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Abstract

Meta-analysis is a statistical method for combining information from different studies
about the same issue of interest. Meta-analysis is widely diffuse in medical investigation
and more recently it received a growing interest also in social disciplines. Typical applica-
tions involve a small number of studies, thus making ordinary inferential methods based
on first-order asymptotics unreliable. More accurate results can be obtained by exploiting
the theory of higher-order asymptotics. This paper describes the metaLik package which
provides an R implementation of higher-order likelihood methods in meta-analysis. The
extension to meta-regression is included. Two real data examples are used to illustrate
the capabilities of the package.
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1. Introduction

Meta-analysis is a statistical method for pooling the results from multiple separate studies
about the same issue of interest. It has a considerable impact on medical and epidemiological
investigation (Sutton, Jones, Abrams, Sheldon, and Song 2000), as testified by thousands of
papers in specialized journals. More recently, the scope of application of meta-analysis reached
other fields, such as sociology and economics (Roberts 2005; Sutton and Higgins 2008).

The traditional approach to meta-analysis exploits a random-effect formulation, with parame-
ters estimated according to the method-of-moments procedure due to DerSimonian and Laird
(1986). Despite its feasibility, the approach is prone to substantial disadvantages, giving rise
to unreliable inferential results. These can be experienced mainly in case of small sample size.
Several alternatives have been proposed to improve the results, see Van Houwelingen, Arends,
and Stijnen (2002) for a review. Some authors suggest to resort to a likelihood approach, e.g.,
Hardy and Thompson (1996). However, standard first-order likelihood approximations can
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be inaccurate because of the typical small sample sizes of meta-analysis. To overcome such
difficulties, Guolo (2012) shows that accurate inferential conclusions can be restored by ex-
ploiting the theory of higher-order asymptotics. Some general references about higher-order
procedures are Severini (2000), Skovgaard (2001), and Reid (2003).

There exist already several packages for meta-analysis in the R system for statistical comput-
ing (R Development Core Team 2012). Packages meta (Schwarzer 2012) and rmeta (Lumley
2009) allow fitting fixed- and random-effects models for meta-analysis by relying on DerSimo-
nian and Laird’s procedure. An extension of the traditional analysis is provided by metafor
(Viechtbauer 2010), which includes meta-regression problems and, in the meanwhile, consid-
ers approaches different from those by DerSimonian and Laird for estimating the between-
study heterogeneity. Maximum likelihood estimation in multivariate meta-analysis and meta-
regression is implemented in mvmeta (Gasparrini 2012). The package metatest (Huizenga,
Visser, and Dolan 2011) is addressed to perform hypothesis testing via a variety of procedures
including likelihood ratio test with Bartlett correction and permutations.

The package metaLik described in this paper extends the likelihood approach to meta-analysis
and meta-regression to guarantee higher accuracy of the asymptotic results, which is better
appreciable in case of small sample sizes. In particular, the package implements the second-
order likelihood method based on Skovgaard’s statistic (Skovgaard 1996). The package met-
aLik is available from the Comprehensive R Archive Network at http://CRAN.R-project.

org/package=metaLik.

After a brief summary of the meta-analysis problem in Section 2, the paper describes the
theory underlying metaLik in Section 3. Section 4 contains a detailed description of the
functionalities of metaLik, while its application to real data sets is illustrated in Section 5.
The paper ends with final remarks and discussion about possible future developments in
Section 6.

2. Meta-analysis

The main aim of meta-analysis is to perform inference on a true effect β, on the basis of
summary information obtained from K studies. Let Yi be the summary measure of β provided
by the i-th study, i = 1, . . . ,K, such as the log odds ratio. Let σ2i denote the associated
measure of the uncertainty. The common meta-analysis model is a linear random-effects
model (DerSimonian and Laird 1986)

Yi = βi + ei, ei ∼ Normal(0, σ2i ),

βi = β + εi, εi ∼ Normal(0, τ2),

with ei and εi assumed to be independent. The variance component τ2 accounts for the
possibility of heterogeneity among the studies. The usual assumption is that the sample size
of each study is sufficiently large to judge the within-study variance σ2i as known and equal
to the variance reported in each study, σ̂2i .

