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Abstract The paper presents a formulation for multidisci-
plinary design optimization of vessels, subject to uncertain
operating conditions. The formulation couples the multi-
disciplinary design analysis with the Bayesian approach to
decision problems affected by uncertainty. In the present
context, the design specifications are no longer given in
terms of a single operating design point, but in terms of
probability density function of the operating scenario. The
optimal configuration is that which maximizes the perfor-
mance expectation over the uncertain parameters variation.
In this sense, the optimal solution is “robust” within the
stochastic scenario assumed. Theoretical and numerical
issues are addressed and numerical results in the hydroe-
lastic optimization of a keel fin of a sailing yacht are
presented.
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1 Introduction

Design optimization formulations and techniques are
intended for supporting the designer in the decision mak-
ing process, relying on a rigorous mathematical framework,
able to give the “best” solution to the design problem at
hand. Over the years, optimization has been playing an
increasingly important role in engineering. Advanced mod-
eling and algorithms in optimization constitute now an
essential part in the design of complex aerospace (Hicks
and Henne 1978; Sobieszczanski-Sobieski and Haftka
1997; Mohammadi et al. 2001; Alexandrov and Lewis
2002; Willcox and Wakayama 2003; Padula et al. 2006;
Morino et al. 2006; Iemma and Diez 2006) and automotive
(Baumal et al. 1998; Kodiyalam and Sobieszczanski-
Sobieski 2001) applications. The strong impact of design
optimization has attracted the naval community, so that the
recent years have seen progress in optimization for ships too
(Ray et al. 1995; Peri and Campana 2003, 2005; Parsons
and Scott 2004; Pinto et al. 2004; Campana et al. 2007a, b,
2009; Papanikolaou 2009; Diez and Peri 2009, 2010a, b).

Generally, the task of designing a ship (as well as an
aerial or ground vehicle) demands that the engineering
team considers a host of multidisciplinary design goals
and requirements. Multidisciplinary Design Optimization
(MDO) classically refers to the quest for the best solution
with respect to optimality criteria, whose definition involves
a number of disciplines mutually coupled. Therefore, MDO
encompasses the interaction of different discipline-systems,
formally joined together and inter-connected in a common
framework, which leads to a multidisciplinary equilibrium.

In this context, design engineers increasingly rely on
computer simulations to develop new designs and to assess
their models. However, even if most simulation codes are
deterministic, in practice systems’ design should be often
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permeated with uncertainty. On this guideline, the most
straightforward example in the naval hydrodynamics con-
text is offered by any existing ship, that must perform under
a variety of operating conditions (e.g. different, stochastic
environmental conditions). Some question arises: how can
the results of computer simulations be properly exploited
in the framework of design optimization, when the overall
context is affected by uncertainty? How can determinis-
tic analysis be integrated in an ad hoc formulation that
includes uncertainty? The latter questions stress one of the
major issues arising in the optimization of a (ship) design:
the perspective from which the optimization problem has
to be formulated and performed. Indeed, a “tight” deter-
ministic optimization often leads to specialized solutions
that are inadequate to face the “real-life” world, which
is instead characterized by a high level of uncertainty. In
this respect Marczyk (2000) states that, in a deterministic
engineering context, optimization is the synonymous of spe-
cialization and, consequently, the opposite of robustness.
The perspective we try to give in the present work has the
aim of broadening the standard-optimization-problem fram-
ing, leading to a formulation in which optimality is recast
in terms of robustness, rather than specialization. To the
aim of clarifying the latter perspective, it may be useful to
summarize the following statements:

– Design optimization is always about answering a ques-
tion, i.e. assisting the designer in the decision making
process.

– Before going through the optimization procedure, spe-
cial attention has to be paid to the formulation of the
problem. In the context of design optimization, inade-
quate answers often stem from hill-posed questions.

– In this work we try to re-formulate the optimization
perspective by looking at the design problem from a
broader standpoint. We bring the uncertainty related
to ship design, manufacturing and operations, into the
decision problem.

– The formulation of the question (we try to answer to,
using optimization) relies on optimal statistical decision
theory and, specifically, on Bayes principle, defining a
rigorous mathematical framework in which the “robust”
decision making process is embedded.

In general, in any engineering system the uncertainty is
due to variations of design parameters, along with operating
or environmental conditions. The uncertainty is also related
to the evaluation of the relevant functions, due to inaccu-
racy in modeling or computing. Using ideas from statistical
decision theory, and specifically Bayes principle (De Groot
1970; Trosset et al. 2003; Kugele et al. 2008), the problem
of robust decision making in design can be formulated as an
optimization problem (Robust Design Optimization, RDO).

In the framework of Bayes theory, we assume that the origi-
nal “deterministic” design goal is the minimization of a loss
functional. The loss expectation is defined as the risk associ-
ated to the stochastic scenario assumed. In this context, the
final goal is that of minimizing the risk, looking for the so-
called Bayesian solution (or decision) to the problem. Once
a probabilistic scenario is assumed, the optimization task
reduces to the minimization of a related loss expectation.

