biological material derived from living, or recently living organisms, such as wood, 
animal waste etc. 
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The 140 MW facility uses sugar cane fibre and recycled urban wood as fuel to generate enough 

power for its large milling and refining operations as well as to supply renewable electricity to 

nearly 60,000 homes.  

The facility reduces dependence on oil by more than one million barrels per year, and by recycling 

sugar cane and wood waste, preserves landfill space in urban communities in Florida. A biomass 

power plant’s size is often determined by biomass availability in its close proximity as transport 

costs of the (bulky) fuel plays a key factor in the plant's economics. However, biomass can be 

converted to other usable forms of energy by turning the raw materials, or feedstocks, into a usable 

form such as transportation fuels. These are produced by biomass through biochemical or 

thermochemical processes and they include ethanol, methanol, biodiesel, biocrude, and methane.  

 

 Ethanol is the most widely used biofuel today (45). Brazil has the largest and most 

successful bio-fuel programs in the world, involving production of ethanol fuel from 

sugarcane, and it is considered to have the world's first sustainable biofuels economy. In the 

United States alone, more than 1.5 billion gallons are added yearly to gasoline as an 

oxygenate, to improve vehicle performance and reduce air pollution. Ethanol is produced 

from the fermentation of sugar by enzymes produced from specific varieties of yeast. 

Traditional fermentation processes rely on yeasts that convert six-carbon sugars to ethanol 

using a process similar to brewing beer. Ethanol made from cellulosic biomass materials or 

other agricultural feedstock is called second generation bioethanol. Ethanol can be used in 

its pure form (neat), as a blend with gasoline, or as a fuel for fuel cells. 

 

 Methanol also can be used as a transportation fuel. Currently methanol is produced using 

natural gas, but it can also be produced from biomass through a two-step thermochemical 

process. First, the biomass is gasified to produce hydrogen and carbon monoxide. These 

gases are then reacted to produce methanol. Methanol can be used in its pure form (neat), as 

a feedstock for the gasoline additive methyl tert-butyl ether (MTBE), or as fuel for fuel 

cells. 

 

 Biodiesel is a renewable diesel fuel substitute that can be made by chemically combining 

any natural oil or fat with an alcohol (usually methanol). Any vegetable oils, animal fats, 

and recycled cooking greases can be transformed into biodiesel and there are many different 

ways to do it. Biodiesel can be used neat or as a diesel additive and is typically used as a 
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fuel additive in 20% blends (B20) with petroleum diesel in compression ignition (diesel) 

engines. Other blend levels can be used depending on the cost of the fuel and the desired 

benefits. 

 

 Methane is the major component of compressed natural gas. Methane, in a blend of other 

gases, can be produced from biomass by a biochemical process under anaerobic digestion 

conditions. 

 

However, it should be also considered that there are several issues in the replacement of petroleum 

by biomass feedstocks that include impurities, variability of feedstock composition, distributed 

supply, scalability and pathways for breakdown of cellulose. Although some large-scale chemical 

production occurs as a by-product of fuel production, widespread use of biomass feedstocks for 

commodity chemical manufacture will require sustained research and development in a variety of 

fields such as plant science, microbiology, genomics, catalysis, and chemical separations 

technologies. 

Another example of alternative feedstock is lignin. Lignin is a complex chemical compound most 

commonly derived from wood and it is one of the most abundant organic polymers. In 1998, a 

German company, Tecnaro, developed a process for turning lignin into a substance, called 

Arboform (46). When lignin is combined with resins and flax, it forms a bio-plastic mass that looks 

and feels like wood and can be used to make several products such as furniture, toys, loudspeakers 

and even car interiors. Most significantly, Arboform is biodegradable and its raw material lignin is 

available in abundance, making it an environmentally friendly material that can potentially save 

significant natural resources. When the item is discarded, it can be burned just like wood. At the 

present time arboform costs €2.50 per kilogramme. The inventors Jürgen Pfitzer and Helmut Nägele 

have been awarded the European  Inventor Awards 2010 for their studies.  

Besides, currently there are several ongoing investigations for seeking high value application of 

lignin for Green Chemistry in particular in the fields of carbon fibres, aromatic chemicals, polymer 

resins and antioxidants.  

 

--------------------------------------------------------- Blue Box 4  ---------------------------------------------------------- 
 

- Light as emerging feedstock - 

Light is another emerging feedstock in a broad sense, a safe alternative to toxic catalysts in many 
synthetic transformations. In addition to utilising UV light, the most renewable and environmentally 
ideal energy source is sunlight. In this regard, the quote (given roughly a century ago during a 
conference in New York) by Giacomo Ciamician - the founder of photochemistry - is particular 
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pertinent (47): ”On the arid lands there will spring up industrial colonies without smoke and without 
smokestacks; forests of glass tubes will extend over the plants and glass buildings will rise 
everywhere; inside of these will take place the photochemical processes that hitherto have been the 
guarded secret of the plants, but that will have been mastered by human industry  which will know 
how to make them bear even more abundant fruit than nature, for nature is not in a hurry but 
mankind is”. 
Although it appeared (and still is) futuristic, we now know that many of these former fictions can be 
realized and applied. Noteworthy, it must be stated that photochemistry is already largely used in 
several laboratory and industrial applications (for example in the synthesis of benzyl halides). 
However, photocatalytic systems that are able to operate effectively and efficiently not only under 
UV light but also under the most environmentally ideal energy source, sunlight, are yet to be 
established. 
----------------------------------------------------------------------------------------------------------------------------------- 
 
 

2.2 Use of Innocuous Reagents 

As in the selection of a starting material, the selection of a reagent must include an evaluation to 

identify what the hazards associated with a particular reagent are. This evaluation should include an 

analysis of the reagent itself, as well as an analysis of the synthetic transformation associated with 

the use of that reagent (i.e., to determine product selectivity, reaction efficiency, separation needs, 

etc.).  

In order to evaluate the hazards inherent to the use of a certain reagent several issues have to be 

address: 

 

2.2.1 Less hazardous reagent 

Firstly, an investigation should be undertaken to determine if alternative reagents are available that 

are either more environmentally benign themselves or are able to carry out the necessary synthetic 

transformation in a more environmentally benign way. In order to answer this question alternative 

reagents must be identified and any hazardous properties that they possess must be compared with 

those associated with the reagent originally selected. One example of an innocuous reagent is 

dimethyl carbonate (DMC) (48). 

DMC is an environmentally benign substitute of phosgene (49)  in carboxymethylation reactions and 

of dimethyl sulphate (DMS) (50) and methyl halides (51) in methylation reactions. Reported toxicity 

and ecotoxicity data classify DMC as both a non-toxic and environmentally benign chemical (52). 

DMC does not produce inorganic salts. In fact, the leaving group, methyl carbonate, decomposes 

giving only methanol and CO2 as by products.  

In this context, Scheme 1 shows the methylation of phenol by methyl halide (CH3X) and DMS to 

give anisole, and the alkoxycarbonylation of an alcohol by phosgene (COCl2). 
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Scheme 1. Methylation and alkoxycarbonylation using DMS, CH3I and COCl2 (under batch conditions) 
 

DMC is able to perform the same reactions, using a catalytic amount of base and producing only 

methanol and CO2 as by-products (Scheme 2). Besides, no inorganic salts have to be disposed of 

and therefore it can also be used in continuous-flow synthesis. 

