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Abstract: This paper identifies and develops the class of Gaussian copula
models for marginal regression analysis of non-normal dependent observa-
tions. The class provides a natural extension of traditional linear regression
models with normal correlated errors. Any kind of continuous, discrete and
categorical responses is allowed. Dependence is conveniently modelled in
terms of multivariate normal errors. Inference is performed through a like-
lihood approach. While the likelihood function is available in closed-form
for continuous responses, in the non-continuous setting numerical approx-
imations are used. Residual analysis and a specification test are suggested
for validating the adequacy of the assumed multivariate model. Methodol-
ogy is implemented in a R package called gcmr. Illustrations include simu-
lations and real data applications regarding time series, cross-design data,
longitudinal studies, survival analysis and spatial regression.
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1. Introduction

Marginal regression models for non-normal correlated responses are typically
fitted by the popular generalized estimating equations approach of Liang and
Zeger [34]. Despite several theoretical and practical advantages, likelihood anal-
ysis of non-normal marginal regression models is much less widespread, see Dig-
gle et al. [13]. The main reason is the difficult identification of general classes of
multivariate distributions for categorical and discrete responses. Nevertheless,
likelihood analysis of marginal models has been considered by many authors,
see Molenberghs and Verbeke [39] for some references.

Gaussian copulas [47] provide a flexible general framework for modelling de-
pendent responses of any type. Gaussian copulas combine the simplicity of in-
terpretation in marginal modelling with the flexibility in the specification of
the dependence structure. Despite this, Gaussian copula regression had still a
limited use since for non-continuous dependent responses the likelihood func-
tion requires the approximation of high-dimensional integrals. The intents of
this paper are to identify the class of Gaussian copula regression models and
to show that methods developed for multivariate probit regression can be use-
fully adapted to the Gaussian copula models in a way to overcome numerical
difficulties of the likelihood inference.

The identified class of models stems from and generalizes previous work on
Gaussian copula regression models [47, 43] and multivariate probit models [7].
In particular, we show that with a proper parameterization of the correlation
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matrix of the Gaussian copula, the ideas of Song [47] can be applied also to
the analysis of time series and spatially correlated observations. We suggest
model fitting through maximum likelihood. In the continuous case, the like-
lihood function is available in closed-form. Otherwise, in the discrete and the
categorical cases numerical approximations of the likelihood are needed. We pro-
pose to approximate the likelihood by means of an adaptation of the Geweke-
Hajivassiliou-Keane importance sampling algorithm [30]. Another contribute of
this manuscript is to interpret the normal scores of the Gaussian copula as er-
rors and thus develop residuals analysis for model checking. We also suggest
to validate the inferential conclusions on the marginal parameters through a
Hausman-type specification test [22].

The methodology discussed in this paper has been implemented in the R

[44] package gcmr – Gaussian copula marginal regression – available from the
Comprehensive R Archive Network at url http://cran.r-project.org/web/
packages/gcmr.

2. Framework

Let Y = (Y1, . . . ,Yn)
T be a vector of continuous, discrete or categorical de-

pendent random variables and let y = (y1, . . . , yn)
T be the corresponding real-

izations. Dependence may arise in several forms, as for example repeated mea-
surements on the same subject, observations collected sequentially in time, or
georeferenced data. We consider situations where the primary scientific objective
is evaluating how the distribution of Yi varies according to changes in a vector
of p covariates xi = (xi1, . . . , xip)

T. Dependence is regarded as a secondary, but
significant, aspect.

Denote by pi(yi;λ) = p(yi|xi;λ) the density function of Yi given xi, so that
covariates are allowed to affect not only the mean of Yi but the entire uni-
variate marginal distribution. Within this framework density pi(yi;λ) identifies
the regression model. Without further assumptions about the nature of the de-
pendence among the responses, inference on the marginal parameters λ can be
conducted with the pseudolikelihood constructed under working independence
assumptions,

Lind(λ;y) =

n∏

i=1

pi(yi;λ). (1)

If the marginals pi(yi;λ) are correctly specified, then the maximum indepen-

dence likelihood estimator λ̂ind = argmaxλLind(λ;y) consistently estimates
λ with no specification of the joint distribution of Y given the model ma-
trix X = (x1, . . . ,xn)

T. Despite this important robustness property, there are
various causes of concern with the above estimator. First, it may suffer from
considerable loss of efficiency when dependence is appreciable. Second, stan-
dard likelihood theory does not apply and corrected standard errors should be
based on sandwich-type formulas [57], whose computation can be difficult when
the response vector Y does not factorize into independent subvectors. Finally,
predictions that do not take into account dependence may be of poor quality.

http://cran.r-project.org/web/packages/gcmr
http://cran.r-project.org/web/packages/gcmr
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For these reasons, complementing the regression model pi(yi;λ) with a depen-
dence structure is important for attaining more precise inferential conclusions
and predictions. The ideal model would contain all the possible joint distri-
butions of Y with univariate marginals pi(yi;λ), i = 1, . . . , n. However, this
broader semiparametric model appears too general to be of practical use. Hence,
in the following we identify and develop a narrower parametric model which is
flexible enough for many applications.

3. Gaussian copula marginal regression models

In very general terms, a regression model is expressed as

Yi = g(xi, ǫi;λ), i = 1, . . . , n, (2)

where g(·) is a suitable function of the regressors xi and of an unobserved
stochastic variable ǫi, commonly denoted as the error term. It is assumed that
the regression model (2) is known up to a vector of parameters λ. Among the
possible specifications for the function g(·), a useful choice is

Yi = F−1
i {Φ(ǫi);λ} , i = 1, . . . , n, (3)

where ǫi is a standard normal variable and Fi(·;λ) = F(·|xi;λ) and Φ(·) are the
cumulative distribution functions of Yi given xi and of a standard normal vari-
ate, respectively. By the integral transformation theorem, the regression model
(3) ensures the desired marginal distribution for the response Yi and specifies
ǫi in the familiar terms of a normal error. Specification (3) includes all possible
parametric regression models for continuous and noncontinuous responses. For
example, the Gaussian linear regression model Yi = xT

i β + σǫi corresponds to
set Fi(Yi;λ) = Φ{(Yi − xT

i β)/σ} in (3), with λ = (βT, σ)T, while the Poisson
log-linear model is obtained by setting

Fi(Yi;λ) =

Yi∑

j=0

e−µiµj
i

j!

where µi = exp(xT
i β), with λ ≡ β.

For subsequent developments, it is important to notice that the mapping
between the response Yi and the error term ǫi is one-to-one only in the contin-
uous case, otherwise the mapping is one-to-many and hence the relationship (3)
between Yi and ǫi cannot be inverted.

This manuscript deals with regression analysis in presence of dependence.
Model specification is then completed by assuming that the vector of errors
ǫ = (ǫ1, . . . , ǫn)

T is multivariate normal,

ǫ ∼ MVN(0,Ω), (4)

where Ω is a correlation matrix. The special case of independent observations
corresponds to Ω = In, the n×n identity matrix. Model identifiability requires
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that ǫ has zero mean vector and unit variances because univariate characteristics
are modelled separately in the marginals pi(yi;λ).

The model specification conveniently separates the marginal component (3)
from the dependence component (4), the latter being described in terms of a
multivariate normal process. Various forms of dependence in the data can be
modelled by suitably parametrizing the correlation matrix Ω as a function of
a vector parameter τ , see Section 3.1 for some common examples. The whole
parameter vector is denoted by θ = (λT, τT)T. Thereafter, λ is termed the
vector of marginal parameters and τ the vector of dependence parameters.

The model (3)-(4) offers a natural interpretation in terms of the copula the-
ory [28] where the normal scores ǫi are seen as nonlinear transformations of
the variables Yi and not as error terms. In this manuscript, we prefer the er-
rors interpretation for the ǫi because we think this provides a clear connection
to other regression approaches and because this interpretation facilitates the
presentation of the residuals analysis described later in Section 7.1.

The approach investigated here differs from much of the existing literature
about copula modelling where viceversa marginals are treated as nuisance com-
ponents and interest lies on the dependence parameters of the copula. For an
example of the latter use of copulas see the work on semiparametric Gaussian
copula modelling by Hoff [23] and the references therein.

As stated in Section 2, ideal inferences on λ should be based on the semi-
parametric model of all the possible copulas with marginals pi(yi;λ). The model
discussed here restricts to a particular copula, namely the Gaussian copula [47].
This choice appears advantageous because it naturally inherits several well-
known properties of the multivariate normal distribution, see e.g. Nikoloulopou-
los et al. [41]. A limit of the normality assumption is that the full multivariate
dependence structure is induced by the bivariate dependencies. Other copulas
might be considered as well but at the cost of lessened interpretability. Fur-
ther, simulation studies as that reported in Section 8 suggest some amount of
robustness of the Gaussian copula to local misspecification of the dependence
structure. In the rest of the paper, the class of models identified by the pair
of equations (3)-(4) is termed Gaussian copula marginal regression (GCMR)
models.