The most common inference method in meta-analysis is due to DerSimonian and Laird (1986).
This is a two-steps method-of-moments estimation procedure. First, τ2 is estimated by τ̂2 =
t I(0,∞)(t), where IA(z) is the indicator of the event {z ∈ A} and

t =
qw − (K − 1)∑K

i=1wi −
∑K

i=1w
2
i /
∑K

i=1wi
.

http://CRAN.R-project.org/package=metaLik
http://CRAN.R-project.org/package=metaLik
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In the expression above, qw is the observed value of Q(w) =
∑K

i=1wi(Yi − β̂FE)2, with β̂FE =∑K
i=1wiYi/

∑K
i=1wi being the estimator of β in the fixed-effects model obtained as a weighted

average of Yi with optimal weights wi. Then, the interest parameter β is estimated by

β̂DL =

∑K
i=1wi(τ̂

2)Yi∑K
i=1wi(τ̂

2)
, (1)

where wi(τ̂
2) = 1/(w−1i + τ̂2) and wi = 1/σ̂2i . The variance of the estimator is VAR(β̂DL) =

1/
∑K

i=1wi(τ
2). This method suffers two inconveniences. First, it provides a biased estimate

of τ2. Second, inference on β does not account for the uncertainty in estimating τ2. As a
consequence, confidence intervals for β are usually narrower on average than they should be.

In order to take account of possible sources of heterogeneity, the meta-analysis model can be
extended to include covariates at the study level. Let xi denote the vector of p covariates
available at the aggregated meta-analysis level for each study and let β be the associated
p-dimensional vector of effects. The meta-regression model is (Thompson and Higgins 2002;
Knapp and Hartung 2003)

Yi ∼ Normal
(
x>i β, σ̂

2
i + τ2

)
,

which reduces to the meta-analysis model with scalar β when xi is one. DerSimonian and
Laird’s estimator (1) has a straightforward extension to the meta-regression case, e.g., Knapp
and Hartung (2003).

Despite the feasibility of DerSimonian and Laird’s approach, several authors emphasize that
its application gives rise to unreliable inferential results, mainly in case of small sample sizes.
This partly explains the proposal of alternatives in recent years, both from a frequentist and
a Bayesian perspective, see Van Houwelingen et al. (2002) for a review.

3. Likelihood methods in meta-analysis

The log-likelihood function for the whole parameter vector ψ = (β>, τ2)> based on a sample
of size K and conditionally on the observed within-study variances is

`(ψ) = `(ψ; y1, . . . , yK) = −1

2

K∑
i=1

log 2π(σ̂2i + τ2)− 1

2

K∑
i=1

(yi − x>i β)2

σ̂2i + τ2
.

The maximum likelihood estimate ψ̂ = (β̂>, τ̂2)> can be obtained iteratively (Brockwell and
Gordon 2001). Suppose that ψ is partitioned into a component of interest θ and a nuisance
component λ. In meta-analysis and meta-regression θ is usually a component of or the
whole fixed-effects vector β, while the between-study variance τ2 is a nuisance component.
We denote by ψ̂ = (θ̂>, λ̂>)> the unconstrained maximum likelihood estimate of ψ and
by ψ̃ = (θ>, λ̂>θ )> the constrained maximum likelihood estimate of ψ for a fixed value of

θ. Thus, inference on θ can rely on the profile log-likelihood `P(ψ̃) = `(θ; λ̂θ), e.g., Hardy
and Thompson (1996). For scalar θ, inference can be performed through the signed profile
log-likelihood ratio

rP(θ) = sign(θ̂ − θ)
√
`P(ψ̂)− `P(ψ̃).

Under mild regularity conditions, rP(θ) is asymptotically standard normally distributed up to
an error of order O(n−1/2), see Severini (2000, Section 4.4). First-order likelihood results can
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be inaccurate in many applications, mainly in the case of small sample sizes, as it typically
occurs in meta-analysis. A valid solution is resorting to the theory of higher-order asymptotics,
see Severini (2000, Chapter 7). We refer in this paper to the modified version of rP(θ)
suggested by Skovgaard (Skovgaard 1996),

rP(θ) = rP(θ) +
1

rP(θ)
log

u(θ)

rP(θ)
,

where u(θ) is a correction term

u(θ) = [S−1q]θ det(Ĵ)1/2 det(Î)−1 det(S) det(J̃λλ)−1/2.