 

 

 

 

 
 

 
Scheme 2. Methylation and methoxycarbonylation using DMC  
 

DMC is classified as a flammable liquid, does not smell (methanol-like odour) and does not have 

irritating or mutagenic effects by either contact or inhalation. Therefore, it can be handled safely 

without the special precautions required for the poisonous and mutagenic methyl halides and DMS, 

and extremely toxic phosgene.  DMC is also widely used for its many applications. In fact, recent 

research indicates DMC as an oxygenated fuel (53) additive (due to the high percentage of oxygen 

in the molecule) of gasoline or diesel oil to replace the methyl-tert-butyl ether (MTBE). DMC can 

reduce the surface tension of diesel boiling range fuels leading to an improved (diesel) fuel with 

better injection delivery and spray. This and other applications led to an enormous effort in the 

investigation of low-cost synthesis of DMC.  

Besides these applications, DMC is considered green because: 

1. It is produced according to a green synthesis (see blue box 5) 

2. It is non toxic 

3. It produces no inorganic waste when utilized in synthesis 

4. It led to unexpected and even surprising reaction pathways  

 

Concerning point 4, DMC has a very selective behaviour reacting with different nuclephiles 

PhOH + CH3OCOOCH3 PhOCH3 + CO2 + CH3OH

ROH + CH3OCOOCH3 ROCOOCH3 + CH3OH

cat. base

cat. base

PhOH + (CH3)2SO4 + NaOH PhOCH3 + NaCH3SO4 + H2O

PhOH + CH3I + NaOH PhOCH3 + NaI + H2O

2ROH + COCl2 + 2NaOH ROCOOR + 2NaCl + 2H2O
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ArCH2X + CH3OCOOCH3 ArCH(CH3)X + CO2 + CH3OH
180 °C

K2CO3

(such as primary amines, CH2 acidic compounds, phenols, etc.) acting as alkylating or 

carboxymethylating agent. In fact, DMC, as electrophile, has three reactive centres that can interact 

with nucleophiles: the carbonyl, and two methyl groups. Such centres can be classified according to 

the Hard- Soft Acid-Base (HSBA) theory (54): the carbonyl group is the harder electrophile, as a 

result of its polarized positive charge and sp2 hybridization (thus it preferably reacts with harder 

nucleophiles); the two methyl groups represent softer electrophiles, thanks to their sp3 orbital and 

their saturated carbon atom, which has a weaker positive charge (thus it preferably reacts with softer 

nucleophiles).  

Numerous investigations  have verified the compliance of reactivity of ambident nucleophiles and 

electrophiles with the HSAB theory (55). Many ambident nucleophiles are known, but few ambident 

electrophiles have been studied. As a result of its ambident electrophilic character DMC can be used 

either for carboxymenthylation or methylation reactions both with high selectivity (up to 99.9%).  

It can act as an efficient carboxymethylating agent (as phosgene substitute) for a wide string of 

nuclephiles. For example the carboxymethylation of amines to carbamates, which has great 

industrial importance in the synthesis of urethane (56), aromatic polycarbonates and isocyanate (57). 

Therefore, the areas in which DMC is used as an actual or potential phosgene substitute correspond 

to the main areas of phosgene industrial applications. Carbamates are very useful compounds 

widely used in the synthesis of pesticides, fungicides and herbicides, pharmaceuticals, cosmetics 

and polyurethanes, in addition to be employed as a protecting group.  DMC has been successfully 

used for the methylation of arylacetonitriles and methyl aryl acetates at the α position. In fact, the 

reaction of CH2 acidic compounds such as arylacetonitriles, aryl acetates, aryloxyacetic esters, 

sulfones, sulfoxides, and lactones with DMC is highly selective, as it yields the sole monomethyl 

derivative (Scheme 3) (58). Regardless of the high temperature and the great excess of alkylating 

agent (DMC is also the solvent of the reactions), at complete conversion of the substrate, selectivity 

for the monomethylated product is often >99%.  

 

 

 

Scheme 3. Monoalchilation of nitriles, esters and sulfones, X= CN, COOCH3, SO2R, SO2Ar, etc. 

 

Scheme 3 refers to monoalkylation of nitriles, esters, and sulfones. This reaction has an industrial 

relevance, since ArCH(CH3)COOH are well know anti-inflammatory agents. 
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+ CH3OCOOCH3 ArCH(CH3)X + CH3OCOOArC
X

H
(1)

1-
4

Ar + CH3OCOOCH3 ArCH(COOCH3)X + CH3O-

(hard-hard interaction, BAc2)1- 2

+ CH3OCOOCH3 ArC(CH3)(COOCH3)X + CH3OCOO-

(soft-soft interaction, BAl2)2- 3

C

X

H

C
X

OCOOCH3

Ar

The reason for the selectivity in monomethylation of these compounds is not immediately evident. 

Isolation of intermediates and a detailed kinetic study showed that the reaction mechanism does not 

imply a simple nucleophilic substitution (59)  (eq 1). 

 

 

 

Instead, monomethylation derives from an unusual reaction pathway that involves the reactivity of 

anion 1- and anion 2-, according to two consecutive nucleophilic displacements: the first one 

follows a BAc2 mechanism, while the second occurs through a BAl2 mechanism, according to the 

Hard-Soft Acid-Base (HSAB) theory. 

  

 

 

 

 

 

 

 

Scheme 4. Mechanism of the monoalkylation of nitriles, esters, and sulfones. 

 

Thus, 4 is produced through a series of consecutive pathways, all of them being very selective. 

Scheme 4 accounts for such a behaviour: the reaction proceeds through the carboxymethylation 

specie 2, which afterward reacts with the methyl of DMC.  

In summary, while anion ArCH-X does not give ArC(CH3)2X, also anion ArC-(COOCH3)X does 

not allow the formation of ArC(COOCH3)2X. 

We can assert that anions 1- and 2- give different compounds since they have different soft/hard 

character. Their difference in hardness provides a reason for the discrimination observed between 

the two electrophilic centers of DMC. The hard nucleophile 1- attacks only the carbonyl of DMC 

(eq. 2), while the anion of the product 2- is a softer nucleophile thus it selectively produces the 

methyl derivative (eq. 3). The change in hardness/softness of the anion, due to the presence of the 
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carboxymethyl group, is enough to significantly alter the reactivity of the DMC molecule.  Since 

hard-soft and soft-hard interactions are inhibited, neither double methylation nor double 

carboxymethylation take place. 

DMC has also emerged as methylating agent in organic synthesis (60). Even though its reactivity is 

lower than widely used methyl halides and dimethyl sulfate it has the great advantage of being less 

toxic.  

Finally, in recent year DMC has been also used for intramolecular cyclisation for the synthesis of 

heterocycles with applications in cosmetics and fragrances (61).  