The difficulty with exploiting this framework is both the-
oretical and computational. The latter is due to the fact that
the evaluation of the loss expectation involves the numerical
integration of expensive simulation outputs, with respect to
uncertain quantities. The former can also be easily under-
stood: in a more standard MDO formulation (as well as in
standard deterministic numerical optimization), all the rel-
evant variables, parameters and functions are defined from
a deterministic viewpoint and, apparently, the optimization
process does not involve any kind of stochastic variation.
The resulting optimal solutions are therefore likely special-
ized for the specific scenario assumed. Nevertheless, the
performances of the final design may significantly drop in
of f-design conditions, when the deterministic assumptions
used no longer hold. In this context, we look for a robust
solution to the MDO problem, i.e., a solution able to per-
form well on average, in the whole probabilistic scenarios.
The effects of properly considering the uncertainty, mainly
consist in a loss in specialization and a gain in robust-
ness. The MDO problem, re-formulated to take into account
uncertainty, becomes a Multidisciplinary Robust Design
Optimization (MRDO) problem. The aim of the present
work is to analyze the combined effects of considering sev-
eral disciplines under uncertainty in ship design problems,
developing a MRDO procedure that utilizes efficient meth-
ods for uncertainty analysis and encompasses the features
of the MDO framework. Theory and applications of MDO
subject to uncertainty may be found in, e.g., Agarwal et al.
(2004), Du and Chen (2000a, b, 2002), Giassi et al. (2004),
Mavris et al. (1999), Smith and Mahadevan (2005), and
Sues et al. (1995).

Here, the MRDO focuses on the stochastic variation of
the operating conditions. The probability density function
associated to the operating scenario is taken as a design
requirement, and the expectation of the relevant merit fac-
tors is assessed during the optimization task. For solving
the resulting minimization problem, a Particle Swarm Opti-
mization (PSO) algorithm is used. The method, first intro-
duced by Kennedy and Eberhart (1995) is here applied in
the form proposed by Campana et al. (2009).

The application studied in this work consists in the opti-
mization of a keel fin of a sailing yacht. The keel fin
provides the side force able to contrast the wind, allow-
ing the yacht to travel along directions not aligned with the
wind itself. The keel sustains an heavy ballast bulb, and the

Author's personal copy



Multidisciplinary robust optimization for ship design 615

bending moment arising in this configuration, together with
the hydrodynamic loads, generate an elastic deformation,
which cannot be ignored in the computation of the hydro-
dynamic performances. As a consequence, a fully coupled
hydroelastic problem is considered. The solution of the
deterministic problem has been illustrated in Campana et al.
(2006). In this paper, a MRDO problem will be formulated
and solved, considering a probabilistic sailing scenario,
defined in terms of uncertain yaw angle.

The paper is organized as follows. The next section
presents the general context of optimization problems
affected by uncertainty. Then, in Section 3, Bayes princi-
ple is exploited to formulate the present problem for RDO.
Section 4 presents a comparison between RDO and deter-
ministic multi-point optimization. The general framework
of MDO is presented in Section 5, whereas the “robust”
extension of MDO to MRDO is given in Section 6. The
numerical results are presented in Section 7 and the con-
cluding remarks are given in Section 8.

2 Design optimization subject to uncertainty

In this Section, an overview of design optimization affected
by uncertainty is presented. In this context, the designer
concern is that of finding an optimal configuration able to
keep a good performance under variation of some uncertain
parameters. In order to achieve such an optimal solution, an
optimality criterion, based on robustness of the final design,
has to be defined. We remark that here, the term “robust”
is always associated with the uncertainty of parameters.
Therefore, attention to robustness always involves care to
handle some kind of uncertainty. A number of authors in
the literature give different meanings to robustness depend-
ing on the application, and different kind of uncertainties
are addressed. The interested reader is referred to Beyer and
Sendhoff (2007), Park et al. (2006) and Zang et al. (2005).

In order to define the context of the present work, the
following standard-deterministic optimization problem is
considered:

minimize
x∈X

f (x, y), given y = ŷ ∈ Y

subject to gn(x, ŷ) ≤ 0, n = 1, ..., N (1)

hm(x, ŷ) = 0, m = 1, ..., M

where x ∈ X ⊆ R
k is the design variables vector (which

represents the designer choice), ŷ ∈ Y ⊆ R
h is the

design parameters vector (which collects those parameters
independent of the designer choice, e.g., environmental or
operating conditions defining the scenario), and f, gn, hm :
R

k+h → R, are respectively the optimization objective
and the inequality and equality constraint functions. While

handling the above problem, the following uncertainties
may occur—the interested reader is also referred to Diez
and Peri (2010a).

(a) Uncertain design variable vector When translating
the designer choice into the “real-life” world, the design
variables may be affected by uncertainties due to manufac-
turing tolerances or actuator precision. Assume a specific
designer choice x∗ and define as u ∈ U the error or tol-
erance related to this choice.1 We may assume u as a
stochastic process with probability density function p(u);
by definition it is

∫
U p(u) du = 1. The expected value of

x∗ is, therefore,

x∗ := μ(x∗ + u) =
∫

U

(
x∗ + u

)
p(u) du. (2)

Note that, in general, the probability density function p(u)

depends on the specific designer choice x∗. It is clear that,
if the stochastic process u has zero expectation, i.e.

u := μ(u) =
∫

U

u p(u) du = 0 (3)

we obtain x∗ = x∗.