This term involves the expected information matrix Ĵ and the observed information matrix
Î, both evaluated at the maximum likelihood estimate ψ̂, and the subblock J̃λλ of J corre-
sponding to the parameter λ, evaluated at the constrained maximum likelihood estimate ψ̃.
The term [S−1q]θ represents the component of the vector S−1q corresponding to θ, with S
and q being covariances of likelihood quantities,

S = COVψ̂

{
∇ψ`P(ψ)|ψ=ψ̂ , ∇ψ`P(ψ)|ψ=ψ̃

}
and

q = COVψ̂

{
∇ψ`P(ψ)|ψ=ψ̂ , `P(ψ̂)− `P(ψ̃)

}
,

where ∇zf(z) denotes the gradient of f(z) with respect to z. Despite its apparent com-
plexity, Skovgaard’s statistic rP(θ) can be rather easily derived, since it involves components
whose evaluation is similar to that required by the expected information matrix. Skovgaard’s
statistic rP(θ) has still a standard normal approximate distribution as rP(θ), but with a
higher-order accuracy. In fact, the standard normal approximation is up to an error of order
O(n−1) for moderate deviations and O(n−1/2) for large deviations. Moreover, Skovgaard’s
statistic achieves a third-order accuracy in a full exponential family. This particular situation
corresponds to the meta-analysis with equal within-study variances σ̂2i = σ̂2, i = 1, . . . ,K.
See Guolo (2012) for further details about how to derive Skovgaard’s statistic components in
meta-analysis and meta-regression.

Score test for heterogeneity

If the estimate of the heterogeneity parameter τ2 is not significantly different from zero, then
the random-effects model reduces to the fixed-effects model, where first-order results are exact
under model assumptions, making higher-order adjustments unnecessary. The assessment of
the significance of τ2 estimate entails the one-sided test

H0 : τ2 = 0 versus H1 : τ2 > 0.

Since the null model is embedded in the boundary of the parameter space, classical inference
results do not hold. For example, the likelihood-based test statistics do not follow the usual
limiting χ2

1 distribution. A practical solution is to evaluate the test statistic under the null
hypothesis via parametric bootstrap. Sinha (2009) applies this idea to the score statistic which
is particularly convenient since it does not require maximum likelihood estimation within each
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bootstrap sample. The algorithm is summarized below. Let ψ̂0 = (β̂>0 , 0)> be the maximum
likelihood estimate of ψ under the null hypothesis and let

W =

{
∂`(ψ)

∂τ2

∣∣∣∣
ψ=ψ̂0

}2 {
I(ψ̂0)τ2τ2

}−1
.

be the score statistic. Hence,

1. Compute the observed value of the score statistic W obs.

2. Set ψ = ψ̂0 and generate B bootstrap data sets.

3. Compute the score statistic for each bootstrap data set, W (b), b = 1, . . . , B.

4. Estimate the p value by the proportion of W (b) exceeding W obs

p̂ =
1

B

B∑
b=1

I[W obs,∞)(W
(b)).

4. The metaLik package

The main function in metaLik is metaLik(), which implements first-order and higher-order
likelihood methods for inference in meta-analysis and meta-regression models described in
Guolo (2012). The arguments of metaLik() are

metaLik(formula, data, subset, contrasts = NULL, offset, sigma2,

weights = 1/sigma2)

This function uses standard model-frame specification via formula, data, subset, contrasts,
and offset, following Chambers and Hastie (1992). A typical model has the form y ~ x1 +

x2 + ... + xJ, where y is a continuous response term and xj is the j-th covariate available
at the aggregated meta-analysis level for each study, j = 1, . . . , p. If a model with no covariates
(only intercept) is specified, then the classical meta-analysis model is fitted, by typing y~1.
An unusual argument of metaLik() with respect to the linear regression model specification
of lm() is sigma2, which is needed to specify the vector of estimated within-study variances
σ̂2i . Alternatively, the inverse quantities weights can be specified.