An emblematic example is (-)-norlabdane oxide that represents one of the preferred synthetic 

compounds with desirable ambergris-type odour and it is commercially available under various 

trade names (notably as amberlyn, ambroxan, ambrofix, ambrox or amberoxide). (-)-Norlabdane 

oxide is industrially synthesised by cyclisation of the related diol, amberlyn diol, in acidic 

conditions. This reaction leads to a mixture of ambroxan (ca 60%) and by–products deriving from 

the concurrent elimination reaction (62). Under acidic condition this reaction is not environmentally 

friendly and leads to a partial racemic mixture of products. Recently DMC was used for efficient 

cyclisation of the amberlyn diol in a short time spam and quantitative yield (Scheme 5). 

Noteworthy, the reaction maintains the chiral integrity of the starting material. 

 

 

 

 

 

 

 

 

 

Scheme 5. Green synthesis of Amborxan by DMC chemistry (base, DMC, 90 °C, 3h). The reaction 
mechanism is reported in brackets. 
 

--------------------------------------------------------- Blue Box 5  ---------------------------------------------------------- 
 

- Green Synthesis of Menthol - 

An example of Green Chemistry applied to fragrances is the synthesis of menthol (Scheme 1). 

Menthol is an organic compound made synthetically or obtained from peppermint or other mint 

oils. Menthol has local anaesthetic and counterirritant qualities, and it is widely used to relieve 

minor throat irritation, but it also has applications in perfumery and in some beauty products such as 

OH

OH O

100 % yield

OH

OCOOMe
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hair-conditioners. As with many widely-used natural products, the demand for menthol greatly 

exceeds the supply from natural sources, thus most of the menthol used in industry is made 

synthetically. In particular, menthol is manufactured as a single enantiomer (94% ee) on a scale of 

3,000 tons per year by Takasago International. This process involves an asymmetric synthesis 

reaction developed by a team led by Ryoji Noyori and it is green and highly efficient (63). 

 

 

 

 

 

 

 

 

 

Scheme 1. Green synthesis of menthol 

----------------------------------------------------------------------------------------------------------------------------------- 

 

--------------------------------------------------------- Blue Box 6  ---------------------------------------------------------- 
 

Green production of dimethyl carbonate – A case study - 
 
DMC was, for long time, produced from phosgene and methanol. In this synthesis, HCl was an 
unwanted side product. However, since the mid eighties DMC is no longer produced from a 
phosgene pathway. Nowadays the industrial procedure to DMC - developed and recently 
industrialized principally in China (Figure 1) - does not use any chlorine, but consists of the 
cleavage of cyclic carbonates (Scheme 1). Currently several catalysts are under investigation for the 
synthesis of the cyclic carbonate which is an important green reagent and intermediate for the 
synthesis of DMC (64). 
 

 

Me
O

O

O
MeO O

O

+  CO2

O

MeOH, cat 2

[- HOCH2CH(R)OH]
cat. 1R

R

 
Scheme 1. Insertion of CO2 in to an epoxide and cleavage of the resultant cyclic carbonate.   Step 1. 
Catalyst: MgO, CaO. Step 2. Catalyst: zeolites exchanged with alkali and/or earth metal ions. R = H and CH3 

 

The current industrial application of DMC include: polycarbonates (53%), coating and paints 
(29%), agrochemicals (12%), electrolyte solvents (2%), pharmaceuticals and cosmetics (5%). 
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Figure 1. Production of DMC in China compared with DMC world production. 
 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 
2.2.2 Generate less waste  

An important consideration and benefit associated with the use of a particular reagent is whether it 

is responsible for the generation of more or less waste than other reagents. The amount of waste 

either generated or eliminated, however, cannot be the only consideration. The type of waste 

generated must also be assessed. Just as not all chemical products are equal in terms of their hazard, 

neither are chemical waste streams. Waste streams therefore must also be assessed for any hazard 

properties that they possess. The way the problem is approached obviously includes recycling and 

reuse, but focuses mostly on prevention, and therefore reduction, of waste production. The idea of 

high conversion efficiency in a chemical process is expressed in the concept of atom economy (see 

metrics) postulated by Trost (65). 

These considerations explain why oxidation reactions involving oxygen and hydrogen peroxide 

have been an outstanding priority in the last twenty years. For green oxidation reactions we refer to 

oxidations that use atmospheric oxygen or molecular oxygen as oxidant. They are considered green 

because they produce water as a by-product, they require the use of nontoxic solvents (water or 

CO2) and mild reaction conditions. From these observations, it is clear that oxygen is the ideal 

oxidant (66) to be used due to the high active oxygen percentage content (theoretically 100%) (67).  

However, oxidations using air as a reagent are difficult to control and intrinsically nonselective 

when selectivity is very often a crucial parameter. Besides, very few reactions have been found 

where both atoms of oxygen can be transferred to the substrate; more often O2 acts as an oxidant 

with 50% of active oxygen content leading to the formation of 1 equivalent of water. For these 

reasons, hydrogen peroxide is a more practical oxidant (active oxygen content 47%); it produces 

water as the only by-product, and a very high selectivity can be obtained. However, hydrogen 

peroxide used for fine chemical production, can undergo radical decomposition to water and oxygen 
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(68) (catalase reaction). Therefore, there is a great effort to develop systems able to selectively 

activate oxygen and hydrogen peroxide for oxidative transformations. In this context, both 

homogeneous and heterogeneous catalysis plays a key role. Oxidation reactions are critical to 

pharmaceutical, petrochemical, and agricultural industries. Several examples of how 

environmentally benign oxidants such as molecular oxygen, hydrogen peroxide or N2O can be 

activated on heterogeneous catalysts have been reported (69). Direct oxidation of isoprenol, β-

picoline and benzene are chosen as examples for continuous gas phase processes, and oxidation of 

cyclopentanone, limonene, pinene, and propylene as examples of semi continuous or batchwise 

processes in the liquid phase (70). 

A foremost example of chemistry that produces less waste is represented by zeolites (71). Zeolites 

are crystalline aluminosilicates of group IA and group IIA elements, such as sodium, potassium, 

magnesium and calcium. They have a three-dimensional framework of tetrahedra AlO4 and SiO4; 

each AlO4 tetrahedron in the framework bears a net negative charge, balanced by a cation. Some 

zeolites are found in nature as minerals, many others are synthesised by industry or in the 

laboratory. Zeolites have many applications. The first major use for zeolites was in the purification 

of water (72). Water can be softened by passing it through a zeolite, with pores that incorporate 

calcium and magnesium ions rending the water softer. This same type of zeolite is being 

increasingly used in place of polluting phosphate chemicals in laundry detergents (73). Zeolites are 

also used in agriculture (74), their pores can be filled with potassium, ammonium ions, fertilizer or 

other micronutrients. The use of zeolite catalysts in the production of organic (fine) chemicals has 

appeared as a major new direction (75). The main advantage of these materials is that their pore 

size, shape and properties can be modelled according to the needs of the reaction to be conducted, 

and to the substrate used (obviously this is not as straightforward as it seems) (76). This improves 

the energy-efficiency of many industrial processes, especially in the hydrocarbon industry. It also 

removes the need to use other potentially polluting catalytic alternatives. This has led to numerous 

applications and patents in the industry (i.e. production of phenol by alternative process to the 

cumene process) (77). For instance, the hydrogen form of zeolites (prepared by ion-exchange) are 

powerful solid-state acids (78), and can facilitate a host of acid-catalyzed reactions, such as 

isomerisation, alkylation, and cracking since due to the thermal stability of their structure, they can 

be used at high temperature. 