Song [47] introduced Gaussian copula generalized linear models for longitudi-
nal data analysis. See also Song et al. [50] for an extension to multivariate longi-
tudinal responses, also of mixed type. Pitt et al. [43] develop efficient Bayesian
analysis of multivariate regression models using an unstructured correlation ma-
trix for the copula. These models are examples of GCMR. Alternatively, GCMR
may be seen as multivariate probit regression with marginals Fi(yi;λ). The mul-
tivariate probit model with logistic marginals considered by Le Cessie and Van
Houwelingen [33] for longitudinal binary data and the correlated probit model
for joint modelling of clustered observations of mixed-type by Gueorguieva and
Agresti [20] may also be interpreted as special cases of the model class discussed
in this paper. Recent advances on the joint copula analysis of mixed depen-
dent data can be found in a series of papers by A.R. de Leon and colleagues
[11, 12, 58].
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3.1. Dependence models

The dependence structure in GCMR is modelled through the specification of an
appropriate correlation matrixΩ of the errors vector ǫ. Although any correlation
matrix Ω is allowed, we identify here some particular model types that seem
likely to have wide application. All the models described below are implemented
in our package gcmr.

3.1.1. Longitudinal and clustered data

Suppose observations are grouped in m clusters of dimensions nr, r = 1, . . . ,m,
with

∑m
r=1 nr = n. This is the case of longitudinal or panel data where m

subjects are observed on nr occasions each. Under the standard assumption
of independence between different subjects or groups, appropriate correlation
matrices for the errors are block-diagonal,

Ω =




Ω1 0 · · · 0

0 Ω2 · · · 0
...

...
. . .

...
0 0 . . . Ωm


 ,

where Ωr is a nr×nr correlation matrix. Similarly to the method of generalized
estimating equations [34], we can identify some useful correlation structures for
a generic blockΩr. Consider indices i and j denoting two observations belonging
to the same cluster r, i.e. (n1 + · · ·+nr−1) + 1 ≤ i < j ≤ (n1 + · · ·+nr). Then,
possible correlation structures are

1. exchangeable, corr(ǫi, ǫj) = τ for each choice of indices i and j;
2. autoregressive of order one, corr(ǫi, ǫj) = τ |i−j|;
3. moving average of order q, corr(ǫi, ǫj) = τ|i−j| for |i− j| ≤ q;
4. unstructured, corresponding to a correlation matrix without any restric-

tion.

Song [47, 48] studies models of this type for the special case of marginals given by
generalized linear models and calls them vector generalized linear models. How-
ever, Gaussian copulas can be used to join any type of marginals not only those
belonging to the exponential family. As an example of this, censored clustered
responses are later analysed with a Weibull regression model in Section 9.3.

The work by P. Song focuses on longitudinal data with small size clusters. One
of the intents of this paper is to show that Gaussian copula regression models
can be also used for the analysis of larger dimensional processes observed in
time series and spatial statistics.

3.1.2. Time series

Marginal regression models with stationary time series errors for equi-spaced
observations may be specified by assuming that Ω is the correlation matrix
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induced by an autoregressive and moving average process of orders p and q. An
illustration regarding serially correlated counts is discussed in Section 9.1.

3.1.3. Spatial data

Regression analysis with spatial and spatio-temporal dependent responses may
be modelled by assuming that errors are generated from a stationary Gaussian
random field [10]. A flexible choice for Ω in the spatial case is the Matérn
isotropic correlation function

corr(ǫi, ǫj) =
1

2τ2−1Γ(τ2)

(‖si − sj‖2
τ1

)τ2

Bτ2

(‖si − sj‖2
τ1

)
, (5)

where si are the coordinates of the ith observation and Bτ2 is the modified Bessel
function of order τ2. The two parameters τ1 and τ2 both need to be strictly
positive. For more details on these and other spatial correlation functions see,
for example, Cressie [10] and Diggle and Ribeiro [14]. An illustration of spatial
regression of counts is provided in Section 9.4.

4. Model properties

4.1. Distributional forms

GCMR models differ from other marginal models in the form of bivariate and
higher order dimensional joint distributions. In the continuous case, the map-
ping (3) between ǫi and Yi is one-to-one, so that marginal distributions of the
responses are readily obtained by standard transformation rules from the distri-
bution of the corresponding errors. For example, in the bivariate case we have

pij(yi, yj; θ) = pi(yi;λ)pj(yj ;λ)q(ǫi, ǫj; θ), (6)

where

q(ǫi, ǫj ; θ) =
p(ǫi, ǫj; θ)

p(ǫi;λ)p(ǫj ;λ)

is the density of the bivariate Gaussian copula. Given the model assumptions,
p(ǫi;λ) is a univariate standard normal density, while p(ǫi, ǫj ; θ) is a bivariate
normal density with zero means, unit variances and correlation given by the
element at position (i, j) in matrix Ω.

In the categorical and discrete cases, mapping (3) is many-to-one. It follows
that the joint marginal distributions are expressed by multivariate normal in-
tegrals. For example, the bivariate marginal distribution is the two-dimensional
integral

pij(yi, yj ; θ) =

∫

Di(yi;λ)

∫

Dj(yj;λ)

p(ǫi, ǫj; θ) dǫidǫj , (7)

whose domain is the Cartesian product of intervals

Di(yi;λ) =
[
Φ−1{Fi(y

−
i ;λ)},Φ−1{Fi(yi;λ)}

]
,
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where Fi(y
−
i ;λ) is the left-hand limit of Fi(·;λ) at yi. If the support of Yi is

contained in N, as for binomial and Poisson marginals, then y−i = yi − 1.

4.2. Dependence properties

In the special case of linear regression models with normally distributed errors,
the correlation between pairs of responses, given the corresponding covariates,
coincides with the correlation of the corresponding normal errors corr(ǫi, ǫj).
Otherwise, the correlation between Yi and Yj is a nonlinear function of the
correlation of ǫi and ǫj . This nonlinear function can be computed by a va-
riety of numerical integration methods. Recently, Kugiumtzis and Bora-Senta
[32] suggested to approximate these correlations making use of piece-wise linear
approximations.

In the copula theory, alternative measures of association based on ranks are
often used. The two most popular rank measures are the Kendall τ and the
Spearman ρ. A recent illustration of the use of the Kendall τ in longitudinal
regression analysis is given by Parzen et al. [42]. Song [48, §6.3.3] supplies a
detailed discussion of the relative merits of the various association measures in
Gaussian copula models. In particular, it is shown that Spearman ρ is very close
to corr(ǫi, ǫj) and this is positively correlated with the Kendal τ index.

Interpretation of the dependence structured inherited by the Gaussian cop-
ula requires some care because the correlation of the responses is attenuated
with respect to the correlation of the errors, as shown by Klaassen and Wellner
[31]. The attenuation is often considerable, in particular in the noncontinuous
case where the margins restrict the range of possible association between the
responses. A special case that has received much attention is when the margins
identify a probit model and corr(ǫi, ǫj) corresponds to the tetrachoric correla-

tion [21]. However, the restricted range of dependence is a common problem for
any multivariate analysis of discrete variables. See also Genest and Nešlehová
[17] for a detailed discussion about the correct interpretation of dependence
measures in copula models for count data.

Although closed-form computation for bivariate, and higher order, moments
is not available, some key aspects of the dependence structure of the model
(3)-(4) are easily derived.

Property 1. If errors ǫi and ǫj are uncorrelated, then the corresponding pair

of responses Yi and Yj are independent given the covariates xi and xj.

This coherency quality is obvious from bivariate distribution expressions in
the continuous (6) and in the non-continuous (7) cases. See also Bodnar et
al. [4] where this result is discussed together with other useful properties of
Gaussian copula models. To appreciate Propriety 1, consider the special case of
regression with stationary time series errors. The property states that if errors
follow a moving average process of order q, then responses that are more than
q units apart are independent.
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Property 2. The direction of the association between any pair of responses Yi

and Yj given the covariates xi and xj coincides with the sign of the correlation

between the corresponding pair of errors ǫi and ǫj.

This is a direct consequence of mapping (3) being non-decreasing. This prop-
erty ensures that the correlation structure of the normal errors does not modify
the direction of the dependence between the responses given the covariates. As
illustrated in the examples in Section 9, this simple result is very useful for
interpretation of the fitted model.