(b) Uncertain environmental and operating conditions
In “real-life” applications, environmental and operational
parameters may differ from the design conditions ŷ, see
Problem (1). The design parameters vector may be assumed
as a stochastic process with probability density function
p(y) and expected value or mean

y := μ(y) =
∫

Y

y p(y) dy. (4)

Note that, in this formulation, the uncertainty on the oper-
ating conditions is not related to the definition of a specific
design point. Environmental and operating conditions are
treated as “intrinsic” stochastic processes in the whole
domain of variation Y . For this reason, we do not define an
error in the definition of the operating conditions, preferring
the present approach which identifies the environmental
and operational parameters in terms of their probabilistic
distributions in the whole domain of variation.

(c) Uncertain evaluation of the functions of interest The
evaluation of the functions of interest (objective and con-
straints) may by affected by uncertainty due to inaccuracy
in modeling or computing. Collect objective and constraints
in a vector f := { f, g1, ..., gN , h1, ..., hM }T , and assume

1The symbol * is used in the present formulation to denote a specific
designer choice.
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that the assessment of f for a specific “deterministic” design
point, f∗ := f(x∗, ŷ), is affected by a stochastic error
w ∈ W . Accordingly, the expected value of f∗ is

f∗ := μ(f∗ + w) =
∫

W

(
f∗ + w

)
p(w) dw. (5)

Note that, in general, the probability density function of w,
i.e. p(w), depends on f∗ and, therefore, on the design point
(x∗, ŷ).

Combining the above uncertainties, we may define the
expected value of f as

f := μ(f) =
∫

U

∫

Y

∫

W

[
f(x∗ + u, y) + w

]

p(u, y, w) du dy dw (6)

where p(u, y, w) is the joint probability density function
associated to u, y, w. It is clear that f = f(x∗); in other
words, the expectation of f is a function of the only designer
choice. Moreover, the variance of f with respect to the
variation of u, y, w is

V (f) := σ 2(f) =
∫

U

∫

Y

∫

W

{[
f(x∗ + u, y) + w

] − f(x∗)
}2

p(u, y, w) du dy dw (7)

resulting, again, in a function of the designer choice vari-
ables. It may be noted that, here, {·}2 stands for the element-
wise square, and μ(f) and σ 2(f) are vectors of dimension
1 + N + M . The evaluation of the integrals in (6) and (7)
is often referred as Uncertainty Quantification, UQ (Najm
2009; Iaccarino 2008; Mousaviraad et al. 2011).

With respect to the uncertainties outlined above, different
approaches may be followed for the recasting of the opti-
mization problem. Specifically, the optimization task may
be defined in terms of:

– minimization of the variance, or of the standard devia-
tion, σ := √

V , of f : this leads to a robust design in a
strict sense—e.g., Taguchi methods (Taguchi 1986);

– minimization of the expectation of f : if f represents
a performance loss, then the expected value of f can
be seen as a risk—Bayesian approach as in statistical
decision theory (De Groot 1970; Trosset et al. 2003;
Kugele et al. 2008)—see next section;

– minimization of f in the worst possible case; this is
the most conservative approach—“minmax” approach
(Trosset et al. 2003; Kugele et al. 2008);

– assessing probabilistic constraints in the minimization
of the objective function (Tu et al. 1999; Sues et al.

2001; Du and Chen 2000b; Agarwal 2004; Agarwal and
Renaud 2004).

With respect to the previous approaches, different
definitions may be found in the literature—the interested
reader is referred, again, to Beyer and Sendhoff (2007):

– Robust design (RD): process of defining the robust
design in the strict sense (e.g., Taguchi methods). The
attention in this case is mainly on variance or standard
deviation.

– Robust optimization or Robust design optimization
(RDO): optimization process considering uncertainties
in the evaluation of the objective function; expected
value, variance, worst case, etc. may be taken into
account.

– Reliability-based design optimization (RBDO): the
attention is focused on the statistical feasibility of the
design (i.e., on the constraints). The constraints are
treated as probabilistic inequalities and give a statistical
feasible region.

While RD and RDO are mainly focused on expectation
and variance of a cost function (Zang et al. 2005), the RBDO
concentrates on handling the uncertainty of the constraints
(Tu et al. 1999; Sues et al. 2001; Du and Chen 2000b;
Agarwal 2004; Agarwal and Renaud 2004). The latter are
treated as probabilistic inequalities (Nocedal and Wright
1999) and the n-th deterministic constraint of the type
gn(x, y) ≤ 0 is treated using the general probabilistic
statement

PS := P
[
gn(x, y) ≤ 0

]
, PS ≥ P0, (8)

where PS is the probability of success, P[A] denotes the
probability of the event A and P0 is a given target prob-
ability. Note that the probability of failure, PF , equals
1 − PS . In the following, the constraints of the optimiza-
tion problem will be defined in the worst possible case,
choosing a conservative approach (P0 = 1). The issues con-
nected to the probabilistic handling of the constraints are
beyond the scope of the present work, and will not be further
addressed here.