 

2.2.3 High conversion and selectivity 

Utilizing a reagent that is more selective means that more of the starting material is going to be 

converted into the desired product. On the other hand, high product selectivity does not always 



 25

translate into high product yield (and less waste generated). As reported by Sheldon, both high 

selectivity and high conversion must be achieved in order for a synthetic transformation to generate 

little or no waste (79). Utilizing highly selective reagents can mean that separation, isolation, and 

purification of the product will be significantly less difficult. Since a substantial portion of the 

burden to the environment that chemical manufacturing processes incur often results from 

separation and purification processes, highly selective reagents are very desirable in green 

chemistry. 

 

2.2.4 Catalyst 

One of the most important aspects in the use of benign reagent is the substitution of antiquated 

stoichiometric methodologies with cleaner catalytic alternatives. Indeed, a major challenge in 

chemicals manufacturing in general is to develop processes based on H2, O2, H2O2, CO, CO2 and 

NH3 as the direct sources of H, O, C and N. Catalytic hydrogenation, oxidation and carbonylation 

are good examples of highly atom efficient, low-salt processes. The generation of copious amounts 

of inorganic salts can similarly be largely circumvented by replacing stoichiometric mineral acids, 

such as H2SO4, and Lewis acids and stoichiometric bases, such as NaOH, KOH, with recyclable 

solid acids and bases, preferably in catalytic amounts. A large number of industrial processes are 

based on the use of inorganic or minerals acids. While many of these processes are catalytic, some 

require stoichiometric amounts of Lewis acid (e.g., acylation using AlCl3). Isolation of the product 

necessitates neutralization steps to remove the acid, resulting in enormous quantities of hazardous 

waste, with the cost of disposal of this waste often outweighing the value of the product. In fact, 

Lewis-acid catalyzed reactions are of great interest because of their unique reactivities and 

selectivities and mild reaction conditions used (80). A wide variety of reactions using Lewis acids 

have been developed, and they have been applied to the synthesis of natural and unnatural 

compounds. However, in most of the reactions Lewis acids have to be used in stoichiometric 

amount. On the other hand, an interesting class of Lewis acids are lanthanide triflates Ln(OTf)3 

(81). They are stable and work as Lewis acids in water. Investigations conducted in this field 

indicated that not only Ln(OTf)3 (Ln ) La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) but 

also scandium (Sc) and yttrium (Y) triflates were shown to be water-compatible Lewis acids. Thus, 

these rare-earth metal triflates [RE(OTf)3] have been regarded as new types of Lewis acids. Many 

useful reactions are catalyzed by rare-earth metal triflates in aqueous media (82). In most cases only 

catalytic amounts of the triflates are required to complete the reactions in most cases. Furthermore, 

rare-earth metal triflates can be recovered easily after reactions and reused without loss of activity 
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(83). An example of their use is the catalytic acylation of phenols with acid anhydrides using 

Sc(OTf)3 (84). 

One way to significantly reduce the amount of waste is to substitute traditional acids and Lewis 

acids with recyclable solid acid catalysts (i.e. heteropolyacids) (85). Heteropolyacids are largely 

used for oxidation processes due to their low toxicity and high acidity. Heteropolyacids have been 

used in a variety of acid-catalyzed reactions such as esterification, etherification, hydration of 

olefins and dehydration of alcohols (86). Recently, Keggin-type heteropolyacids have been used in 

multiphase conditions in a range of processes i.e.  preparation of heterocycles, 

protection/deprotection of organic functional groups, and oxidation processes, as well as, 

conversion of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone, and selective oxidation of 

sulfides to sulfoxides with hydrogen peroxide (87). 

In any case, it must be mention that if a catalyst can be used, it should be used in “catalytic 

amount”. If a reagent can be utilized and yet not consumed in the process, it will require less 

material to continuously effect the transformation. This implies that catalysis has to be as efficient 

(not only effective) as possible, involving a high turnover.  

 

2.2.4.1 The practical elegance in synthesis in Green Chemistry catalysis 

Professor Ryoji Noyori (born September 3, 1938) won the Nobel Prize in Chemistry in 2001 with 

William S. Knowles for the study of chirally catalyzed hydrogenations and with  K. Barry Sharpless 

for their study on chirally catalyzed oxidation reactions (Sharpless epoxidation). 

Noyori believes strongly in the power of catalysis and of green chemistry. In a recent article he 

argues for the pursuit of “practical elegance in synthesis: that is chemical synthesis must be 

intellectually logical and technically truly efficient” (88). According to Noyori every reaction in 

multi-step synthesis should proceed with a high atom economy, and the overall synthesis must be 

accomplished with a low E-factor. In fact he states that ”chemists today are asked to develop perfect 

chemical reactions that proceed with 100% yield and 100% selectivity without forming any waste 

products. Molecular catalysis, together with traditional heterogeneous catalysis, significantly 

contributes to the realization of this goal.” 

 

 
 

 
 
 
Scheme 6. Green oxidation of cyclohexene for the synthesis of adipic acid 
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A clear example of practical elegance in synthesis is the green oxidation of cyclohexene for the 

synthesis of adipic acid (Scheme 6). Noyori proved that if a mixture of cyclohexene and H2O2 in the 

presence of small amounts of Na2WO4 and methyl- (trioctyl)ammonium hydrogensulfate as phase-

transfer catalyst is stirred at 75–90 °C, adipic acid is directly obtained as shiny, colorless, 

analytically pure crystals in a high yield. This procedure is much more environmentally benign than 

the commonly used oxidation of a cyclohexanol–cyclohexanone mixture with nitric acid (89). 

 

2.3 Employing Natural Processes 

Biocatalysis has emerged as an important tool in the industrial synthesis of bulk chemicals (90), 

pharmaceutical and agrochemical intermediates, active pharmaceuticals, and food ingredients (91). 

The potential applications of biocatalysis for the synthesis of chemicals, is highlighted by several 

industrial processes that are operational in several manufacturers such as Merk (92), BASF (93), 

DSM (94), Lonza (95), Roquette (96) and Cognis (97). These industries employ enzymes for the 

synthesis of medium to high priced compounds that cannot be produced equally well using a 

chemical approach (Figure 7).  

An example of biocatalysis employed for synthetic natural pathways is the bacterial fermentation to 

produce lactic acid from corn starch or cane sugar. The lactic acid so obtained is then used as 

starting material to achieve polylactic acid (PLA) (98). PLA has a wide range of applications, such 

as woven shirts, microwavable trays, hot-fill applications and engineering plastics. PLA is currently 

used in a number of biomedical applications, such as sutures, stents, dialysis media and drug 

delivery devices.  