The maximum likelihood estimation of the model parameters needs numerical optimization.
To this aim, we chose the "BFGS" algorithm implemented in optim(), with the analytic
gradient of the log-likelihood provided. As pointed out by Cribari-Neto and Zeileis (2010),
"BFGS" is generally thought to be the best performing quasi-Newton method. Starting values
for the optimization procedure are the DerSimonian and Laird’s estimates. The score test
for the significance of the maximum likelihood estimate of the heterogeneity parameter τ2

described in Section 3 is implemented with B = 1, 000 bootstrap samples.

Function metaLik() returns a fitted-object of class metaLik. This is a list structured similarly
to other R regression functions, as for example glm(). There are standard methods for
objects of class metaLik that can be used to extract quantities of interest. They are coef()
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and vcov() to extract maximum likelihood estimates of fixed-effects parameters and their
estimated variance-covariance matrix, confint() to obtain confidence intervals, logLik()

to extract the value of the maximized log-likelihood and residuals() to compute Pearson
residuals.

Method summary() provides summary information about the maximum likelihood parame-
ter estimates, either for the fixed-effects components and the heterogeneity parameter, their
associated standard errors, and first- and higher-order log-likelihood ratio statistics about
the significance of the fixed-effects components. In particular, the values of rP and rP are
reported, together with the associated p value. Method summary() internally calls function
test.metaLik(), which performs hypothesis testing on a scalar component of the fixed-effects
vector in meta-analysis and meta-regression models, using the signed profile log-likelihood ra-
tio test and its higher-order Skovgaard’s adjustment. In case the bootstrap score test indicates
that the maximum likelihood estimate of τ2 is not significant at 5% level, then τ2 is set to
zero and Skovgaard’s adjustment vanishes. Function test.metaLik() has a syntax similar
to that of other R functions for significance tests,

test.metaLik(object, param = 1, value = 0,

alternative = c("two.sided", "less", "greater"), print = TRUE)

The arguments of test.metaLik() are a fitted metaLik object (object), the index or the
name of the parameter to test (param), the value of the parameter under the null hypothesis
(value) and whether the user is interested in a two-sided or an one-sided alternative hypothesis
(alternative). The output is a list of information about the value of the first-order statistic
and Skovgaard’s statistic, together with the associated p value.

Function test.metaLik() is also used by the profile() method, which computes and plots
confidence intervals for a scalar component of the fixed-effects vector

profile(fitted, param = 1, level = 0.95, display = TRUE, ...)

This function returns a matrix with columns the endpoints of the confidence intervals at level
for the specified parameter according to rP and rP. If display = TRUE, the signed square
root of the profile likelihood is plotted together with the horizontal dashed lines relative to
the specified level and the corresponding confidence intervals.

5. Illustrations

In this section, we illustrate the application of the metaLik package on two data sets available
through the package.

Diuretics data

We start by analyzing data about prevention of pre-eclampsia with diuretics previously ana-
lyzed by Biggerstaff and Tweedie (1997). The data consists of the logarithm of the risk ratio
of eclampsia in nine randomized trials, see Table 1.

A linear random-effects meta-analysis model can be fitted through function metaLik()

R> library("metaLik")

R> data("diuretics")
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Study y σ̂2

1 0.04 0.16
2 −0.92 0.12
3 −1.12 0.18
4 −1.47 0.30
5 −1.39 0.11
6 −0.30 0.01
7 −0.26 0.12
8 1.09 0.69
9 0.14 0.07

Table 1: Nine randomized trials for evaluating the prevention of pre-eclampsia with diuretics
(Biggerstaff and Tweedie 1997).

R> m <- metaLik(y ~ 1, data = diuretics, sigma2 = sigma2)

R> summary(m)

Likelihood inference in random-effects meta-analysis models

Call:

metaLik(formula = y ~ 1, data = diuretics, sigma2 = sigma2)

Estimated heterogeneity parameter tau^2: 0.239 (p-value 0.022)

Fixed-effects:

estimate std.err. signed logLRT p-value Skovgaard p-value

(Intercept) -0.517 0.206 -2.11 0.035 -1.846 0.065

Log-likelihood: -1.2

The first-order likelihood approach (signed logLRT) suggests a significant effect of diuretics
at 5% level, with an associated p value equal to 0.035. The Skovgaard’s statistic (Skovgaard)
instead yields a slightly larger p value 0.065, thus making declaration of significance doubtful.