3 Decision making under uncertain operating
conditions: robust design optimization through
Bayes principle

In this section, specific attention is paid to the uncertainty
related to the environmental and operating conditions. In
the context of naval applications, environmental and oper-
ating conditions may be considered as “intrinsic” stochastic

Author's personal copy



Multidisciplinary robust optimization for ship design 617

functions, whose expected values and standard deviations
can neither be influenced by the designer nor by the man-
ufacturer. For this reason, assessing probabilistic operating
conditions, may be interpreted as a relevant step towards
a more comprehensive design optimization, bringing into
focus “real-life” applications.

Assume that the optimization objective in Problem (1)
is associated to a loss function (like, for instance, the per-
formance loss with respect to a given target). Under the
hypothesis of uncertain environmental and operating con-
ditions, we may refer to f (x, y) as the loss associated to the
designer choice x, when the condition y occurs. Therefore,
the expectation of the loss f , evaluated through the inte-
gral of (6) (limited to uncertain parameters y, thus referring
to uncertainty of type b only), may be defined as the risk
associated to the decision x under the distribution p(y) (De
Groot 1970). It follows that the designer should choose, if
possible, a decision x which minimizes the risk (expected
loss). Specifically, if we consider the Bayes risk, i.e. the
lower bound of the expected loss for all the possible choices
in X ,

ρ := inf
x∈X

f̄ = inf
x∈X

μ( f ) (9)

we look for the Bayes decision of the problem, considering
the distribution p(y), i.e. the decision for which the risk
equals the Bayes risk ρ. Therefore, the optimal designer
choice is that which minimizes the expected loss of the
system performances with respect to the stochastic vari-
ation of the environmental and operating conditions in y
(Bayes principle; see, e.g. Trosset et al. 2003 and Kugele
et al. 2008). It may be noted that in the present context,
the design specif ications are no longer given in terms of
a single operating design point, but in terms of probabil-
ity density function of the operating scenario (see also Diez
et al. 2010).

It may be noted that the Bayesian approach to the deci-
sion problem may be enriched by considering, as a second
objective function, the standard deviation of f . The lat-
ter extension possibly improves the robustness of the final
design to the operating conditions variation.

The Bayesian approach to the designer decision problem
(encompassing the standard deviation of f , if required) may
be formulated as follows:

minimize
x∈X

f1(x) := μ
[

f (x, y)
]

and f2(x) := σ
[

f (x, y)
]

(10)
subject to sup

y∈Y

{
gn(x, y)

} ≤ 0, n = 1, ..., N

μ
[
hm(x, y)

] = 0, m = 1, ..., M

where, μ( f ) and σ( f ) are given, by definition, through
the UQ:

μ
[

f (x, y)
] :=

∫

Y

f (x, y)p(y)dy = f̄ (x) (11)

σ 2[ f (x, y)
] :=

∫

Y

[ f (x, y) − f̄ ]2 p(y)dy = σ 2(x). (12)

4 Robust design optimization versus multi-point
optimization

The aim of this section is to provide the reader with a com-
parison between the RDO approach—handling probabilis-
tic operating conditions—and the multi-point optimization
approach.

A standard deterministic method to manage different
operating conditions within an optimization problem is the
use of an aggregate objective function (AOF) combining the
same objective, evaluated for different operating points—
multi-point optimization, e.g. Reuther et al. (1999a, b),
Mirzaei et al. (2007) and Jameson et al. (2007). The latter
may be expressed as

f AO F (x) :=
n∑

k=1

wk f (x, yk), (13)

where wk ∈ R
+. If, on one hand, this approach is able in

principle to cope with different operating scenarios, on the
other hand, the definition of the objective function in terms
of yk and wk depends on designer experience and sensitivity,
resulting in an arbitrary choice. Moreover, no information
about performance variation is available to the optimizer.

To compare the above approach to an RDO process man-
aging uncertain operating conditions, advantage is taken of
the numerical evaluation of the integral of (11). Specifically,
using a Gaussian quadrature scheme for the integration of
the objective f over the operating conditions domain, the
following approximation holds

μ( f ) :=
∫

Y

f (x, y) p(y) dy ≈
m∑

h=1

vh f (x, yh) p(yh) (14)

where the vh and the yh represent respectively the Gaus-
sian weights and abscissas, specifically assessed for the
domain Y . It is apparent that the latter provides a particular
multi-point AOF, with uniquely defined points and weights.
Assuming n = m, comparing (13) and (14) gives

wk = vk p(yk), k = 1, ..., n (15)
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with yk corresponding to the k-th Gaussian abscissa. It may
be observed that the performance expectation μ( f ), evalu-
ated through quadrature, gives a uniquely defined AOF in
the context of multi-point optimization.

5 Multidisciplinary Design Optimization

The basic elements of the MDO problem can be easily sum-
marized. In particular, we report here a general overview
which may help the reader to capture the main issues and
difficulties related to MDO formulations of real problems.