In this sense, the use of biosynthesis, biocatalysis and biotech-based chemical transformations can 

make an important contribution to green chemistry for both efficiency and selectivity. The range of 

reactions that can be carried out with microorganisms and the range of microorganisms that have 

been already isolated is enormous. Thus, much effort goes into the selection of new enzymatic 

activities. The use of  biotech-based chemical transformations have high efficiency and selectivity; 

are carried out in water at ambient temperature and pressure; do not require tedious protection and 

deprotection of functional groups; shorten reaction sequences with fewer steps and remove the need 

for organic solvents. Besides, another great advantage of biocatalysis in industry is the reduction of 

waste.   

Enzymes often represent almost zero waste for companies as they can be reused, and once they 

reach the end of their service life they can be discarded through conventional waste streams. 

Conversely, the chemical catalysts that enzymes often replace are heavy metals, which are tightly 

regulated and in many cases hazardous to the environment and human health. On the other hand, a 
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common problem in biocatalysis is that many of the desired substrates have very low solubility in 

water, and the catalytic activity for most enzymes is significantly reduced by the addition of even 

small quantities of organic solvents.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Examples of API manufactured using biocatalysts (by many steps) (99). 

 
 
Traditionally this has limited the use of biocatalysts, but now several examples have shown that 

biocatalysts can be evolved to function in nonaqueous solvents, allowing for their use with water-

insoluble substrates. In fact, for a biocatalyst to be effective in an industrial process, it must be 

subjected to improvement and optimization, and in this respect the directed evolution of enzymes 

has emerged as a powerful enabling technology. Currently, large-scale industrial applications of 

enzyme catalysis include the thermolysin-catalysed synthesis of the low-calorie sweetener 

aspartame, the synthesis of semi-synthetic β-lactam antibiotics with the use of acylases, acrylamide 

and nicotinamide (99). The enzymes most utilised include lipases and other esterases (for ester 

formation including transesterification; aminolysis and hydrolysis of esters); proteases (ester and 

amide hydrolysis, peptide synthesis); nitrilases and nitrile hydratases; hydrolases (hydrolysis of 

epoxides, halogenated compounds, and phosphates; glycosylation) and oxidoreductases (e.g. 

enantioselective reduction of ketones). However it is worth mentioning that another drawback of 

biocatalysis is that enzymes are very specific, thus they can be only used for one reaction at a time. 

In fact it is impossible at the moment to realize the synthesis of a natural product or of an Active 

Pharmaceutical Ingredients and Intermediates (API) in one step by biocatalysis. 

--------------------------------------------------------- Blue Box 7 --------------------------------------------------------- 
 

- Isosorbide: an example of Green Chemistry applied to renewables - 
 
Cyclic ethers in the form of anhydro sugar alcohols have many applications in industry, in particular 
in food industry and in the therapeutic field and are employed as monomers for polymers and 
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copolymers.  Such anhydro sugar alcohols are derivatives of mannitol, iditol, and sorbitol. In 
particular isosorbide, an anhydro sugar alcohol derived from sorbitol, is useful as a monomer in the 
manufacture of polymers and copolymers, especially polyester polymers and copolymers. 
Isosorbide is obtained by dehydration of sorbitol by an acid-catalyzed reaction that leads to different 
anhydro-compounds, but also to polymer-like products. Due to the industrial relevance of this 
substrate, the one-pot cyclisation of D-sorbitol to isosorbide has been greatly investigated. 
 

 

 

 

 

 

 
 
Scheme 1. One-step synthesis of isosorbide by DMC chemistry 
 
Recent studies demonstrated that DMC can be used as an efficient dehydrating agent in the 
cyclisation of D-sorbitol to isosorbide in up to quantitative yield (Scheme 1) (61). The main 
difference between this synthesis and the acid-catalyzed reaction normally used for the synthesis of 
isosorbide is that the DMC-mediated reaction incorporates two important concepts of the 
sustainable chemistry: it uses green reagents and and a renewable as starting material. This renders 
this reaction extremely appealing for industrial exploitation. 
Noteworthy, the synthesis of isosorbide represents a one-pot double cyclisation reaction. 
Additionally, the four chiral centres were not affected by the reaction, as it easily occurs in the 
present industrial processes that utilise the acidic promoted cyclisation. 
 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 
2.4 Use of Alternative Solvents 

 The use of solvents in every day laboratory work and in the chemical industry is ubiquitous (100). 

Solvents are often supposed to disappear at the end of the reaction, nevertheless they are part of the 

process and consequently they must be treated and disposed of (or eventually recycled). Nowadays, 

with increasing regulatory pressure focusing on solvents, there is significant attention being paid to 

green alternatives to traditional solvents which is perhaps the most active area of Green Chemistry 

research (100). In fact, solvents account for the vast majority of mass wasted in syntheses and 

processes. Besides, traditional solvents pose several serious issue to human health being toxic, 

flammable, and/or corrosive, as well as to the environment due to their volatility and solubility, 

which has caused enormous air, water and soil pollution over the years. Halogenated solvents such 

as carbon tetrachloride, perchloroethylene, and chloroform have been implicated as potential and/or 

suspect carcinogens, while other classes of solvents have demonstrated neurotoxicological effects. 

However, the direct toxicity to humans is only one aspect of the hazards that solvents possess. The 

use of certain volatile organic compounds (VOCs) as solvents and other uses has generated great 
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concern about their ability to elevate atmospheric ozone levels (Figure 8).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. An example of non-methane volatile organic compounds (NMVOc) reduction during the last 20 
years in Europe (101) 
 
Other substances used as solvents have also been found to possess significant global warming 

potential and are thought to contribute to the overall greenhouse gas loading in the environment. In 

an effort to address all these concerns for health and environment, chemists started to search for 

safer solutions.  

As an example, DMC-derivate solvents have recently been demonstrated as efficient alternative 

solvents for varnishes. Noteworthy, the varnish containing the new DMC-based solvent no toxicity 

and an improved filming performance (specifically 2(2methoxy-2ethoxy)ethyl methyl carbonate) 

(102).   

In this context, some of the main areas of research on alternative solvents include solventless 

systems, aqueous applications, supercritical fluids, ionic liquids and reduced hazard organic 

solvents.  

 

 Solventless Reactions. Whenever feasible, the best solution would be to avoid the use of 

solvent since including a supplementary element in a chemical reaction always require an 

extra energy consumption to remove it at the end of the process (103). 