Property 3. If the error vector ǫ follows a Markovian process of order p and

all the marginals pi(yi;λ) are continuous, also the response vector Y given the

model matrix X then follows a Markovian process of order p.

This property is easily verified in the special case of time-series or longitudinal
data. In fact, the conditional density of a continuous response Yi given its
predecessors is

pi(yi|yi−1, . . . , y1; θ) =
pi(yi;λ)

p(ǫi;λ)
p(ǫi|ǫi−1, . . . , ǫ1; θ).

If the errors are Markovian of order p, the above conditional density reduces to
the limited memory conditional density, indeed

pi(yi|yi−1, . . . , y1; θ) =
pi(yi;λ)

p(ǫi;λ)
p(ǫi|ǫi−1, . . . , ǫi−p+1; θ)

= pi(yi|yi−1, . . . , yi−p+1; θ)

Similarly, but with notational complications, it can be shown that if the errors ǫ
are realizations from a Gaussian Markovian random field, then the multivariate
continuous responsesY are realizations from a Markovian random field. For time
series, if Property 1 states a kind of parallelism between moving average errors
and responses, then Property 3 extends the parallelism also to autoregressive
processes but only for continuous responses.

5. Maximum likelihood inference

Suggested fitting of GCMR models is through the method of maximum likeli-
hood. A clear advantage of this approach is that standard tools for hypothesis
testing and model selection, such as likelihood ratio statistics and information
criteria, can be used. Along the following lines, details of likelihood computa-
tions are discussed. For this purpose, it is convenient to treat the continuous
case and the discrete or categorical case separately. We start from the former
because it is simpler and is propaedeutic to the latter.

The one-to-one relationship between responses Y and errors ǫ in the contin-
uous case yields the likelihood for θ as

L (θ;y) = Lind(λ;y)q(ǫ; θ), (8)
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where the copula density

q(ǫ; θ) =
p(ǫ1, . . . , ǫn; θ)

p(ǫ1;λ)× · · · × p(ǫn;λ)

can be interpreted as the likelihood ratio between the assumed multivariate
normal model for the errors and that under the independence hypothesis. Hence
the likelihood L (θ;y) is obtained by sharpening the independence likelihood
Lind(λ;y) through a measure q(ǫ; θ) of the evidence for dependence among the
errors.

More difficult is the case of discrete or categorical-valued responses. In this
case, likelihood evaluation requires the computation of the n-dimensional rect-
angular integral

L (θ;y) =

∫

D1(y1;λ)

. . .

∫

Dn(yn;λ)

p(ǫ1, . . . , ǫn; θ) dǫ1 . . . dǫn. (9)

It is convenient to re-express the above integral by considering the change of
variable from D1(y1;λ)× · · · ×Dn(yn;λ) to (0, 1)n with componentwise inverse

ǫi(ui) = Φ−1 {Fi(yi;λ)− ui pi(yi;λ)} , i = 1, . . . , n. (10)

Then, likelihood (9) assumes the form

L (θ;y) = Lind(λ;y)

∫

[0,1]

. . .

∫

[0,1]

q{ǫ1(u1), . . . , ǫn(un); θ} du1 . . . dun, (11)

whose interpretation is much the same as in the continuous case (8) except for
the adjustment term which is an average over likelihood ratios of type q(ǫ; θ)
but computed at the randomized errors ǫi(ui) given by expression (10).

5.1. Likelihood computation

In the non-continuous case the likelihood is expressed in terms of the Gaussian
probability integral (9). Whenever this integral factorizes in low-dimensional
terms as in longitudinal studies with few observations per subject, we suggest
to use precise deterministic approximations as the method of Joe [27] or other
recent numerical methods by Miwa et al. [38] and Craig [9]. Joe’s and Miwa’s
algorithms are both publicly available through R packages mprobit, authored
by Joe, Chou and Zhang, and mvtnorm [24], respectively.

For larger dimensions, occurring with time series, spatial data, longer longi-
tudinal studies, the computational cost of deterministic approximations is too
large for practical use. Hence, randomized methods need to be considered. An
example is the randomized quasi-Monte Carlo method of Genz and Bretz [18]
and also included in the above mentioned R package mvtnorm. This numerical
method is of general purpose and may not be efficient for the particular models
considered in this paper. For this reason, in the next subsection we describe an-
other Monte Carlo approximation of the likelihood for non-continuous responses,
tailored to the GCMR model class.
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5.2. Importance sampling

Expression (11) suggests the following simple Monte Carlo approximation of the
likelihood:

1. for k = 1, . . . ,K,

(a) generate n independent uniform (0,1) variates, u
(k)
1 , . . . , u

(k)
n ;

(b) compute the randomized errors ǫ
(k)
i = ǫ(u

(k)
i ) from equation (10);

(c) compute the Gaussian copula density

q(k)(ǫ; θ) =
p(ǫ

(k)
1 , . . . , ǫ

(k)
n ; θ)

p(ǫ
(k)
1 ;λ)× · · · × p(ǫ

(k)
n ;λ)

;

2. approximate the likelihood by

L̃ (θ;y) = Lind(λ;y)
1

K

K∑

k=1

q(k)(ǫ; θ). (12)

Unfortunately, this approximation turns out to be quite inefficient. Indeed,
consider the importance sampling approximation of the likelihood,

L̂
IS(θ;y) =

1

K

K∑

k=1

p(y, ǫ(k); θ)

pIS(ǫ(k)|y; θ) , (13)

where ǫ(k) is a vector of randomized errors drawn from the importance sampling
distribution pIS(ǫ|y; θ). It follows that approximation (12) corresponds to an
importance density constructed under the working assumption that the errors
ǫi are independent given the observations yi,

pIS(ǫ|y; θ) =
n∏

i=1

p(ǫi;λ)

pi(yi;λ)
.

Although valid, this importance density may be very inefficient because of the
strong independence assumption. Obviously, the ideal importance density would
be the exact conditional density p(ǫ|y; θ): with this choice, each term in sum (13)
is exactly equal to p(y; θ) and thus a single draw (K = 1) would be sufficient
to restore the exact likelihood. Unfortunately, using this ideal distribution is
unfeasible because the importance sampling weights depend on p(y; θ).

By noticing that a draw from the ideal p(ǫ|y; θ) could be obtained by sam-
pling sequentially from pi(ǫi|yi, . . . , y1; θ), i = 1, . . . , n, we replace this unman-
ageable importance density with sequential sampling from density

pi(ǫi|yi, ǫi−1, . . . , ǫ1; θ), i = 1, . . . , n. (14)

For the special case of multivariate probit regression, the above importance sam-
pling density corresponds to the popular Geweke-Hajivassiliou-Keane simulator
(GHK), see for example Keane [30].
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The extension of the GHK simulator to deal with GCMR is immediate. Un-
der the model assumptions, p(ǫi|ǫi−1, . . . , ǫ1; θ) is a normal density with mean
mi = E(ǫi|ǫi−1, . . . , ǫ1) and variance v2i = var(ǫi|ǫi−1, . . . , ǫ1). Thus, (14) is a
truncated normal density over the interval Di(yi;λ) and a draw from it is ob-
tained by setting

ǫi(ui) = mi + viΦ
−1 {(1 − ui)ai + uibi} , i = 1, . . . , n, (15)

where u1, . . . , un are n independent draws from a uniform (0,1) random variable
and

ai = Φ

[
Φ−1{Fi(y

−
i ;λ)} −mi

vi

]
, bi = Φ

[
Φ−1{Fi(yi;λ)} −mi

vi

]
, i = 1, . . . , n.

Hence, the resulting sequential sampler algorithm for approximating the likeli-
hood is

1. for k = 1, . . . ,K,

(a) generate n independent uniform (0,1) variates, u
(k)
1 , . . . , u

(k)
n ;

(b) compute the randomized errors ǫ
(k)
i = ǫ(u

(k)
i ) from the (15);

2. approximate the likelihood by

L̂
IS(θ;y) =

1

K

K∑

k=1

{
n∏

i=1

p(ǫ
(k)
i |ǫ(k)i−1, . . . , ǫ

(k)
1 ; θ)

pi(ǫ
(k)
i |yi, ǫ(k)i−1, . . . , ǫ

(k)
1 ; θ)

}
.

A few comments on numerical aspects are in order. Quantities mi and v2i can
be efficiently computed by the Cholesky factorization of Ω which, in any case, is
an integral component of the likelihood computation. Substantial computational
saving is achieved by exploiting the fact that the error correlation matrix Ω is
the same for all the simulated error vectors ǫ(k), k = 1, . . .K.

Other importance densities could be considered, for example following the
ideas of Durbin and Koopman [16]. However, the increase in computational cost
may not be justified in terms of numerical precision given the simplicity and the
good results obtained using the suggested sampler. See the simulation study in
Section 6.