Some specific aspects must be considered when attempt-
ing to identify reliable MDO formulations. Among them we
can address the following ones:

– several disciplines are involved in order to provide the
overall formulation;

– each discipline has to be considered essential for the
overall formulation;

– the overall formulation can be hardly given as a nonlin-
ear mathematical program on the whole;

– each discipline may be regarded as an independent
problem with its own formulation. Theoretical results
relative to each discipline (e.g. optimality conditions,
sensitivity analysis, convergence analysis), solution
techniques (e.g. solution methods, heuristics, etc.), and
possibly codes, can be hardly worth also for the other
disciplines;

– there is at least one iterative procedure such that

(a) at any step it computes the results provided by each
discipline

(b) it yields at any step an intermediate result of the
MDO formulation, where the independent disci-
plines are suitably gathered and coordinated.

Observe that the steps (a) and (b) are critical, and in gen-
eral they do not suggest a unique nonlinear formulation for
the overall MDO problem.

As usually assumed in multidisciplinary literature, we
address as design unknowns some variables of the over-
all MDO formulation, included in the formulations of the
disciplines, since they have a physical meaning. On the
other hand, the formulation associated with each discipline
can include also state unknowns (e.g. discipline auxiliary
parameters, state unknowns of control systems, variables
generated by the discretization of a PDE solver, etc.). Unlike
design unknowns the latter variables are not given a specific
physical meaning.

Now, let us consider the p disciplines Di , i = 1, . . . , p,
with the vector {xT

i , sT
i }T ∈ IRni +mi associated with Di .

The vector si ∈ IRmi is the state of the i-th discipline Di ,
while xi ∈ IRni is the design vector of Di . Including also

the sub-vector x0 ∈ IRn0 of design unknowns, shared by the
p disciplines, we can provide a more formal definition of
MDO formulations where: x = {xT

0 xT
1 · · · xT

p }T ∈ IRn , n =
n0+n1+· · ·+n p (design variables) and s = {sT

1 · · · sT
p }T ∈

IRm , m = m1 + · · · + m p (state vector). In order to provide
a general and formal definition for MDO formulations, we
need to introduce the following assumption.

Assumption 1 Let us consider a real multidisciplinary
problem, where the p disciplines Di , i = 1, . . . , p are
involved. Let x = {xT

0 xT
1 · · · xT

p }T ∈ IRn , n = n0 + n1 +
· · ·+n p, and s = {sT

1 · · · sT
p }T ∈ IRm , m = m1 +· · ·+m p;

suppose that the following hold:

1. for each discipline Di the set Bi ⊆ IRn0×ni ×m (feasible
set of Di ) exists such that

Bi = {(x0, xi , s), x0 ∈ IRn0 , xi ∈ IRni , s ∈ IRm :
gi (x0, xi , s) ≥ 0, Ai (x0, xi , s) = 0};

2. for each discipline Di the nonlinear map fi (x0, xi , s)
exists, with fi : IRn0 × IRni × IRm → IRqi , such that the
formulation associated with the discipline Di is

min
(x0,xi ,s)∈Bi

fi (x0, xi , si ), i = 1, . . . , p

( fi is constant in case Di represents a feasibility
problem);

3. there exist the explicitly or implicitly defined maps
f (x, s) = ϕ[ f1(x0, x1, s), . . . , f p(x0, xp, s)], g0(x, s),
where f : IRn × IRm → IRq and g0 : IRn × IRm → IR,
such that if B = {(x, s), x ∈ IRn, s ∈ IRm : g0(x, s) ≥
0, (x0, xi , s) ∈ Bi , i = 1, . . . , p}, the overall real
problem can be formulated as

min
(x,s)∈B

f (x, s). (16)

Definition 1 Suppose the Assumption 1 holds. Then,
we say that Problem (16) is a Nonlinear MDO
formulation for the MDO problem.

Though the Assumption 1 may apparently be considered
an unnecessary theoretical overload, it provides a road map
to distinguish between tractable MDO problems (i.e. for
which a nonlinear MDO formulation exists), and hardly
tractable MDO problems (i.e. for which a nonlinear MDO
formulation is difficult to be identified).

Also in case the Assumption 1 holds (i.e. the problem in
hand is a tractable MDO problem), then (16) often cannot
be handled as a standard nonlinear program, on the overall.
That is because the feasible set B in (16) includes the so
called MultiDisciplinary Analysis (MDA)

M D A =

⎧
⎪⎨

⎪⎩

A1(x0, x1, s) = 0
...

Ap(x0, xp, s) = 0.
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MDA only implicitly describes a nonlinear system of
equations, in as much as the i-th block of equalities
Ai (x0, xi , s) = 0 may not correspond exactly to a set of
nonlinear equations. Ai (x0, xi , s) = 0 may indeed be a
black-box or it often corresponds to the discretization of
PDE systems. This implies that the implicit function the-
orem cannot be exploited to explicitly compute the map
s = s(x) (and so reducing the number of unknowns).