 

 Water. The increased focus on water in synthetic organic chemistry during the past few 

decades has resulted in a large number of reactions that can now be performed successfully 

in an aqueous medium (104). Among these reactions are allylation reactions, the aldol 

condensation, the Michael addition, the Mannich reaction, indium-mediated allylation and 

Grignard-type additions, hydroformylation (105) and the benzoin condensation. In some 
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reactions the properties of water have even led to improved results thanks to the 

hydrophobic effect and easier separation, as a lot of organic substances are not water 

soluble. An example of the application of water in a chemical process as a green approach 

top waste minimization is that of Phase-Transfer Catalysis. (PTC).1 This key synthetic 

methodology - developed before the concept of Green Chemistry have been formulated - 

utilises water as the solvent and is applied in, and applicable to, a great variety of reactions 

in which inorganic and organic anions or carbenes react with organic substrates. It makes 

use of a heterogeneous two-phase system—one phase (water) being a reservoir of reacting 

anions or base for generation of organic anions, whereas organic reactants and catalysts are 

located in the second, organic phase. The reacting anions are continuously introduced into 

the organic phase in the form of lipophilic ion-pairs with lipophilic cations supplied by the 

catalyst. PTC can be carried out in liquid-liquid, solid-liquid, and gas-liquid conditions. The 

latter (Gas-Liquid Phase-Transfer Catalysis, GL-PTC) is of importance in green chemistry 

because it is performed under continuous-flow conditions (106). Transforming batch 

reactions into continuous- flow processes is a challenge for chemical engineers, but results 

in harmful reactions being avoided, easier reaction control and the volume in which the 

reaction takes place being greatly reduced. Noteworthy, it must be mentioned that the use of 

water in an industrial processes can also lead to water contamination, which is energy 

intensive to clean. 

 

 Supercritical fluids (SCF). SFCs can be obtained from water, carbon dioxide, methane, 

methanol, ethanol or acetone to mention but a few. They include substances which have 

been simultaneously heated and compressed above their critical points. In particular in the 

last twenty years, there has been incredible growth in research involving the use of carbon 

dioxide as an environmentally benign solvent for chemical reactions and polymerizations 

both in academia and in industry. CO2 is a nontoxic, nonflammable, and inexpensive solvent 

(107). While CO2 is a gas under ambient conditions, its liquid and supercritical states are 

easily attained by compression and heating. Both liquid and scCO2 have a tuneable density 

(and dielectric constant) that increases with increasing pressure or decreasing temperature. 

Many small molecules are soluble in CO2, including high-vapor-pressure solvents such as 

methanol, acetone, and tetrahydrofuran, numerous vinyl monomers, and azo- and peroxy-

initiators. Besides, scCO2 is also widely used because it does solubilize H2 and O2. Water 

and ionic compounds are insoluble, as are most polymers. The two methodologies described 

by Howdle for dissolving ionic/polar species in scCO2 led to a broadening of the range of 
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applications for supercritical solvents. ScCO2 has found a wide range of industrial 

applications, the first and most cited being the decaffeination of coffee beans. 

 

 Ionic Liquids. Another class of solvents investigated for possible green solvents are ionic 

liquids, which offer alternatives to conventional molecular solvents for many synthetic 

transformations (108). These solvents are often fluid at room temperature, and consist 

entirely of organic ionic species; they have no measurable vapour pressure, and hence can 

emit no VOCs. Their uses and applications having been pioneered only recently by Seddon. 

An interesting application of IL is in their use in cellulose processing (109). Making 

cellulosic fibres by dissolving the so-called pulp involves the use, and subsequent disposal, 

of great volumes of various chemical auxiliaries. However, IL can greatly simplify these 

processes, serving as solvents that are nearly entirely recyclable. BASF is currently 

investigating the properties of fibres spun from an IL solution of cellulose in a pilot plant 

(110).  

 
In this sense green chemistry entails the use of alternative green solvents that are non-toxic while 

preserving (or eventually improving) the efficiency of the synthesis in comparison to classical 

organic solvents while maintaining the same reaction conditions. 

 

2.5 Design of Safer Chemicals 

In the last twenty years, chemists have put enormous effort into designing chemicals with various 

applications ranging from medicines and cosmetics to materials and molecular machines. However, 

their work demonstrated a quite surprising lack of interest in taking hazards into consideration in 

the design process.  

The design of safer chemicals is a process that utilises an analysis of the chemical structure to 

identify what part of a molecule is providing the characteristic or property that is desired and what 

part of the molecule is responsible for the toxicity or hazard. Once this information has been 

ascertained, it is possible to maintain efficiency of function while minimizing the hazard. The goal 

of designing safer chemicals can be achieved through several different strategies (i.e. computational 

studies), the choice of which is largely dependent on the amount of information that exists on the 

particular substance. 

The greatest potential to design a safer chemical, in terms of toxicity or other hazards to human 

health and the environment, is in cases where a mechanism of action is known. Simply stated, if the 

pathway toward toxicity is known, and if any step within that pathway can be prevented from 

occurring, then the toxic endpoint will be avoided. 
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Although mechanisms of action may be unknown, there are often detailed correlations, by way of 

structure–activity relationships, that can be used to design a safer chemical. As an example, if the 

methyl-substituted analogue of a substance is known to have a high toxicity, and that the toxicity 

decreases as the substitution moves from ethyl to propyl, etc., it would be reasonable to increase the 

alkyl chain length to design a safer chemical. Even when the reason for the influence of alkyl chain 

length on toxicity is unknown, an empirical structure–activity relationship of this kind offers a 

powerful design tool. 

Another important approach for the design of safer molecules is the elimination of toxic functional 

groups. If there is little information about the specific variations in a chemical’s toxicity with 

structural modification or in the mechanism by which that toxicity is produced, the assumption that 

certain reactive functional groups will react similarly within the body or in the environment is often 

a good one. The assumption is especially good if there is data on other compounds in the chemical 

class that demonstrate a common toxic effect. Here, the design of a safer chemical could possibly 

proceed by removing the toxic functionality which defines the class. In some cases, this is not 

possible because the functionality is intrinsic for the desired properties of the molecule. In such a 

case, there are still options, such as masking the functional group as a nontoxic derivative form and 

only releasing the parent functionality when and where necessary. 

Finally, if through the above methods, the structural feature of the molecule that needs to be 

modified in order to make it less hazardous cannot be identify, there is still the option of making the 

substance less bioavailable. If the substance is unable, due to structural design, to reach the target of 

toxicity, then it is in effect innocuous. This can be achieved through a manipulation of the water-

solubility/lipophilicity relationship that often control the ability of a substance to pass through 

biological membranes such as skin, lungs, or the gastrointestinal tract. The same principle applies to 

designing safer chemicals for the environment, such as replacement for ozone-depleting substances. 

In the past, it was often the goal of the chemist to design substances which were robust and could 

last as long as possible. This philosophy has resulted in a legacy of wastes, persistent toxic and bio-

accumulative substances, and lingering toxic waste sites. Nowadays it is known that it is more 

desirable to avoid substances that persist indefinitely in the environment or in landfill, and to 

replace them with those that are designed to degrade after use. Polymeric materials, for instance, 

should have no negative effect on the environment during their production, utilisation or disposal. 

Therefore, the design of safer chemicals cannot be limited to hazards associated with the 

manufacture and use of the chemical, but also to its disposal, i.e. its full life cycle.  
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2.6 Developing Alternative Reaction Conditions 

The use of alternative reaction conditions has experienced great development in the last twenty 

years. Energy sources such as UV light, microwaves or ultrasound can be used in a controlled way 

to increase the efficiency of a chemical reaction, thus making it more eco-friendly.  