In general, the total complexity for one likelihood approximation with the
discussed importance sampling, as well as with any other likelihood approxima-
tion for GCMR models, is of order O(n3), because of the necessary inversion
of the correlation matrix Ω. However, for specific problems the computational
cost is much lower. For example, in time series models with ǫ following an au-
toregressive moving average process the Cholesky factorization can be efficiently
implemented via the Kalman filter and only O(n) computations are needed. If
n is large, the general computational cost O(n3) is impractical. Some possi-
ble remedies are discussed in the final section within the directions for future
research.

Maximum likelihood estimates are better computed from the log-likelihood.
Importance sampling is however designed for giving unbiased estimates of the
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likelihood, while log L̂ IS(θ;y) is a slightly biased estimator of the log-likelihood
ℓ(θ;y). In our package gcmr, an approximately unbiased estimator of the log-
likelihood is obtained with the correction given by Durbin and Koopman [16,
§2.3].

The Monte Carlo size needed for correct inferential conclusions is typically
a function of the degree of discreteness, the most difficult case being binary
responses. As a general suggestion, it is advisable to repeat the analysis to check
the adequacy of the Monte Carlo size, for example starting with a small Monte
Carlo size and then increasing it until differences in the parameter estimates
become practically insignificant. See Section 9.5 for some guidelines about the
choice of the Monte Carlo size.

6. Simulations under model conditions

We have carried out several simulation studies to investigate the reliability of the
importance sampling approximation. Here we only show the results for a time
series log-linear regression model with a continuous time-varying covariate and
two seasonal terms. Denote by Fi(yi;λ) the cumulative distribution function of
a Poisson random variable of mean µi = E(Yi|xi). Data are generated from the
marginal regression model

Yi = F−1
i {Φ(ǫi);λ} ,

log(µi) = β0 + β1 sin

(
2πi

12

)
+ β2 cos

(
2πi

12

)
+ β3xi,

xi = 0.6xi−1 − 0.4xi−2 + ζi, ζi
i.i.d.∼ N(0, 1), (16)

with the correlation matrix of the errors Ω corresponding to that of an autore-
gressive process of order one with first-order autocorrelation equals to 0.8.

For values of the marginal parameters β0 = 1, β1 = β2 = β3 = 0.2, we
generated 300 time series of different lengths. Then, for each simulated series, five
different estimates of the parameters were independently computed. In all cases,
the log-likelihood was approximated by using K = 300 sequences of uniform

pseudo-random numbers u
(k)
1 , . . . , u

(k)
n , k = 1, . . . ,K. Columns 2 and 5 of Table 1

display the averages of the 300× 5 = 1, 500 estimates for time series of lengths
n = 100 and n = 500, respectively. Clearly, the averages of the estimates are
close to the true values. It is more interesting to evaluate the impact of the Monte
Carlo errors. For this purpose, we compute the standard ANOVA decomposition
of the total sum of squares into between and within parts, using the 300 time
series as grouping factor. Columns 3-4 and 6-7 of Table 1 show the between
and within sums of squares measuring the variability due to the true estimation
errors and to Monte Carlo errors, respectively. With the chosen Monte Carlo
sample size, the variability due to the simulation is much smaller than that due
to estimation errors. Similar results have been obtained for other parameter
values, other dependence structures and other discrete marginal distributions.
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Table 1

Averages of 1,500 estimates of the parameter of model (16) with AR(1) errors and time
series of lengths n ∈ {100, 500} using the importance sampling approximation with a Monte

Carlo sample size of K = 300. Also reported are the sums of squares pertaining to
estimation errors (SSest) and to Monte Carlo errors (SSMC)

n = 100 n = 500
model average SSest SSMC average SSest SSMC

β0 1.0 0.955 52.277 0.458 0.995 8.553 0.238
β1 0.2 0.211 18.102 0.144 0.195 3.065 0.081
β2 0.2 0.206 15.672 0.101 0.203 3.377 0.074
β3 0.2 0.204 2.090 0.011 0.199 0.435 0.007
AR(1) 0.8 0.806 2.054 0.046 0.797 0.365 0.013

7. Model checking

Validation of the model assumptions is a crucial aspect in any regression analy-
sis, particularly in our multivariate setting. Model checking by residual analysis
and by a Hausman [22] type specification test is discussed below.

7.1. Residuals

In the continuous case, the Rosenblatt’s transformations [45]

Mi = Fi(Yi|yi−1, . . . , y1; θ)

are uniformly and independently distributed in the unit interval. Hence, model
adequacy can be checked through residuals

ri = Φ−1{Fi(yi|yi−1, . . . , y1; θ̂)},

which are realizations of n uncorrelated standard normal variables if the model
is correctly specified. These type of Cox and Snell residuals [8] are termed (nor-
malized) quantile residuals in Dunn and Smyth [15] and normal pseudo-residuals
in Zucchini and MacDonald [63]. Normality of the quantile residuals can be in-
spected by normal probability plots and tests. Assessment of lack of correlation
can involve graphical tools as autocorrelation plots for time series and longitu-
dinal studies and variograms for spatial data.

In the non-continuous case, we define residuals ri to be any arbitrary value
belonging to the interval [Φ−1(m−

i ),Φ
−1(mi)], where the lower extreme is de-

fined as m−
i = Fi(y

−
i |yi−1, . . . , y1; θ̂), the left-hand limit of mi at yi. Accord-

ingly, we base model diagnostic on the so-called randomized quantile residuals
rrndi (ui) = Φ−1{m−

i + ui(mi −m−
i )} where ui is a draw from a (0, 1) uniform

variate [15]. Under model conditions, rrndi (ui) are realizations of uncorrelated
standard normal variables and thus they can be used as ordinary residuals for
checking model assumptions. Since residuals rrndi (ui) depend on the uniform
variates ui, it is appropriate to inspect several sets of residuals before taking a
decision about the model.
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Alternatively, it is possible to avoid randomization by considering the mid
interval quantile residuals rmid

i = Φ−1{(m−
i +mi)/2}, as suggested by Zucchini

and MacDonald [63] in the context of hidden Markov models. These residu-
als are, however, neither normally distributed nor uncorrelated. Zucchini and
MacDonald [63] also suggest diagnostics based on the interval quantile residuals
rinti = [Φ−1(m−

i ),Φ
−1(mi)] in order to preserve the data discreteness. However,

interval quantile residuals are problematic when observations are the minimal
or the maximal possible values, since in these cases rinti are left or right open
(infinite) intervals.

7.2. Hausman-type specification test

In most cases there is scientific interest in the marginal parameters λ or a subset
of regression parameters β. The assumed marginals can be checked through a
variety of well-developed graphical and numeric methods, thus correct specifi-
cation of the independence likelihood is generally accomplished. This leads to
the dilemma of basing inference on λ on the safe but inefficient independence
likelihood or considering the complete model but with the risk of copula mis-
specification. In other terms, we are interested in assessing the null hypothesis

H0 : the assumed multivariate model is correctly specified,

against the alternative

H1 : marginals are correct but the assumed multivariate normal distribution
for the errors is not (wrong copula).

The independence likelihood estimator λ̂ind is consistent under both null and
alternative hypotheses, while the maximum likelihood estimator θ̂ = (λ̂T, τ̂T)T

is consistent and efficient under the null hypothesis but inconsistent under the
alternative. This suggests validating the correct model specification by the Haus-
man [22]-type statistic

h(Y) = (λ̂ind − λ̂)TD−1(λ̂ind − λ̂),

with the variance D = var(λ̂ind− λ̂) computed under the null hypothesis, where
h(Y) is distributed as a chi-squared random variable with dim(λ) degrees of
freedom.

Remark. The above framework differs from the usual Hausman test, which is
focused on the complete parameter θ and not on its subset λ. Consequently,
the Hausman orthogonality result does not apply, that is cov(λ̂ind − λ̂, λ̂) 6= 0.

Hence, D does not simplify into the difference of variances var(λ̂ind)− var(λ̂).

Under the null hypothesis, the vector of estimates (λ̂T
ind, θ̂

T)T has asymptotic
variance matrix

V =

(
H−1

1 J1H
−1
1 H−1

1 J12H
−1
2

H−1
2 J21H

−1
1 H−1

2

)
,
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where H1 = E{−∇2ℓind(λ;Y)}, J1 = var{∇ℓind(λ;Y)}, H2 = E{−∇2ℓ(θ;Y)},
J12 = cov{∇ℓind(λ;Y),∇ℓ(θ;Y)} and J21 = JT

12. Hence, D = CTVC for a con-
trast matrix C = (IT,−IT,0T), where the identity blocks I have the dimension
of λ. Generally, the components of matrix V are unavailable in closed-form.
They can be estimated by Monte Carlo simulation from the assumed model.
Alternatively, one can consider a more accurate, but computationally costly,
direct estimation of D via parametric bootstrap. In the examples discussed in
Section 9, the test statistic is computed via parametric bootstrap.