In addition, the reader is warned that depending on the
codes used to approach the solution of (16), some theoretical
cares on handling the constraints must be paid. In particular,
when Lagrangian or Penalty methods are adopted, specific
assumptions on constraint qualif ication have to be satisfied,
so that Lagrange multipliers exist and Karush-Kuhn-Tucker
systems admit a solution (it is not difficult to find simple
examples of MDO problems where the latter assumptions
do not hold at all). Hence, this proves the intrinsic difficulty
of providing a suitable formulation, say Problem (16), such
that efficient algorithms can be adopted and possibly a com-
plete convergence analysis holds. A more complete charac-
terization of different reformulations for an MDO problem
is given in Campana et al. (2007a). The latter reference also
includes a taxonomy on MDO problems for ship design,
based on both theoretical and algorithmic perspectives, in
order to address an MDO formulation.

In this paper, in order to simplify the notation and to
emphasize our context of ship design optimization subject
to uncertain operating conditions, we assume that each dis-
cipline is based on a specific disciplinary analysis (from
simple algebraic formulas to complex PDEs), that may be
schematically depicted as an input-output relation in Fig. 1.

Moreover, in our context, the input of each discipline
reduces to a set of deterministic design variables, x :=
{xT

i , xT
S }T , uncertain operating parameters, y := {yT

i , yT
S }T ,

and a set of parameters supplied by other disciplines,
{a j } j �=i := {aT

1 , . . . , aT
i−1, aT

i+1, . . . , aT
n }; the analysis pro-

duces a set of outputs, ai . The system-level design variables,
xS and the system level operating parameters yS , are those
shared by all the disciplines. The disciplinary design vari-
ables, xi are assumed local to �i as well as the disciplinary
operating parameters yi .

The disciplinary analysis has often the functional form
ai = Ai (xi , yi , xS, yS, a1, ..., ai−1, ai+1, ..., an), where Ai

is assumed to be independent of A j , ∀ j �= i . In the context
of the MDO problem, the coupled Multidisciplinary Anal-
ysis (MDA) system reflects the physical requirement that a

Fig. 1 Discipline analysis �i of the i-th discipline

Fig. 2 MDO procedure

solution simultaneously satisfies all the disciplinary analy-
ses. The multidisciplinary analysis system, in the explicit
form, is therefore given by the simultaneous system of
equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1 = A1(xS, yS, x1, y1, a2, . . . , an)

a2 = A2(xS, yS, x2, y2, a1, a3, . . . , an)
...

an = An(xS, yS, xn, yn, a1, . . . , an−1)

(17)

Solving the fully coupled system of (17) leads to a full
multidisciplinary analysis. The solution is in this case a
consistent solution that satisfies all the disciplines.

Up to now we have just looked for a multidisciplinary
equilibrium among the disciplines. The most natural MDO
problem formulation is to impose an optimizer over the
MDA (17) and find the optimal solution with respect to
the deterministic designer choice x. Figure 2 presents,
at a glance, a deterministic two-disciplines MDO proce-
dure, where no uncertainties are considered during the
optimization.

6 Multidisciplinary Robust Design Optimization

The extension of the above procedure, to take into account
the application of Bayes principle to an uncertain operat-
ing scenario, involves the integration of the objective f
over the uncertain parameters domain. It may be noted that
the uncertainties propagate in the MDA framework. With
respect to each discipline involved, the uncertainty related
to the definition of the input variables and parameters may
be referred as external, whereas the source of uncertainty
related to the analysis tool itself (e.g., inaccuracy in com-
puting) is addressed as internal (Du and Chen 2002). As a
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Fig. 3 MRDO procedure

result, the final multidisciplinary equilibrium is affected by
uncertainty.

As clearly appears, the solution of the Multidisciplinary
Robust Design Optimization problem represents an expen-
sive task, due to the fact that the integrals of (11) and
(12) apply to a function supplied by the multidisciplinary
equilibrium of (17), for every value of the uncertain param-
eters y. It is worth noting that the standard deterministic
MDO scheme involves coupling an optimization algorithm
(optimizer, see Fig. 2) with the MDA framework. Taking
into account the uncertainty in that context (thus formu-
lating the MRDO problem) requires the insertion between
the optimization algorithm and the MDA, of an UQ scheme
(as summarized in Fig. 3), resulting in a more expensive
computational problem.

Of course the computation of μ( f ) and σ 2( f ) in (11)
and (12) depends on the MDO final formulation adopted, as
suggested by relation (16). On this guideline, Alexandrov
and Lewis (2002) and Campana et al. (2007a) clearly indi-
cate that Assumption 1 might be often satisfied using a wide
variety of reformulations, each providing a different bal-
ance between a theoretical perspective and a computational
perspective. In other terms, a specific MDO formulation
might be preferable when theoretical issues like constraint
qualification conditions at solution are a keypoint.2 On the
other hand, the flip-side is that the same formulation may
be not suitable due to its computational burden. The latter

2The reader is warned that for instance, in many real-life problems, the
Mangasarian–Fromowitz constraint qualification condition (MFCQ,
e.g., Nocedal and Wright 1999) does not hold at the solution points,
the latter being a critical issue for the algorithm adopted.

complexity for the choice of the MDO formulation turns to
hold similarly also for MRDO, e.g., multilevel formulations
might partially simplify the computation, but they suffer for
poor theoretical properties when non-convex functions are
involved in the formulation.