Microwave chemistry, the science of applying microwave irradiation to chemical reactions, for 

instance, has been widely investigated since 1986. Microwaves will generally heat any material 

containing mobile electric charges, such as polar molecules in a solvent or conducting ions in a 

solid. As a results microwave heating has benefits over conventional ovens: i.e. reaction rate 

acceleration, milder reaction conditions, higher chemical yield, lower energy usage and different 

reaction selectivity. Microwave heating is very attractive for chemical applications and has become 

a widely accepted non-conventional energy source for performing organic synthesis. A large 

number of examples of reactions have been described in organic synthesis: solvent-free reactions, 

cycloaddition reactions, the synthesis of radioisotopes, fullerene chemistry, polymers, heterocyclic 

chemistry, carbohydrates, homogeneous and heterogeneous catalysis, medicinal and combinatorial 

chemistry and  Green Chemistry (111). 

Acoustic waves are also considered as alternative reaction conditions to mechanical milling. In 

particular, acoustic milling is generated between 2 disks counter rotating at 30 000 rpm with a gap 

as small as 200 mm. Materials are introduced in the centre of the disks, and transformed to 

nanometric powders with no crushing. This process is considered to be energetically greener and 

costs are claimed to be 10 times less (112). 

 

2.7 Minimizing Energy Consumption 

Chemistry and energy are two concepts that are strictly linked together. In particular in recent years 

a great deal of investment have been made both by the American and European governments in 

order to promote Clean Energies development at different level (Figure 9). The design of chemical 

transformations can reduce the required energy input in terms of mechanical, thermal, and other 

energy inputs, and the associated environmental impacts of excessive energy usage. In many 

aspects, design for energy minimization is inherently coupled with the design for material 

efficiency. For instance, when utilising new solvents such as scCO2, often the separation, a 

processes which requires significant energy inputs, is also greatly increased. Furthermore, if a 

synthetic transformation is developed using a catalytic system rather than a stoichiometric process, 

the activation energy required for the conversion to occur is significantly lowered.  

Noteworthy, the chemical industry accounts for high energy consumption and CO2 emissions. The 

industry typically consumes 25-30% of the total energy used annually by the entire manufacturing 
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sector. The two categories of plastic manufacturing and basic organic compounds represent more 

that one half of chemical industry energy use. This energy relates to energy of the molecular bonds 

and to some distinct manufacturing procedures, such as distillation, crystallization, separation, etc.  

The potential energy savings in the chemical industry are enormous. Improving atom economy, 

utilizing less hazard reagents, reducing waste, adopting intelligent energy activation and alternative 

separation procedures will allow the relationship between industry and energy to be reassessed.  

 

 

 

 

 

 

 

 

 

 

Figure 9. Total Global New Investment in Clean Energy, 2004-2008, US$ billions (113) 

 

A convincing example is represented by the chlorine-based industry. Chlorine stands as “an iconic 

molecule” for industrial production. Starting from a chlorine anion, Cl2 can be easily obtained by 

electrolysis. Following, many intermediates are produced starting from Cl2 (AlCl3, SnCl4, SOCl2, 

COCl2, TiCl4, POCl3, ZnCl2, SiCl4, PCl3, PCl5, etc.), which in turn are starting reagents and 

catalysts for the production of numerous common everyday goods (Figure 10). Thus, each 

compound is the starting point of a chain leading to essential chemical derivatives. 

Through a chain of chemical derivatives and relatively easily obtained compounds and 

intermediates, such molecules have utilised the intrinsic energy available through the use of 

chlorine primarily produced via electrolysis.  More than 20 million tonnes of chlorine and co-

products caustic soda and hydrogen are produced each year at about 80 plants across Europe, 

mostly (about 95%) via electrolysis-based techniques (chlor-alkali industry). Chlorine production is 

extremely energy intensive; recent data reported a decreasing consumption trend in Europe from 

2001 to 2007. Estimates for the Global Warming Potential (GWP) resulting from chlorine use and 

the primary energy consumed by the chlorine industry in Europe are 0.29% of the total GWP and 

0.45% primary energy consumption (Table 1) (114). 
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So, besides their (eco-)toxicity, a major concern with chlorine derivatives is the large amount of 

energy necessary for their production. This is why chlorinated molecules may have both a direct (as 

greenhouse gases) and indirect (energy production) impact on climate change at a global level.  

The substitution of compounds where “chlorine is used in the making”, means that Cl2 can be avoid 

as a primary energetic source; this however makes chemistry “without chlorine” considerably more 

difficult and illustrates why it has never been taken on before. 

 

 

 

 

 

 

 

 

 

 

Figure 10. Synthesis of chlorine derivatives by electrolysis 

 

It must be stated that chemists have always worked with the intent to substitute SN2 with BAc2 

following a chlorine-free idea. However, the search for chlorine-free chemistry will not imply a 

drastic change in the industrial chemical processes, it is more an evolution of production pathways 

driven by industrial needs related to the modern market. 

 

 

 

 

 

 

 
 

 

Figure 11. CO2 Emissions by sector (Shares of total CO2 Emissions: 2007) 

 

Besides, reduced dependence on chlorine electrolysis will increase energy saving and will produce a 

smaller CO2 footprint. Decreasing CO2 emissions is a crucial step for containing industrial 
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environmental pollution. Figure 11 clearly shows the impact of the chemical industry on CO2 

production.  

The whole of Europe produces 5.21 trillion t CO2eq per year and has a primary energy consumption 

of about 55 trillion GJ per year. In the following table the primary energy consumption and GWP of 

three different materials are shown. 

 

Table 1. Comparing CO2 emissions in cement, iron, steel and chloro alkali production  

 Chloro-Alkali 
manufacturing 

Cement Iron and Steel 

Kg CO2/Kg 1.5 0.95 1.7 
World Production 

(2008) 
Europe 20 Mtons 
China 21Mtons 

2.3 Btons 1.2 Btons 

 

An approximate estimate of the share of environmental impact caused by the use of chlorine in the 

State-of-the-Art production ranges between 20 – 55% of the whole production chain, beginning 

from the extraction of the raw materials down to the manufacturing of the chlorine-derived 

products. This environmental impact potential can be reduced by the development of chlorine-free 

production routes. 

 

From a scientific and technical point of view, many scientists were and are devoted to a progressive 

substitution and prevention of the use of halogens (principally chlorine) according to Green 

Chemistry principles. A poignant example is in the field of Friedel-Crafts acylations and 

hydroxyalkylation. These reactions produce chemicals - such as aromatic ketones, alkenyl ketones 

and hydroxyalkyl derivatives – that are either valuable intermediates or end active ingredients in an 

extensive range of high value-added products within pharmaceuticals, flavours, fragrances, and fine 

chemicals1. However, Friedel-Crafts “catalysts” are frequently halogenated Lewis acid activating 

compounds, AlCl3, TiCl4, SnCl4, BF3, ZnCl2, which present significant health, safety and 

environmental challenges for batch processing typically used in smaller companies (115). The 

acylating processes also suffer from the production of copious amounts of aqueous effluent, 

generated when the products are released from activating agent/product complexes by hydration 

with water. The costs associated with overcoming these problems are increasing, and challenge the 

position of traditional acylation routes as economically viable processes for chemical companies.  

Some major chemical companies use liquid HF process systems, but the capital and running costs 

exceed the capabilities of small scale manufacturers. 