The Hausman-type test can be used for checking the correctness of inference
about the global marginal parameter λ as well as for checking subsets of λ,
such as single regressors βi, or combinations of regressors, in conformity with
the scientific focus.

8. Robustness to the misspecification of the error distribution

Despite the residual analysis described in the previous section, a thorough vali-
dation of the multivariate normal assumption for the errors ǫ remains a difficult
task. Hence, it is natural to ask whether correct inferences for λ can be ob-
tained under local misspecification of the multivariate distribution for the errors.
A general answer to this question is also difficult, however simulation studies
such those reported below give a preliminary positive indication for robustness
against local misspecification of the error distribution.

We illustrate two different simulation studies. In the first study, we investigate
the robustness to the misspecification of the ARMA correlation of the errors and
to the presence of heavy tails in their marginal distribution. In the second study,
we consider the effect of non-linearity in the interdependence among the errors
and skewness in their marginal distribution.

8.1. Effect of heavy tails and unspecified moving average correlation

We consider the same simulation setting of Section 6 with marginal structure
as in formulas (16), but with a different error model, namely:

1. the errors follow an ARMA(1,1) normal model;
2. the errors follow an AR(1) model but are distributed as Student t random

variables with ν degrees of freedom;
3. the errors follow an ARMA(1,1) model and are distributed as Student t

random variables with ν degrees of freedom.

In each case, estimates are obtained from the misspecified model with normal
AR(1). Table 2 displays 1, 000 simulated estimates for the covariate parameter
β3 for (i) various choices of the degrees of freedom ν, (ii) with or without a mov-
ing average component and (iii) different sample sizes. We choose to show results
only for the time-varying covariate parameter for space limitations: results for
the other marginal parameters are similar. Table 2 reports (i) the averages of
the estimates, (ii) their standard deviations, (iii) the averages of standard errors
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Table 2

Averages, standard deviations (sim. s.e.), averages of estimated standard errors (est. s.e.) and
95% confidence intervals coverages for 1, 000 estimates of parameter β3 in model (16) with
errors that follow an ARMA(1,1) model and are distributed as Student t random variables with
ν degrees of freedom. The estimates are computed either with a misspecified dependence model
with normal AR(1) errors (gcmr) or under the working assumption of independence with

robust standard errors (ind.). The table displays results for sample sizes n ∈ {50, 100, 300},
moving average parameter MA ∈ {0, 0.2} and degrees of freedom ν ∈ {1, 10,+∞}

MA 0 0.2 0 0.2 0 0.2
ν +∞ +∞ 10 10 1 1

n = 50
gcmr average 0.202 0.201 0.203 0.202 0.203 0.203

sim. s.e. 0.052 0.048 0.055 0.051 0.064 0.063
est. s.e. 0.053 0.049 0.055 0.051 0.067 0.064
coverage 0.949 0.954 0.956 0.958 0.964 0.964

ind. average 0.205 0.204 0.204 0.205 0.204 0.204
sim. s.e 0.081 0.082 0.081 0.081 0.079 0.081
est. s.e. 0.065 0.064 0.067 0.066 0.070 0.069
coverage 0.863 0.847 0.867 0.859 0.896 0.887

n = 100
gcmr average 0.203 0.203 0.204 0.203 0.203 0.203

sim. s.e. 0.038 0.036 0.039 0.037 0.046 0.046
est. s.e. 0.036 0.034 0.038 0.036 0.045 0.043
coverage 0.941 0.950 0.945 0.945 0.957 0.944

ind. average 0.204 0.204 0.204 0.205 0.203 0.203
sim. s.e. 0.059 0.060 0.059 0.060 0.058 0.059
est. s.e. 0.050 0.050 0.050 0.050 0.051 0.051
coverage 0.899 0.888 0.898 0.897 0.920 0.915

n = 300
gcmr average 0.204 0.203 0.206 0.205 0.206 0.206

sim. s.e. 0.023 0.022 0.023 0.020 0.027 0.025
est. s.e. 0.021 0.020 0.022 0.021 0.026 0.025
coverage 0.930 0.910 0.940 0.970 0.940 0.940

ind. average 0.202 0.202 0.203 0.202 0.204 0.203
sim. s.e. 0.034 0.034 0.033 0.033 0.033 0.032
est. s.e. 0.031 0.031 0.031 0.031 0.032 0.032
coverage 0.920 0.900 0.950 0.950 0.940 0.940

computed from the Fisher observed information assuming the model is correct
and (iv) the empirical coverages of 95% confidence intervals. For comparison,
we also report the corresponding estimates using the independence likelihood
with standard errors computed from the sandwich heteroskedasticity and auto-
correlation consistent estimator for time-series data (Zeileis, 2006) to account
for the serial dependence.

The first column of Table 2 corresponds to correct specification of the error
distribution. Subsequent columns describe increasing levels of misspecification,
the extreme case being errors that follow the ARMA(1,1) process with autore-
gressive parameter 0.8 and moving average parameter 0.2 and are distributed
as Cauchy random variables (ν = 1).

We start by describing the results of the first column, where the two estima-
tion methods are both correctly specified. As expected, maximum independence
likelihood estimates show loss of efficiency with respect to estimates based on the
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fully specified dependence model. It is however more interesting that standard
errors of the maximum independence likelihood estimates are strongly biased
with n = 50 and 100, leading to over-optimistic confidence intervals. This result
illustrates the well-known very slow convergence of robust variance estimation
using sandwich-type methods; see Kauermann and Carroll (2001) for a general
discussion on this point.

The other five columns of Table 2 show what happens if the dependence model
is misspecified. In this case, the maximum independence likelihood estimate λ̂ind

remains correct, while the estimator θ̂ = (λ̂T, τ̂T)T derived from the incorrect
dependence model is inconsistent for the complete parameter θ. However, our
simulations show that the component λ̂ of θ̂ relative to the marginal parame-
ters remains essentially correct under local misspecification of the errors. Fur-
thermore, standard errors wrongly computed by inverting the observed Fisher
information matrix do not exhibit a practically relevant bias. In contrast, ro-
bust sandwich standard errors for the maximum independence likelihood grossly
underestimate the uncertainty if the sample size is not large enough.

8.2. Effect of skewness and non-linear dependence among the errors

In the second simulation study, we again consider the same simulation setting
of Section 6 with marginal structure as in formulas (16). In this case, the errors
are generated from the following scaled threshold autoregressive model of order
one TAR(1) [52]

ǫi = τ |ǫi−1|+
√
1− τ2 ηi, ηi

i.i.d.∼ N(0, 1). (17)

This model yields two forms of misspecification with respect to the assumed
scaled AR(1) model for the errors

ǫi = τǫi−1 +
√
1− τ2 ηi ηi

i.i.d.∼ N(0, 1). (18)

First, there is a non-linear dependence among the errors because of the absolute
value of the past error in the recursive equation (17). Secondly, the marginal dis-
tribution of the errors is not standard normal anymore but it is the skew-normal
distribution [3] with location parameter equal to zero, unit scale parameter and
skewness parameter τ/

√
1− τ2 [1],

ǫi
i.i.d.∼ SN

(
0, 1,

τ√
1− τ2

)
.

Hence, as the autoregressive parameter τ raises in absolute value, both the non-
linear dependence and the skewness of the errors increase together. Figure 1 illus-
trates the increasing difference between the stationary distribution of the scaled
AR(1) process and the scaled TAR(1) process for values of τ ∈ {0.3, 0.6, 0.9}.

Table 3 displays 1, 000 simulated estimates of the covariate coefficient β3 for
various values of the autoregressive parameter τ and different sample sizes. As
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Fig 1. Comparison between the marginal distribution of TAR(1) errors (solid line) and the
marginal distribution of AR(1) errors (dotted line). The three plots correspond to increasing
values of the autoregressive parameter τ ∈ {0.3, 0.6, 0.9}.

