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1 Introduction

In the universe of Markov chain Monte Carlo (MCMC) algorithms, one of the
most widely used class of algorithms is defined by the Metropolis-Hastings
(MH). An important generalization of the standard MH formulation is rep-
resented by the multiple-try Metropolis (MTM) [7]. The MTM setup have
been extended in many directions. [2] propose to use antithetic and quasi-
Monte Carlo samples to generate the proposals and to improve the efficiency
of the algorithm. [1] propose to use recent advances in population Monte
Carlo and adaptive MCMC.

The class of population Monte Carlo procedures has been designed to
address the inefficiency of classical MCMC samplers in complex applications
involving multimodal and high dimensional target distributions. Its formu-
lation relies on a number of MCMC processes that are run in parallel while
learning from one another about the geography of the target distribution.
This connects naturally with the class of adaptive MCMC samplers in which
a chain’s own path is used for tuning the transition kernel “on the go” (see
[4]).

In the next sections we present the interacting MCMC sampling de-
sign for the MTM proposed in [1] and link the use of stochastic overrelax-
ation, random-ray Monte Carlo method (see [7]) and simulated annealing to
IMTM.

2 Interacting Monte Carlo Chains for MTM

Suppose that of interest is sampling from a distribution π that has support
in Y ⊂ R and is known up to a normalizing constant. For defining the inter-

acting MTM algorithm (IMTM) [1] consider a population X(i) = {x
(i)
n }n∈N,
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i = 1, . . . , N , ofN chains. We assume that the ith chain has MTM transition

kernel with Mi different proposals T
(i)
j , j = 1, . . . ,Mi.

The interacting mechanism allows each proposal distribution to possibly
depend on the values of the chains at the previous step. Formally, let Ξn =

{x
(i)
n }Ni=1 be the vector of values taken at iteration n ∈ N by the population

of chains. Essentially, we allow each proposal distribution used in updating
the population at iteration n+1 to depend on Ξn (see Algorithm 3.1). One
expects that the chains in the population are spread throughout the sample
space and thus the proposals generated are a good representation of the
sample space Y.

The transition kernel of the population of chains and the validity of the
algorithm are given in [1]. For a discussion on the choice of the number of

chains N , the number of proposals M , and of the function λ
(i)
j (x, y) see [1].

3 Some generalizations

3.1 Stochastic Overrelaxation

Stochastic overrelaxation (SOR) is a MCMC technique developed for nor-
mal densities and subsequently extended for non-normal targets. The idea
behind this approach is to induce negative correlation between consecutive
draws of a single MCMC process.

Interacting Multiple Try Algorithm (IMTM)

• For i = 1, . . . , N

1. Let x = x
(i)
n , for j = 1, . . . ,Mi draw yj ∼ T

(i)
j (·|x

(1:i−1)
n , x, x

(i+1:N)
n )

independently and compute

w
(i)
j (yj , x) = π(yj)T

(i)
j (yj|x

(1:i−1)
n , x, x(i+1:N)

n )λ
(i)
j (yj , x).

2. Select J ∈ {1, . . . ,Mi}with probability proportional to w
(i)
j (yj, x),

j = 1, . . . ,Mi and set y = yJ .

3. For j = 1, . . . ,Mi and j 6= J draw x∗j ∼ T
(i)
j (·|x

(1:i−1)
n , y, x

(i+1:N)
n ),

let x∗J = x
(i)
n and compute

w
(i)
j (x∗j , y) = π(x∗j)T

(i)
j (x∗j |x

(1:i−1)
n , y, x(i+1:N)

n )λ
(i)
j (x∗j , y).
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4. Set x
(i)
n+1 = y with probability

ρi = min

{

1,
w

(i)
1 (y1, x) + . . .+ w

(i)
Mi

(yMi
, x)

w
(i)
1 (x∗1, y) + . . .+ w

(i)
Mi

(x∗Mi
, y)

}

and x
(i)
n+1 = x

(i)
n with probability 1− ρi.

Within the MTM algorithm we induce negative correlation between the pro-
posals and the current state of the chain, x, by assuming that (y1, . . . , yM−1, x)

T ∼
Nd×M (0, V ) where V has a structure imposed by the desired negative de-
pendence between the proposals y1, . . . , yn’s and x, specifically

V =









Σ1 Ψ12 . . . Ψ1M

Ψ12 Σ2 . . . Ψ2M

. . . . . . . . . . . .
Ψ1M Ψ2M . . . ΣM









.

One possible choice is to set Ψij = 0 whenever i, j 6= M and ΨiM =

Σ
1/2
i RiMΣ

1/2
M where RiM is a correlation matrix which corresponds to ex-

treme negative correlation [?, see]for a discussion of extreme dependence]crameng2
between any two components (of same index) from yi and x, for any 1 ≤
i ≤ M − 1.

This falls within the context of dependent proposals as discussed by [2].
However, here we consider the case where the proposals and the current
state are negatively correlated. This essentially ensures that no proposals
are exceedingly close to the current location of the chain.

3.2 Multiple Random-ray Monte Carlo

The use of different proposals for the MTM algorithm allows also to extend
the random-ray Monte Carlo method given in [7]. In particular the proposed
algorithm allows to deal with multiple search directions at each iteration
of the chains. At the n-th iteration of the chain, in order to update the

set of chains Ξn, the algorithm performs for each chain x
(r)
n ∈ Ξn, with

r = 1, . . . , N , the following steps:

1. Evaluate the gradient log π(x) at x
(r)
n and find the mode an along

x
(r)
n + run where un = x

(r)
n − x

(r)
n−1.
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2. Sample I1, . . . , IM from the uniform U{1,...,r−1,r+1,...,N}.

3. Let en,j = (an − x
(Ij)
n )/||an − x

(Ij)
n || and sample rj from N (0, σ2).

and then use the set of proposals Tj which depends on en,j to perform a
MTM transition with different proposals as in the IMTM algorithm.
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