In addition, once a formulation for MDO is chosen,
the MRDO may be solved by means of surrogate models
and approximations. These may be used as functions of
the design variables and/or uncertain parameters. Although
surrogate models for design optimization and UQ are
often very fruitful and dramatically abate the computa-
tional effort, their use is beyond the scope of the present
work and, therefore, no further addressed. The interested
reader is addressed to, e.g., Alexandrov and Lewis (2001),
Peri and Campana (2005), Allaire and Willcox (2010) and
Mousaviraad et al. (2011).

7 Numerical results

In this section, we present numerical results obtained
through the formulation for MRDO. The application con-
sists in the optimization of the performance of a keel fin of
a sailing yacht. The keel fin provides the hydro-dynamic
side force, balancing the wind-force and, thus, allow-
ing the yacht to travel along directions not aligned with
the wind itself. The keel sustains an heavy ballast bulb,
allowing for the equilibrium of the roll moment. The bend-
ing moment along the fin, originated by concentrated and
hydrodynamic loads, yields an elastic deformation, which
cannot be ignored in the computation of the hydrodynamic
performances. As a consequence, a fully coupled hydroe-
lastic problem is considered. The multidisciplinary analysis
system consists in solving together the two disciplines,
hydrodynamic (�1) and structural analysis (�2). Figures 4
and 5 show at a glance the hydrodynamics and structural
solutions, respectively. The models used and the algorithms

Fig. 4 Hydrodynamics (�1)—CFD solution for the pressure field
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Fig. 5 Structural analysis
(�2)—FEM solution for the
elastic displacements of the fin

adopted to solve the multidisciplinary equilibrium for the
deterministic case has been illustrated in Campana et al.
(2006) and, therefore, not repeated here. The sailing oper-
ating conditions adopted here are the following. The cruise
speed equals 10 knots, the heel angle is fixed at 30 degrees.
The stochastic operating scenario is taken into account in
terms of the probability density function (PDF) of the yaw
angle, which is used in this numerical test as the only uncer-
tain parameter (see Table 1). Problem (10) is taken consid-
ering purely the Bayes principle as defined in Trosset et al.
(2003) and Kugele et al. (2008), and illustrated by Tros-
set et al. (2003) in the optimization of an airfoil shape for
minimum drag, varying the Mach number. This approach is
acceptable when (as in the present case) the original objec-
tive represents a performance measure not related to safety.
Accordingly, the expectancy measures of robustness (Beyer
and Sendhoff 2007), or Bayes risk (De Groot 1970), is
assumed as the only optimization goal, therefore looking
for the Bayesian decision (De Groot 1970). Extensions of
the present approach to robust multi-objective optimization
aimed at minimum average performance and performance
variation may be found in, e.g., Beyer and Sendhoff (2007)
and Diez and Peri (2010a). Here, the optimization objective
is defined as the expectation of the fin efficiency (lift over
drug, CL/CD) over the probabilistic operating scenario.

The design variables used pertain to the fin geometry
(see Fig. 6). Specifically, seven design variables are used to

Table 1 Probabilistic operating scenario

Uncertain Lower Upper Distribution

parameter bound bound type

Yaw angle 1◦ 9◦ Uniform

Fig. 6 Schematic representation of the seven design variables used for
the fin deformation (planform and hydrofoil)

change the overall shape of the fin. The original unmodified
fin is defined as a full body. Three design variables are used
to modify the fin planform. Specifically, x1, x2, x3, control
the leading edge at the root, at the tip and the trailing edge at
the fin tip, respectively. Only longitudinal deformations are
allowed. The fin section is shaped using two hydrofoils, one
at the fin root and the second at the fin tip. The section varies
accordingly and linearly along the span. The modification
of the sections (root and tip) is provided by four variables
that move two control points for each section (x4, x5, x6, x7,
respectively). The sections are forced to be symmetric and
only transversal deformations are allowed.

The results are organized as follows. First, a paramet-
ric analysis of the fin efficiency, varying the yaw angle, is

Fig. 7 Parametric analysis—fin efficiency vs. yaw angle for the
original configuration
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Fig. 8 Uncertainty quantification—convergence of the Gauss–
Legendre integration for the expectation of the fin efficiency

conducted through a fully-coupled multidisciplinary anal-
ysis. Then, a convergence analysis for the Uncertainty
Quantification (UQ) is given and commented. Finally, the
optimization procedure is presented for both deterministic
and stochastic approach.

7.1 Uncertainty Quantification (UQ)

In order to assess the objective function(s) for robust design,
the evaluation of the integrals in (11) and (12) (Uncertainty
Quantification, UQ) has to be performed. As a result, we
get the expectation (and, if required, the standard deviation)
of the performance measure adopted. Having in mind that
during a complete optimization procedure, the evaluation of
the objective function may be required thousands of times,
and that the assessment of the objective function involves
the integration over the uncertain-parameter-domain of the

Fig. 9 Uncertainty quantification—convergence of the Gauss–
Legendre integration for the standard deviation of the fin efficiency

Fig. 10 A comparison between MDO (red) and MRDO (blue)
solutions

performance measure, it is easy to understand that a com-
promise between accuracy and computational efficiency
represents a critical issue.