Table 3

Averages, standard deviations (sim. s.e.), averages of estimated standard errors (est. s.e.)
and 95% confidence intervals coverages for 1, 000 estimates of parameter β3 in model (16)
with errors that follow the TAR(1) model (17). The estimates are computed either with a
misspecified dependence model with normal AR(1) errors (gcmr) or under the working

assumption of independence with robust standard errors (ind.). The table displays results
for sample sizes n ∈ {50, 100, 300} and autoregressive parameter AR ∈ {0.3, 0.6, 0.9}

AR 0.3 0.6 0.9
n = 50

gcmr average 0.197 0.197 0.205
sim. s.e. 0.079 0.079 0.062
est. s.e. 0.073 0.076 0.059
coverage 0.927 0.938 0.953

ind. average 0.197 0.197 0.208
sim s.e. 0.079 0.084 0.084
est s.e. 0.070 0.070 0.065
coverage 0.899 0.881 0.844

n = 100
gcmr average 0.197 0.197 0.200

sim s.e. 0.054 0.052 0.040
est s.e. 0.051 0.053 0.040
coverage 0.944 0.962 0.952

ind. average 0.197 0.197 0.200
sim s.e. 0.053 0.055 0.056
est s.e. 0.050 0.051 0.050
coverage 0.932 0.929 0.911

n = 300
gcmr average 0.200 0.199 0.199

sim s.e. 0.028 0.028 0.022
est s.e. 0.029 0.030 0.023
coverage 0.960 0.960 0.954

ind. average 0.200 0.199 0.200
sim s.e. 0.028 0.030 0.032
est s.e. 0.029 0.030 0.031
coverage 0.959 0.947 0.935

for the previous simulation study, standard errors for the maximum likelihood
independence estimator are based on the sandwich heteroskedasticity and auto-
correlation consistent estimator, while those of the misspecified Gaussian copula
model are obtained from the Fisher observed information as if the model were
instead correct.
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Once more, the maximum likelihood estimates of the marginal parameters λ̂
based on the Gaussian copula model do not show significant bias despite the
misspecification of the errors. For values of τ equal to 0.3 and 0.6, the misspec-
ified maximum likelihood estimator λ̂ has essentially the same efficiency as the
maximum independence likelihood estimator λ̂ind. However, the standard er-
rors of the latter estimator tend to underestimate the uncertainty, especially for
moderately small sample sizes. Accordingly, the empirical coverage of the con-
fidence intervals is sensibly smaller than the nominal value. By comparison, the
coverage of the confidence intervals based on the misspecified Gaussian copula
model are much closer to the nominal values. For values of τ that approach the
limit of one, the maximum likelihood estimates based on the Gaussian copula
model are remarkably more efficient than the maximum independence likelihood
estimates.

In synthesis, the two simulation studies show how inferences from an incor-
rect dependence model can be more precise than inferences obtained from a
correct model that avoids specification of the dependence structure. This form
of robustness is a consequence of the ability of the nuisance parameters τ to
accommodate departures in the dependence structure in such a way as to keep
inferences on marginal parameters λ broadly correct. Similar findings were ob-
tained for other models.

9. Examples

In this section we illustrate the model flexibility through a variety of examples
covering applications to time series, crossed design experiments, survival analysis
and spatial data. All examples are based on well known data sets, in order best
to facilitate comparisons with other possible models and fitting methods. Some
comments about computational aspects are provided in Section 9.5.

9.1. Generalized linear models with time-series errors

The time series of monthly Polio incidences in the USA from 1970 to 1983 has
been analyzed by several authors with different observation- and parameter-
driven models since Zeger [59]. Among many others, some useful references may
be found in Song [48, §12]. The scientific question is whether or not there is
evidence of a decreasing trend of Polio infections in the observation period.

Following previous analyses of these data, we consider a log-linear model with
covariates designed to capture possible linear trend and seasonality effects,

log{µi} = β0 + β1ti + β2 cos

(
2πti
12

)
+ β3 sin

(
2πti
12

)
+

+ β4 cos

(
2πti
6

)
+ β5 sin

(
2πti
6

)
,

where ti is the time of the ith observation. Marginals are modelled through a neg-
ative binomial distribution with mean E(Yi|xi) = µi and variance var(Yi|xi) =
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Table 4

Polio data. Estimates (est.) and standard errors (s.e.) for the marginal parameters from (a)
the independence model and (b) from the dependence model with ARMA(2,1) errors. Also
displayed are estimates, standard errors and z values for the differences of the estimates

independence ARMA(2,1) difference
est. s.e. est. s.e. est. s.e. z value

β0 0.21 0.10 0.21 0.12 0.00 0.01 −0.05
β1 (×103) −4.33 1.84 −4.31 2.30 −0.02 0.75 −0.03
β2 −0.14 0.13 −0.12 0.15 −0.02 0.02 −0.81
β3 −0.50 0.14 −0.50 0.16 0.00 0.02 −0.19
β4 0.17 0.13 0.19 0.13 −0.02 0.02 −1.37
β5 −0.42 0.13 −0.40 0.13 −0.02 0.02 −0.92
κ 0.57 0.16 0.57 0.17 0.00 0.03 −0.13

µi+κµ2
i . Serial correlation between polio counts is accommodated by assuming

an ARMA(p,q) model for the errors.
According to the corrected Akaike information criterion [25], the best fit is

provided by GCMR with ARMA(2,1) errors. The first and second order autore-
gressive parameters are estimated as (standard errors in brackets) −0.53(0.21)
and 0.31(0.09), while the moving average parameter as 0.71(0.22). The first
two autocorrelations coefficients induced by the fitted ARMA(2,1) model are
ĉorr(ǫi, ǫi−1) = 0.15 and ĉorr(ǫi, ǫi−2) = 0.24. By Property 2, it follows that,
conditionally to the covariates, there is positive association between Yi and
Yi−1 and between Yi and Yi−2. Table 4 summarizes estimates for the marginal
parameters from the working independence model and from the ARMA(2,1)
dependence model.

Standard errors of the independence likelihood estimates are computed using
the heteroskedasticity and autocorrelation consistent (HAC) sandwich estimator
for time series of Andrews [2]. The estimates of the overdispersion parameter
κ are significantly different from zero and thus negative binomial marginals
are preferable to Poisson marginals. The point estimate of the trend param-
eter, that is the parameter of interest, is −4.33 under working independence.
This value is very close to the estimate −4.31 obtained via the GCMR model
with ARMA(2,1) errors. However, the latter model provides a standard error
(s.e. 2.30) substantially larger than that derived under working independence
assumptions using the HAC sandwich (s.e. 1.84). Correspondingly, the Wald
test statistic for the one-sided hypothesis of negative trend (H0 : β1 = 0 vs.
H1 : β1 < 0) has a p-value of 0.03 with ARMA(2,1) errors and a p-value of 0.009
under the working independence assumption. In both the cases, the conclusion
is in favor of a positive trend, although at a very different level of confidence.

As regard model checking, the Hausman-type test is passed overall (h = 3.49,
p-value 0.83) and also for all single marginal parameters as shown in last three
columns of Table 4. Randomized quantile residuals computed several times sus-
tain the distributional assumptions and suggest that no residual serial correla-
tion is present in the data. Normal probability and autocorrelation plots for a
set of residuals are displayed in Figure 2.
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Fig 2. Polio data. Normal probability (left panel) and autocorrelation (right panel) plots for
a set of randomized residuals.

9.2. Cross-correlated binary data

The Salamander mating data come from a study on barriers to interbreed-
ing in two geographically isolated species of salamanders called Whiteside (W)
and Rough-Butt (R). These much studied data have a rather complicated in-
complete, balanced, crossed design. The data consist of three experiments, one
conducted in Summer 1986 and two in the Fall of the same year. A total of
80 animals were used: the same 40 salamanders in Summer 1986 and in the
first Fall experiment. A new set of 40 salamanders was used in the second Fall
experiment. Each experiment involved 10 females and 10 males for each of the
two populations. Each female was paired six times: three times with males of
her own population and three times with males of the other population. The
binary response records whether the mating event was successful or not. See
McCullagh and Nelder [37] for more details.

These data have been analysed in a number of papers with crossed-random
effects logistic or probit models. The random effects are designed to account for
the correlation between the results of two matings involving the same female
or the same male. The likelihood for this mixed-effects model is very difficult
to manage because of the high-dimensional integrals involved. Typical solutions
are based on simulation methods. Examples include Markov chain Monte Carlo
[60], Monte Carlo expectation-maximization [5] and importance sampling [51]
algorithms.

Here we consider a marginal regression analysis of the Salamander data. The
proposed model is the marginal counterpart of model “B” of Zeger and Karim
[60]. For the marginal part we assume the logistic model

logit{µi} = β0 + β1x1i + β2x2i + β3x1ix2i + β4x4i, i = 1, . . . , 360, (19)

with x1i indicating whether the female used in the ith mating belongs to the R
race, x2i whether the male belongs to the R race and x4i whether the experiment
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took place in Fall (x4i = 1) or in summer (x4i = 0). The correlation matrix Ω

of the errors is partitioned in blocks of dimension 120× 120,

Ω =




ΩS ΩS,F 0

ΩS,F ΩF 0

0 0 ΩF


 .

