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EXTENDED ABSTRACT

Introduction

In financial engineering one has frequently to deal with approximate results that are
obtained by iterative methods or computational procedures depending on some parameter
(e.g. the time-step). Often the convergence of numerical schemes is slow and this may be
a serious problem to their use in practice. For this reason, acceleration techniques, such
as Richardson extrapolation, have been studied and applied.

In this contribution, we implement an efficient numerical method based on repeated
Richardson extrapolation for the valuation of American options, paying particular atten-
tion to the choice of both the sequence of stepsizes and the order. In particular, we apply
the method to the randomization approach proposed by Carr (1998), thus improving its
accuracy by choosing a convenient sequence of stepsizes.

Richardson extrapolation technique and its

application in finance

Richardson extrapolation has been applied to accelerate valuation schemes for American
options and exotic options. Geske and Johnson (1984) first applied Richardson extrap-
olation in a financial context to speed up and simplify their compound option valuation
model. They obtain a more accurate computational formula for the price of an American
put option using the values of Bermuda options1.

1Geske and Johnson approach was subsequently developed and improved by Bunch and Johnson
(1992), and Ho et al. (1997).
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Richardson extrapolation techniques were also employed to enhance efficiency of lattice
methods (Breen, 1991). It is common opinion that it is not convenient to extrapolate on
the number of time steps in the binomial model due to the oscillatory nature of the
convergence. Broadie and Detemple (1996) successfully use Richardson extrapolation
to accelerate a hybrid of the binomial and the Black-Scholes models. Tian (1999) and
Heston and Zhou (2000) also apply Richardson extrapolation to binomial and multinomial
approaches. Carr (1998) proposes a randomization approach for the valuation of the
American put option and uses Richardson extrapolation to obtain accurate estimates of
both the price and the exercise boundary of and American put option. Leisen (1999) shows
that randomizing the length of the time steps in the binomial model allows the successful
use of extrapolation, while Huang et al. (1996) and Ju (1998) use extrapolation methods
to accelerate the integral representation of the early exercise premium.

The very natural idea of extrapolation can be summarized as follows (see Deuflhard,
1983). Consider the problem of valuing, for instance, an American put option. Instead
of the exact, but unknown, solution P0 take a discrete approximation P (h) depending on
the stepsize h > 0, P (h) being a calculable function yielded by some numerical scheme,
such that limh→0 P (h) = P (0) = P0.

All extrapolation schemes are based on the existence of an asymptotic expansion.
Under the assumption that P (h) is a sufficiently smooth function, we write

P (h) = α0 + α1h
p1 + α2h

p2 + · · ·+ αkh
pk + O(hpk+1) , (1)

with 0 < p1 < p2 < . . . , and unknown parameters α0, α1, . . . , where h ∈ [0, H] for some
H > 0. In particular, we have α0 = P0.

One computes the function P (h) over a certain basic step H > 0 a number of times
with successively smaller stepsize hi, with h1 > h2 > . . . > 0. In such a way one obtains
a sequence of approximations P (h1), P (h2), . . . for a given sequence of stepsizes.

We can construct extrapolation schemes of arbitrary order k by considering the fol-
lowing procedure2:

1. define Ti,1 = P (hi), for i = 1, 2, . . . ;

2. for i ≥ 2 and j = 2, 3, . . . , i, compute

Ti,j = Ti,j−1 +
Ti,j−1 − Ti−1,j−1

hi−j+1

hi
− 1

. (2)

Recursion (2) is based on polynomial interpolation and an asymptotic h-expansion.
Each quantity Ti,j is computed in terms of two successive approximations. The two

point Richardson extrapolation technique is repeated giving rise to a numerical scheme

2Such a procedure is also known as Aitken-Neville algorithm and it is one of the extrapolation schemes
which are commonly used.



which is extremely fast3 and can dramatically improve accuracy. The idea behind (2) is to
provide two mechanisms for enhancing the accuracy: increasing i one obtains a reduction
in the stepsize parameter, while taking j large implies more accurate approximations.
Both mechanisms work simultaneously, which indicates that the quantities Tk,k are those
of most interest. This provides us with the possibility of order control.

The accuracy and efficiency of the method is strictly connected with the choice of the
sequence of stepsizes. Define hi in terms of the basic step size H, such that hi = H/ni

(i = 1, 2, . . .). Any stepsize sequence is characterized by the associated sequence of integers
{ni}. In numerical experiments, we considered different sequences of the stepsize:

- harmonic sequence: {k} = {1, 2, 3, 4, 5, 6, . . .};
- double harmonic (Deuflhard) sequence: {2k} = {2, 4, 6, 8, 10, 12, . . .};
- Burlisch sequence: {2nk−2} = {2, 4, 6, 8, 12, 16, . . .};
- Romberg sequence: {2nk−1} = {2, 4, 8, 16, 32, 64, . . .}.
All these sequences allow for convergence of the method. The first and the fourth

sequence are of common use in the financial literature related to extrapolation combined
with option pricing models, while we have no knowledge of an employment of the other
sequences (which are well known in numerical analysis) in finance. When we consider the
harmonic sequence and recurrence (2), we can directly compute the quantities Tk,k using
the formula

Tk,k =
k∑

i=1

(−1)k−i ik

(k − i)! i !
P (hi) . (3)

Numerical results

To test the method, we applied it to the model proposed by Carr (1998) for the valuation
of American put options. Carr’s approach is based on a particular technique, called
randomization, and has proved robust and quite accurate, moreover the convergence of
the results is monotonic, allowing us to consider extrapolations of higher order.

Carr applies extrapolation as defined by (3), based on the harmonic sequence. We
compared numerical results obtained with different sequences of the steps, and assessed
the method on a large set of option valuation problems, considering different values of
moneyness, maturity, volatility and risk-free interest rate4. In particular, when applied to
Carr’s model, extrapolation based on Burlisch sequence (see Burlisch, 1964) is preferable
in terms of accuracy, the same remaining the computational effort required, obtaining a
reduction of the relative error to about one third.

Finally, we investigate the possibility of applying repeated Richardson extrapolation
to other models, such as that proposed by Ju (1998), to the binomial method and Monte

3The amount of computation required essentially corresponds to the number of function evaluations.
4Numerical results are not reported here in extension for seek of brevity.



Carlo simulation for American options. It is worth noting that one should be careful when
employing extrapolation techniques combined with these latter approaches, because of
their non-uniform convergence. To this regard, ad hoc smoothing procedures are needed.
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