To avoid the production of chlorine by-products during acylation reactions, three classes of 

alternative reagents can be utilized: carboxylic acids, carboxylic acids anhydrides and mixed 
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carboxylic acid anhydrides. In this regard, a great variety of solid acid catalysts can be studied to 

perform the acylation reaction with carboxylic acids and carboxylic acid anhydrides and with some 

mixed anhydrides (in particular acyl-carbonates). The different classes of catalysts to be studied 

range from clays, zeolites, metal oxides, acid-treated (mixed) metal oxides and heteropoly acids 

(116). 

 

3. Metrics in Green Chemistry 
 

Metrics in Green Chemistry are very important indicators of environmental issues and pollution 

associated with chemicals manufacturing. Metrics evaluation is often required for the assessment of 

the operations of a process plant, as they indicate human toxicity, toxicity pathway and ecotoxicity.  

The most common green metrics for the evaluation of a chemical process are: 

- the effective mass yield defined as the percentage of the mass of desired product relative to 

the mass of all non-benign materials used in a synthesis (117); 

- the E Factor defined as total waste per product; which is an output oriented  indicator,  

defined as waste per mass unit of the product ( ∑waste [kg] /  product [kg] ) (118);  

- the atom economy (AE) describing the conversion efficiency of a chemical process in terms 

of atoms involved. In an ideal chemical process, the amount of starting materials or reactants 

equals the amount of all products generated  and no atom is wasted. Thus atom economy can 

be written as: % atom economy = (molecular weigh of desired product/molecular weight of 

all reactants) x 100 (119); 

- the mass index (MI), which is an input oriented  indicator, defined as the mass of all raw 

materials used for the synthesis per mass unit of the purified product ( ∑raw materials [kg] / 

product [kg] )  

 

Green metrics provide information already in the design phase of a chemical process and indicating 

consumptions measured as material and energy flows, and waste or toxic release emissions. Thus, 

by their application, chemists can improve their awareness of environmental issues related to new 

products as well as to existing ones. For example, utilizing these metrics, some comparative 

evaluations have been carried out to define the “greener” methylating agent among dimethyl 

carbonate, dimethyl sulphate and methyl iodide. The data collected demonstrates that DMC is the 

more eco-friendly reagent (120). 

As evidence of the important role played by these green indicators, in 1998 an Ecometrics 

workshop was held in Switzerland with the participation of academia, industry and decisions 
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makers in order to discuss the need of metrics for the environment and to evaluate the best indices 

to address environmental issues (121). The key role of the metrics was confirmed during the First 

International Conference on Green & Sustainable Chemistry held in Japan in 2003. During this 

meeting life cycle approach (122) was also recognized as a method to be taken into account when 

conducting the environmental assessment of a material.  

 

In 2005 J. Andraos, a professor at York University (Canada) investigating the application of 

reaction metrics in  organic reactions and total syntheses, proposed a formalism to unify the metrics 

used for chemical reactions and introduced the stoichiometric factor (SF), making use of  

algorithms to calculate reaction metrics and to compare the green performances (123). In this 

context, in order to identify a sustainable threshold. Andraos also proposed that reactions 

considered to be green are characterized by a minimum atom economy of 61.8% coupled with high 

yield and high solvent recovery and run under stoichiometric conditions (124). 

 

A method enabling the comparison of different chemical reactions in terms of potential 

environmental impact and to identify the critical phases of a synthesis process was developed by 

Metzeger and Eissen. This method, called EATOS (Environmental Assessment Tool for Organic 

Synthesis), envisages two metrics as tools: the mass index and the E factor.  

 

By the means of EATOS software, other environmental indices are calculated that also consider the 

weighting factors (125) such as input material prices, for risk of the R-phrases and for output 

materials toxicity and ecotoxicity. The same authors have also introduced in the EATOS tool the 

cost index. This tool has been utilized by various researchers to evaluate, the “greenness” of 

pyrazole derivates (126), of photochemistry (127) and of functionalization of heterocyclics (128). 

This software, elaborating data relative to reagents, solvents, auxiliary materials, products and 

secondary products, provides an evaluation graph, useful for the understanding of which phase has 

more environmental impact and to compare different processes. Finally, it must be mention that 

despite all the work so far conducted in the field of green metrics, due to the complexity of a 

chemical process, the debate on the best metrics to be used and the threshold for deciding the 

“greenness” reactions still remains open. 
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4. Conclusions and Future perspectives 
 

Since 1990, Green Chemistry has gained ever increasing importance in organic synthesis, inspiring 

scientists in academia, industry, and research institutes around the world. The results so far 

achieved are encouraging:  a new “generation” of reactions that avoid the use of toxic and 

dangerous chemicals and/or waste have been developed, new eco-compatible solvents have been 

discovered, compounds that perform comparably or better than those already in existence, but that 

are biodegradable have been produced and energy requirements have been reduced. However, the 

road is still open and big challenges for scientist remain around the corner. 

In this prospect the future of Green Chemistry relies upon three open roads: new renewable 

feedstock, new synthetic pathways and new products. 

Regarding the field of renewable feedstock, the recent BP oil drilling disaster in the gulf of Mexico 

which began on the night of April 20, 2010 with a tragic explosion that claimed 11 lives, and that 

now has become the largest environmental disaster in US history, teaches us a hard lesson: fossil 

fuel utilisation has several dangerous repercussions. Their constant depletion leads to a continuous 

prospecting for oil in ever more isolated and/or difficult to reach sites. Besides, their use results in 

large amount of CO2 emissions and environmental damage. In this prospect, the use of renewable 

feedstocks is a necessity that chemists must work on to both ensure the energy needs of future 

generations and most importantly to preserve a green future for our children and grandchildren 

(Figure 12).  

 

 

 

 

 

 

 

 

 

 

 

Figure 12. From the current industrial scenario to green industrial chemistry.41  
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New synthetic pathways is also a field with high competition that will employ the talents of many 

of the next generation of organic and inorganic chemists. It is important to emphasize the huge 

efforts needed in pursuing synthetic pathways that mimic natural processes in order to avoid 

emissions into the environment of products that nature is not able to take in and degrade. As 

chemistry is fast advancing, the sooner more chemists start working in this direction the better it 

will be for humankind. 

Finally, new products should also be taken into account. In fact, the modification of existing 

products according to human needs should be achieved using Green Chemistry as focal reference 

point. The new products must be intrinsically secure since they are made for consumers i.e. for us. 

In this context solvents surely have great importance. Chemists must use solvents that not only are 

environmental friendly but that also aid the efficiency of the reaction being worked on.  

Noteworthy chemists must also be aware that to develop green chemistry following the principles of 

Green Chemistry is not enough. In fact, they should be focused on exploiting new green synthetic 

routes that are as good or better than the ones currently used by the industry. This means that the 

economical aspects related to a reaction i.e. reagents employed, energy consumed, waste disposal 

should also and foremost be kept in mind. 

In this sense, Green Chemistry has several essential targets to achieve in the near future, targets that 

can be achieved only by a strong connection between fundamental research and industry. Nowadays 

industry has the skills to work for the welfare of people and to ultimately demonstrate that 

chemistry is an essential support for the development and evolution of humankind. 
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