Block ΩS describes the cross-correlation structure in the Summer experiment.
Apart from the diagonal, the correlation matrix ΩS has zero entries everywhere
but in the cells corresponding to two different matings done in summer involving
the same female and/or the same male. Thus, there are three types of non-zero
entries: the correlation between errors due to the use of the same female in two
distinct experiments in Summer is measured by parameter τ1, the correlation
between errors due to the use of the same male by parameter τ2, finally the sum
τ1+ τ2 measures the correlation between errors when both the same female and
male are used in Summer.

Similarly, block ΩF accounts for cross-correlation between errors in the two
Fall experiments and it is parameterized by τ3 and τ4, the first parameter re-
lated to female cross-correlation, while the second one to male cross-correlation.
Finally, block ΩS,F accounts for the association between the Summer and Fall
experiments sharing the same animals and it is parameterized by parameters τ5
and τ6 for females and males, respectively.

Regressor coefficients are estimated as β̂0 = 0.98 (0.35), β̂1 = −1.96 (0.37),

β̂2 = −0.46 (0.35), and β̂3 = 2.51 (0.40). The season dummy coefficient is

not significant, β̂4 = −0.39 (0.30). The estimated correlation parameters show
appreciable cross-correlation between the errors. In particular, the estimated
parameters are τ̂1 = 0.29 (0.14), τ̂2 = 0.07 (0.09), τ̂3 = 0.18 (0.07), τ̂4 = 0.31
(0.09), τ̂5 = −0.04 (0.09), and τ̂6 = 0.23 (0.08). The Hausman test is largely
passed both for all single regressors and overall (with a p-value of 0.96).

The main scientific focus is however on the marginal probabilities of mat-
ings. Denote by πRW the probability that an R female successfully mates with
a W male, and similarly denote by πRR, πWR and πWW the remaining prob-
abilities. The estimates of these quantities are easily obtained from the esti-
mated β coefficients. For example the maximum likelihood estimate of πWR is
exp(β̂0 + β̂1)/{1 + exp(β̂0 + β̂1)} = 0.27. All the other estimates are listed in
Table 5 along with 95% confidence intervals. For comparison, we also report esti-
mates and confidence intervals obtained by Zeger and Karim [60] with a random
effects logistic model fitted by Gibbs sampling. Results from the two models are
very similar, although the marginal-model confidence intervals are narrower in
most cases. The clear conclusion is that the probability of a successful mating
is much smaller when a W female is matched with an R male, than in all of the
other three cases.

9.3. Matched time-to-event data

For an illustration of survival data analysis, we reanalyse the data of Mantel et
al. [36] about times to tumor appearance in litter-matched rats. Three female
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Table 5

Salamander data. Estimated mating probabilities and their 95% confidence intervals from
the marginal model compared with the estimates provided by Zeger and Karim [60]

Summer Fall
est. 95%CI est. 95%CI

πRR 0.73 (0.60, 0.83) 0.64 (0.52, 0.74)
πRW 0.63 (0.49, 0.75) 0.53 (0.41, 0.64)
πWR 0.27 (0.17, 0.41) 0.20 (0.12, 0.31)
πWW 0.74 (0.62, 0.84) 0.66 (0.54, 0.76)

Zeger and Karim [60]
Summer Fall

est. 95%CI est. 95%CI
πRR 0.73 (0.58, 0.84) 0.64 (0.51, 0.76)
πRW 0.62 (0.46, 0.76) 0.52 (0.39, 0.65)
πWR 0.24 (0.13, 0.41) 0.18 (0.10, 0.28)
πWW 0.73 (0.58, 0.84) 0.64 (0.51, 0.76)

litter mates are observed for each of 50 litters. One of the three mates received
a treatment, while the other two serve as controls. Responses consist of either
the week of tumor occurrence or the week of death before the instance of any
tumor. In any case, all rats were sacrificed after 104 weeks. Scientific interest is
addressed to evaluating a possible association between treatment and time to
tumor.

Let Yi = min{Ti, ci} denote the response with Ti being the time to tumor
and ci the censoring time, i = 1, . . . , 150. Marginally, we assume a Weibull
regression model for the survival times Ti, that is Fi(ti;λ) = 1−exp{− (ti/ηi)

α},
where α denotes the shape parameter, ηi = exp(β0 + β1xi) with xi being the
indicator for treatment and λ = (α, β0, β1)

T. This model corresponds to both
an accelerated life model and a proportional hazard model.

Survival times for different rats are assumed independent if coming from
different litters and associated if coming from the same litter. Accordingly, the
correlation matrix of the errors is modelled by the Kronecker product Ω =
I50⊗Ω1, whereΩ1 is a 3×3 exchangeable correlation matrix with equicorrelation
parameter τ . The likelihood is the product of the contributions from the different
litters. Each of these is a trivariate density which assumes a different form
depending on the number of censored observations. For notational simplicity,
consider the first triplet p(y1, y2, y3; θ). Then, we have the following possibilities:

1. no censored observations,

p(y1, y2, y3; θ) = p1(t1;λ)p2(t2;λ)p3(t3;λ)q(ǫ1, ǫ2, ǫ3; θ),

where pi(·;λ) is the density function of the Weibull regression model;
2. one censored observation, say the third one,

p(y1, y2, y3; θ) =

∫ ∞

c3

p(t1, t2, t3; θ)dt3

= p1(t1;λ)p2(t2;λ)q12(ǫ1, ǫ2; θ)

∫ ∞

Φ−1{F3(c3;λ)}

p(ǫ3|ǫ1, ǫ2; θ)dǫ3,
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where p(ǫ3|ǫ1, ǫ2; θ) is the density of a normal variable with mean τ/(1 +
τ)(ǫ1 + ǫ2) and variance 1− 2τ2/(1 + τ);

3. two censored observations, say the last two,

p(y1, y2, y3; θ) =

∫ ∞

c2

∫ ∞

c3

p(t1, t2, t3; θ)dt2dt3

= p1(t1;λ)

∫ ∞

Φ−1{F2(c2;λ)}

∫ ∞

Φ−1{F3(c3;λ)}

p(ǫ2, ǫ3|ǫ1; θ)dǫ2dǫ3,

where p(ǫ2, ǫ3|ǫ1; θ)T is the density of a bivariate normal variable with
mean vector (τǫ1, τǫ1) and variance matrix (1− τ)

(
1+τ τ
τ 1+τ

)
;

4. all censored observations

p(y1, y2, y3; θ) =

∫ ∞

c1

∫ ∞

c2

∫ ∞

c3

p(t1, t2, t3; θ)dt2dt3

=

∫ ∞

Φ−1{F1(c1;λ)}

∫ ∞

Φ−1{F2(c2;λ)}

∫ ∞

Φ−1{F3(c3;λ)}

p(ǫ1, ǫ2, ǫ3; θ)dǫ1dǫ2dǫ3,

where p(ǫ1, ǫ2, ǫ3; θ) is the density of a trivariate normal variable with zero
mean and variance matrix Ω1.

Hence, likelihood computations require approximation of rectangular normal
probabilities of dimension two and three. For these low dimension integrals it is
not necessary to use the importance sampling algorithm stated in Section 5.2.
Instead, we use the precise deterministic approximation provided by the Miwa
et al. [38] algorithm. The estimated marginal parameters are α̂ = −3.79 (0.55),

β̂0 = 4.98 (0.08) and β̂1 = −0.24 (0.09), the latter supporting a treatment effect.
The equicorrelation parameter estimate τ̂ = 0.53 (0.15) confirms by Property 2
the expected presence of positive association between survival times of rats from
the same litter.

9.4. Spatial regression with count data

Data on incidence of male lip cancer in Scotland during years 1975-1980 have
been analysed by many authors for illustrating varying disease mapping meth-
ods, see Waller and Gotway [55] and Wakefield [56]. Data consist of observed
Yi and expected number of cases ei in each of the 56 counties of Scotland
and they are available through the home page of Waller and Gotway’s book at
http://www.sph.emory.edu/~lwaller/book/ch2/scotland.dat. Interest lies
in studying whether excess of cases can be associated with the proportion of the
population employed in agriculture, fishing, or forestry (AFF), whose map is
displayed in the right panel of Figure 3. Some authors refer to a possible spatial
trend effect along the south-north direction, with a demographic interpretation
because the most northern counties of Scotland are sparsely populated. The left
panel of Figure 3 displays the standardized morbidity ratio (SMR) defined as
the ratio of the observed to expected cases. This map appears to confirm the
south-north trend.

http://www.sph.emory.edu/~lwaller/book/ch2/scotland.dat
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Fig 3. Scotland lip cancer data: SMR (left panel) and AFF (right panel) maps.