Confidence interval for the model parameter β based on the Wald statistic is obtained by the
standard method confint()

R> confint(m)

2.5 % 97.5 %

(Intercept) -0.922 -0.113

while profile likelihood confidence intervals are provided by function profile()

R> profile(m)

Confidence interval for parameter (Intercept)



8 metaLik: Likelihood Inference in Meta-Analysis in R

−2 −1 0 1

−
4

−
2

0
2

4

First−order
Skovgaard

Figure 1: Diuretics data: Profile likelihoods and 95% confidence interval for β coefficient.

2.5 % 97.5 %

signed logLRT -0.983 -0.0484

Skovgaard -1.064 0.0433

Signed square root profile likelihoods are visualized in Figure 1. The plot shows the small but
significant difference since the first-order 95% confidence interval does not include the zero,
while the higher-order version does.

Since the inferential interest is evaluating the reduction of the risk of pre-eclampsia, then it is
more appropriate to test the null hypothesis H0 : β = 0 against the one-sided alternative H1 :
β < 0. Hypothesis testing can be performed using rP or rP, through function test.metaLik()

R> test.metaLik(m, value = 0, alternative = "less")

Signed profile log-likelihood ratio test for parameter (Intercept)

First-order statistic

r:-2.11, p-value:0.0174

Skovgaard's statistic

rSkov:-1.85, p-value:0.0325

alternative hypothesis: parameter is less than 0

Both the approaches indicate an effect of diuretics in reducing the risk of pre-eclampsia,
although the level of support is sensibly different using first- (p value 0.0174) or higher-order
(p value 0.0325) asymptotics.

BCG vaccine data

The second illustration regards a data set on tuberculosis prevention originally examined
by Berkey, Hoaglin, Mosteller, and Colditz (1995) and Knapp and Hartung (2003), among
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Study y latitude Year σ̂2

1 −0.94 44 48 0.36
2 −1.67 55 49 0.21
3 −1.39 42 60 0.43
4 −1.46 52 77 0.02
5 -0.22 13 73 0.05
6 −0.96 44 53 0.01
7 −1.63 19 73 0.23
8 0.01 13 80 0.00
9 −0.47 −27 68 0.06

10 −1.40 42 61 0.08
11 −0.34 18 74 0.01
12 0.45 33 69 0.53
13 −0.02 33 76 0.07

Table 2: Thirteen clinical studies for evaluating the efficacy of the Bacillus Calmette-Guérin
vaccine for the prevention of tuberculosis (Berkey et al. 1995).

others. The data refer to thirteen clinical studies evaluating the efficacy of the Bacillus
Calmette-Guérin (BCG) vaccine for the prevention of tuberculosis. Data contain information
about the log odds ratio in each study and the corresponding distance of each study from the
equator, i.e., the latitude, which is considered as a surrogate for the presence of environmental
mycobacteria providing a level of natural immunity against tuberculosis. Moreover, the year
of the study and the estimated within-study variance are available, see Table 2.

We fit a linear mixed-effects model with covariate latitude,

R> library("metaLik")

R> data("vaccine")

R> m <- metaLik(y ~ latitude, data = vaccine, sigma2 = sigma2)

R> summary(m)

Likelihood inference in random-effects meta-analysis models

Call:

metaLik(formula = y ~ latitude, data = vaccine, sigma2 = sigma2)

Estimated heterogeneity parameter tau^2: 0.168 (p-value 0)

Fixed-effects:

estimate std.err. signed logLRT p-value Skovgaard p-value

(Intercept) -0.305 0.224 -1.338 0.181 -1.224 0.221

latitude -0.015 0.006 -2.120 0.034 -1.816 0.069

Log-likelihood: 1.12

The first-order likelihood approach (signed logLRT) suggests a significant effect of the
latitude on the disease risk at 5% level, with an associated p value equal to 0.034. The Skov-
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gaard’s statistic (Skovgaard) does not fully support the same conclusion given the p value
equal to 0.069.