For the original fin configuration, a parametric study for
the efficiency, obtained by varying the yaw angle, is per-
formed through MDA and presented in Fig. 7. In order to
compute the integral of (11) and, if required, (12), a Gauss–
Legendre quadrature is used and a convergence analysis is
shown in Figs. 8 and 9. Specifically, the evaluation of expec-
tation and standard deviation of the fin efficiency is shown,
varying the number of Gaussian points.

Focusing on the evaluation of the fin efficiency expec-
tation, Figs. 8 and 9 reveal that a number of 11 or more
Gaussian abscissas would be necessary to reach the con-
vergence in the evaluation of the integrals of (11) and (12).

Fig. 11 A comparison between MDO- and MRDO-optimal solu-
tions: variables non-dimensional value (−1 indicates the lower bound,
whereas +1 indicates the upper bound)
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Table 2 Optimal design variables

Design Deterministic Stochastic

variable id. MDO MRDO

1 0.9298 0.7632

2 −0.9531 −0.9394

3 −0.9015 −0.9237

4 0.2602 0.0686

5 −0.8912 −0.9994

6 −0.6417 −0.5211

7 0.3895 0.3521

Accordingly, a number of 11 Gaussian points are used for
the following numerical results.

It may be noted that, here, the uncertainty is on one of the
input of the analysis models. This allow for a non-intrusive
approach to the UQ. In other words, the analysis codes may
be seen as a black box, without the need of modifying their
source codes; the UQ is done by embedding the determin-
istic analysis tool in an integration scheme. Issues related
to deterministic and stochastic convergence and validation
of non-intrusive UQ methods are addressed in Mousaviraad
et al. (2011).

7.2 Multidisciplinary Robust Design Optimization
(MRDO)

In this subsection, the results of the stochastic MRDO pro-
cedure (aimed at fin efficiency expectation) are presented
and compared to those obtained through a deterministic
MDO process. The latter is defined by considering the
uncertain parameter (yaw angle) equal to its expectation (i.e.
5◦). The probabilistic operating scenario is that shown in
Table 1.

Fig. 12 A comparison between MDO- and MRDO-optimal solutions
performance: fin efficiency vs. yaw angle

Fig. 13 Pressure field for the
MDO solution

For MRDO, a particle swarm optimization (PSO) algo-
rithm (Campana et al. 2009) is imposed over the UQ,
whereas for deterministic MDO, the same algorithm is
imposed over the MDA. For both approaches, a maximum
number of 3,000 objective function evaluations is assumed.
The results are summarized in Fig. 10 and 11 and Table 2.
It may be noted how the optimal solutions for MDO and
MRDO fall in two different points of the design space.

Moreover, Fig. 12 present a parametric analysis for
the fin efficiency, varying the yaw angle (evaluated at the
Gaussian points). It may be noted how the deterministic
solution (MDO) has a greater value for the efficiency when
the yaw angle equals its expectation (specialized solution),
whereas the stochastic solution (MRDO) presents the best
overall behavior (robust solution). Although the differences
are not large, the last result is worthy of attention since

Fig. 14 Pressure field for the
MRDO solution
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Fig. 15 Pressure field for the
original configuration

demonstrates the consistency of the formulation and the
numerical implementation.

Finally, Figs. 13 and 14 present the CFD solution for
the pressure field for MDO- and MRDO-optimal solu-
tions respectively. The pressure field for the original
configuration is presented in Fig. 15. In the present anal-
ysis, the bulb is considered as a concentrated mass, and
thus not explicitly appears in the CFD solution. Even
though the differences are small, some considerations can
be made. The MRDO-optimal solution has a greater bend-
ing stiffness, due to larger thickness (greater absolute values
for x4, x6, x7) and slightly larger chords (x1). This results in
a lower bending and a greater efficiency at low yaw angles
(2◦, 3◦).

8 Concluding remarks

A formulation for Multidisciplinary Robust Design Opti-
mization (MRDO) has been presented and applied to the
optimization of a keel fin of a sailing yacht, subject to uncer-
tain operating conditions. The present formulation couples
the multidisciplinary analysis (MDA) with the uncertainty
quantification (UQ) over the stochastic parameters domain.
The Bayesian solution to the design problem is pursued by
imposing an optimizer over the UQ.

In the present context, the design specifications are no
longer given in terms of a single operating design point,
but in terms of probability density function of the operating
scenario.

The numerical results presented here reveal that the for-
mulation for stochastic MRDO drives the optimizer towards
a solution different to the deterministic MDO result. More-
over, the MRDO optimal solution is characterized by a

better overall performance in the stochastic operating sce-
nario. Despite of the fact that in this work only seven design
variables are used, with a limited number of function eval-
uations, the MDO- and MRDO-optimal solutions obtained
are different and the performances are consistent with the
formulation. The authors believe that using a greater num-
ber of design variables (thus widening the research space)
with a greater number of function evaluations, allows for a
more conspicuous dissimilarity between deterministic- and
stochastic-optimal solutions. Moreover, the stochastic oper-
ating scenario should include additional parameters such as
heel and pitch angles and speed, so as to handle a more
realistic case.
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