The standard non-spatial model for these data consists in assuming that
the observed cases Yi are distributed as a Poisson variable with mean µi =
φiei exp(β0 + β1x1i + β2x2i) where x1i is the AFF covariate and x2i is the
latitude coordinate (divided by 100). Quantity φi is an overdispersion parameter
distributed as a Gamma variable with mean 1 and scale κ. In other words, a
marginal negative binomial model for Yi is assumed.

Residual spatial dependence is modelled by assuming that the errors ǫi are re-
alizations of an underlying continuous zero mean Gaussian random field model.
Under the assumption of uniform spatial distribution within each county, the
correlation between the errors of county i and county j is given by the aver-
age

corr(ǫi, ǫj) =
1

|Ai||Aj |

∫

Ai

∫

Aj

ρ(‖si − sj‖2; τ )dsidsj , (20)

where Ai denotes the ith county, |Ai| its area and ρ(·; τ ) is a spatial correla-
tion function. Given its flexibility, we consider the Matérn spatial correlation
function defined in equation (5).

We start the analysis approximating corr(ǫi, ǫj) by the spatial correlation
function between the centroids of the two areas, corr(ǫi, ǫj) ≈ ρ(‖s̃i − s̃j‖2),
with s̃i denoting the centroid of the ith county. Diggle and Ribeiro [14] af-
firm that the shape parameter τ2 of the Matérn correlation function is difficult
to identify and suggest choosing its value from the discrete set {0.5, 1.5, 2.5},
which represents various degrees of mean-square differentiability of the underly-
ing signal process. For these data, we found little difference by varying the shape
parameter τ2. In the following, we present estimates obtained from the model
with τ2 = 0.5, corresponding to the so-called exponential correlation function
corr(ǫi, ǫj) = exp (−‖s̃i − s̃j‖2/τ1) . The estimated marginal parameters yield
the mean response

Ê(Yi|x1i, x2i) = ei exp(−20.80(4.58) + 4.31(1.43)x1i + 36.74(8.06)x2i),
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and the non-spatial overdispersion parameter φi is distributed as a Gamma
variable with mean of one and estimated scale parameter of κ̂ = 0.17 (0.06).
Covariate AFF (x1) is significantly positively associated with excess of tumor
incidence. The estimated spatial trend coefficient (x2) is also highly signifi-
cant although this association should be interpreted with care because the most
northern counties are very sparsely populated resulting in zero expected cases.

There is evidence of some local residual spatial correlation. The estimate
of the correlation parameter of the exponential correlation function is 14.36
Km (6.19 Km). Hence, two counties more than 3 × 14.36 = 43.08 Km apart
have errors with a correlation lower than 0.05. There are 157 distinct pairs
of counties with centroids at distance lower than 43 Km among the observed
56!/(2!54!) = 1, 540 pairs. It follows by Property 1 that there is weak residual
spatial dependence in the responses once accounting for the AFF covariates and
the south-north trend.

A more precise analysis should consider the geography of Scotland and re-
quire the computation of the correlation between the errors generated by an
underlying continuous process as in formula (20). However, this more elabo-
rated analysis seems likely to be nonessential because of the weak local spatial
dependence once the covariates AIFF and the spatial trend are included.

9.5. Computational details

The models in examples 9.1, 9.2 and 9.4 are fitted with the GHK algorithm. Each
model is first fitted with K=100 Monte Carlo replications using the maximum
independence likelihood estimates as starting values for the marginal parame-
ters. Then, the model is re-fitted with a larger value of K=1,000 replications
using the initial estimates as starting values. Our experience is that K=1,000 is a
sufficient size to obtain statistically stable estimates with data set up to few hun-
dreds of observations. The computational time needed to fit the various models
depends on various factors, not only the number of observations. Other crucial
factors are the number of dependence parameters, the degree of dependence
and the level of discreteness of the responses. For example, with a MacBook Air
notebook with processor 1.8 Ghz Intel Core i7 and 4 Gb of memory we need only
0.08 minutes to fit the spatial model to Scotland Lip Cancer data, which involve
56 observations, only one dependence parameter and the degree of dependence
is very low. The computational time for fitting the ARMA(2,1) model to the
Polio data is instead 1.2 minutes. This longer time is due to the larger sample
size (n = 168), the presence of three dependence parameters and significant
serial dependence. The analysis of Salamander data is more time consuming as
model fitting needs 4.78 minutes. This time is explained not only by the size of
360 observations, but also because there are six dependence parameters and the
responses are binary.
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10. Concluding discussion

In this paper we have discussed the class of Gaussian copula models for marginal
regression analysis of correlated non-normal data. The convenient model speci-
fication allows for simple interpretation of marginal parameters and great flex-
ibility in specification of the dependence structure. Applications to time series,
longitudinal studies, spatial data and survival analysis have been used to illus-
trate this flexibility. Residual analysis and the Hausman-type specification test
can be used to validate the adequacy of the assumed multivariate model and
simulation studies reported in Section 8 suggest that a certain level of local
misspecification can be tolerated. Investigation of this apparent robustness is
perhaps the most interesting direction for future research. Other possible future
research directions include the following aspects.

1. High dimensional data. Numerical difficulties may arise from the inversion
of matrix Ω with high-dimensional data and from the dimension of the
integral needed to compute the likelihood in the non-continuous case.
In these cases it is necessary to simplify either the correlation model for
the errors or the estimation procedure. An example of model simplification
for spatial applications is the approximation of errors following a Gaussian
random field by a Gaussian Markov random field in a fine grid, as shown
in Rue and Tjelmeland [46]. With this approximation, the computational
cost for inversion of Ω roughly reduces from O(n3) to O(n3/2) in two
dimensions and O(n2) in three dimensions.
An example of simplified estimation procedure is the method of maximum
composite marginal likelihood [35, 54]. This consists of maximizing a pseu-
dolikelihood constructed from a product of marginal densities, typically
low-dimensional. The basic example is the pairwise likelihood formed by
bivariate densities

Lpair(θ;y) =

n−1∏

i=1

n∏

j=i+1

pij(yi, yj ; θ)
wij ,

where wij are suitable weights and the bivariate densities are given in for-
mulas (6) and (7). The pairwise likelihood does not require inversion of Ω
and has a computational cost ofO(n2) if all pairs are used. Furthermore, in
the non-continuous case only bivariate integrals (7) need to be evaluated.
The computational saving can be substantial and can be further improved
by a suitable choice of the weights wij to remove less informative pairs,
such as those formed by too-distant observations in spatial applications.
Maximum pairwise likelihood estimators are consistent and asymptotically
normal under appropriate regularity conditions, and in many applications
they have competitive efficiency. Zhao and Joe [62] study the performance
of pairwise likelihood estimators for Gaussian copula models and conclude
that this method perform well.

2. Elliptic distributions other than normal for the errors. Although simula-
tion results reported in Section 8 suggest that inference is relatively robust
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to misspecification of the joint distribution for the errors, in some appli-
cations it may useful to consider more flexible elliptic distributions for
handling heavy tails or skewness of the errors. For example, the assumed
Gaussian copula is not appropriate for modelling extreme values events
because of its well-known lack of tail dependence. In this case, it may be
appropriate to assume instead a Student-t distribution for the errors [40].

3. Maximization by parts. Maximization by parts is a numerical iterative al-
gorithm proposed by Song et al. [49] to optimize complex log-likelihoods
that can be partitioned into a manageable “working log-likelihood” plus
a more complex “remainder log-likelihood”. See also Song [48]. The algo-
rithm aims to enhance numerical stability relative to the direct numer-
ical optimization of the likelihood function. Among other applications,
maximization by parts has been proposed for fitting continuous Gaussian
copula regression models.

4. Maximum simulated likelihood via Markov chain Monte Carlo algorithms.

Recently, Jeliazkov and Lee [26] show that Markov chain Monte Carlo algo-
rithms designed for marginal likelihood computation in Bayesian inference
can be used for efficient maximum simulated likelihood analysis. The key
ingredient of this proposal is the method of Chib [6] for marginal likeli-
hood estimation from the output of Gibbs sampling algorithms. Trans-
lated to the context of this paper, one possibility described in Jeliazkov
and Lee [26] is drawing from p(ǫ|y; θ) with the Gibbs sampling algorithm
by Geweke [19] and then estimate the marginal likelihood with Chib’s
method with Rao-Blackwellization. Jeliazkov and Lee [26] discuss other
variants of this idea and compare them against the GHK algorithm in the
context of multivariate probit models.
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