Confidence intervals for the model parameters based on the Wald statistic are

R> confint(m)

2.5 % 97.5 %

(Intercept) -0.7442 0.13414

latitude -0.0279 -0.00294

The profile likelihood 95% confidence intervals for the parameter of interest latitude with
first- and higher-order approximations are

R> profile(m, param = "latitude")

Confidence interval for parameter latitude

2.5 % 97.5 %

signed logLRT -0.0290 -0.00141

Skovgaard -0.0315 0.00146

The profile likelihood confidence intervals with the two approximations are also displayed
in the left panel of Figure 2, further illustrating how the improved accuracy of higher-order
asymptotics leads to different conclusions about the parameter significance at the 95% level.

As one of the referees pointed out, an alternative analysis of these data substitutes the co-
variate latitude with its absolute value, so to highlight the distance of each study from the
equator

R> m2 <- metaLik(y ~ abs(latitude), data = vaccine, sigma2 = sigma2)

R> summary(m2)

Likelihood inference in random-effects meta-analysis models

Call:

metaLik(formula = y ~ abs(latitude), data = vaccine, sigma2 = sigma2)

Estimated heterogeneity parameter tau^2: 0.004 (p-value 0.968)

No evidence of random-effects at 5% level, move to fixed-effects model

Fixed-effects:

estimate std.err. signed logLRT p-value

(Intercept) 0.395 0.124 4.79 0

abs(latitude) -0.033 0.004 -11.75 0

Log-likelihood: 4.95

The maximum likelihood estimate of the heterogeneity parameter τ2 is 0.004. The p value of
the bootstrap score test for significance, 0.968, is a strong indication in favor of a fixed-effects
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Figure 2: BCG vaccine data: Profile likelihoods and 95% confidence intervals for latitude

covariate (left panel) and absolute value of latitude (right panel).

model. In this case, results from metaLik refer only to the ordinary signed log-likelihood ratio
statistic, which provides a strong indication of negative association between the distance from
equator and the effectiveness of the vaccine.

The profile likelihood is displayed in the right panel of Figure 2

R> profile(m2, param = "abs(latitude)")

Confidence interval for parameter abs(latitude)

2.5 % 97.5 %

-0.0386 -0.0276

6. Conclusions

Higher-order asymptotics literature has had an important impact on methodological jour-
nals in the last years, as the detailed review by Reid (2003) pointed out. The advantages of
higher-order solutions methods are shown to be substantial with respect to their first-order
counterparts, mainly in case of small sample sizes. Nevertheless, the application of the meth-
ods in practical contexts is still limited, the reason being the complexity that the expression of
the higher-order solutions usually achieves. The book by Brazzale, Davison, and Reid (2007)
illustrates some examples and case studies where the application of higher-order solutions is
successful. Guolo (2012) shows that the meta-analysis problem is well-suited to deal with
higher-order asymptotics, since the resulting statistics have a simple and compact form, while
providing substantial improvements over first-order counterparts, especially for small sample
sizes.
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In this paper, we addressed the R implementation of the methods as illustrated in Guolo
(2012). The resulting package metaLik supplies the first implementation of higher-order so-
lutions in meta-analysis, and in particular of the second-order accurate inference on a scalar
component of the fixed effects through the Skovgaard’s statistic. The attention has been
paid to meta-analysis models where summary information is provided for each study. Fu-
ture research and implementation will focus on the extension of the meta-analysis model to
individual patients data, where data for each subject are used in place of the summary infor-
mation provided at the study level. The analysis of multiple outcome data is a further issue
of investigation.
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Università Ca’ Foscari Venezia
30121 Venezia, Italy
E-mail: sammy@unive.it
URL: http://www.dst.unive.it/~sammy/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 50, Issue 7 Submitted: 2011-11-12
August 2012 Accepted: 2012-06-11

mailto:sammy@unive.it
http://www.dst.unive.it/~sammy/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Meta-analysis
	Likelihood methods in meta-analysis
	Score test for heterogeneity

	The metaLik package
	Illustrations
	Diuretics data
	BCG vaccine data


	Conclusions

