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Abstract—During the last few years a wide range of algo-
rithms and devices have been made available to easily acquire
range images. To this extent, the increasing abundance of depth
data boosts the need for reliable and unsupervised analysis
techniques, spanning from part registration to automated
segmentation. In this context, we focus on the recognition of
known objects in cluttered and incomplete 3D scans. Fitting a
model to a scene is a very important task in many scenarios
such as industrial inspection, scene understanding and even
gaming. For this reason, this problem has been extensively
tackled in literature. Nevertheless, while many descriptor-based
approaches have been proposed, a number of hurdles still
hinder the use of global techniques. In this paper we try to offer
a different perspective on the topic. Specifically, we adopt an
evolutionary selection algorithm in order to extend the scope
of local descriptors to satisfy global pairwise constraints. In
addition, the very same technique is also used to shift from an
initial sparse correspondence to a dense matching. This leads to
a novel pipeline for 3D object recognition, which is validated
with an extensive set of experiments and comparisons with
recent well-known feature-based approaches.

Keywords-Object Recognition; Rigid Alignment; Game The-
ory; Object in Clutter;

I. INTRODUCTION

In the recent past, the acquisition of 3D data was only
viable for research labs or professionals that could afford
to invest in expensive and difficult to handle high-end
hardware. However, due to both technological advances and
increased market demand, this scenario has been altered
significantly: Semi-professional range scanners can be found
at the same price level of a standard workstation, widely
available software stacks can be used to obtain reasonable
results even with cheap webcams, and, finally, range imaging
capabilities have been introduced even in very low-end
devices such as game controllers. Given this trend, it is safe
to forecast that range scans will be so easy to acquire that
they will complement or even replace traditional intensity
based imaging in many computer vision applications. The
added benefit of depth information can indeed enhance the
reliability of most inspection and recognition tasks, as well
as providing robust cues for scene understanding or pose
estimation. Many of these activities include fitting a known
model to a scene as a fundamental step. For instance, a setup
for in-line quality control within a production line, could
need to locate the manufactured objects that are meant to be

Figure 1. A typical 3D object recognition scenario. Clutter of the scene
and occlusion due to the geometry of the ranging sensor seriously hinder
the ability of both global and feature-based techniques to spot the model.

measured [1]. Moreover, a range-based SLAM system [2],
can exploit the position of known 3D reference objects
to achieve a more precise and robust robot localization.
Finally, non-rigid fitting could be used to recognize hand
or whole-body gestures in next generation interactive games
or novel man-machine interfaces [3]. The matching problem
in 3D scenes shares many aspects with object recognition
and location in 2D images: The common goal is to find
the relation between a model and its transformed instance
(if any) in the scene. In both cases, transformations could
include uniform and non-uniform scaling, differences in
pose or partial modification of the shape. They also share
common hurdles, such as measurement errors on intensities
or point positions, and indirect changes in the appearance
due to occlusion or the simultaneous presence in the scene
of extraneous objects that can act as distractions. Feature-
based approaches, both in 2D and in 3D, adopt descriptors
that are associated to single points respectively on the image
or on the object surface. In principle, each feature can be
matched individually by comparing the descriptors, which
of course decouples the effect of partial occlusion. In the
2D domain, intensity based descriptors such as SIFT [4]
have proven to be very distinctive and be able to perform
very well even with naive matching methods that do not
include any global information [5]. However, the problem
of balancing local and global robustness is more binding
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Figure 2. An overview of the object recognition pipeline presented (see text for description).

with 3D scenes than with images, as no natural scalar field
is available on surfaces and thus feature descriptors tend
to be less distinctive. In practice, global or semi-global
inlier selection techniques are often used to avoid wrong
correspondences. This, while making the whole process
more robust to a moderate number of outliers, could in-
troduce additional weaknesses. For instance, if a RANSAC-
like inlier selection is applied, occlusion coupled with the
presence of clutter (i.e., unrelated objects in the scene) can
easily lower the probability for the process to find the correct
match. The limited distinctiveness of surface features can
be tackled by introducing scalar quantities computed over
the local surface area. This is the case, for instance, with
values such as mean curvature, Gaussian curvature or shape
index and curvedness, which can be constructed in order
to classify surface patches into types such as pits, peaks
or saddles [6]. Unfortunately, this kind of characterization
has proven to be not very selective for matching purposes,
since it is frequent to obtain similar values in many different
locations. Another approach is to augment the point data
with additional scalar values that can be obtained during
the acquisition process. To this extent, the use of natural
textures coming from the scanned object have shown to
allow good performance since they show high variability
and can be used to compute descriptors similar to those
usually adopted in the 2D domain [7]. Still, textures cannot
be obtained from all the surface digitizing techniques and,
even when available, their usability for descriptor extraction
strongly depends on the appearance of the scanned object. To
overcome the limitations of scalar descriptors, methods that
gather information from the whole neighborhood of each
point to characterize have been introduced. Such methods
can be roughly classified in approaches that define a full
reference frame for each point (for instance, by using PCA)
and techniques that only need a reference axis (usually some
kind of normal direction for the point). When a full reference
frame is available it is possible to build very discriminative
descriptors [8], [9]. Unfortunately, noise and differences
in the mesh could lead to instabilities in the reference
frame, and thus to a brittle descriptor. By converse, methods
that just require a reference axis (and are thus invariant

to the rotation of the frame) trade some descriptiveness
to gain greater robustness. These latter techniques almost
invariably build histograms based on some properties of
points falling in a cylindrical volume centered and aligned
to the reference axis. The most popular histogram-based
approach is certainly Spin Images [10], but many others have
been proposed in literature [11], [12]. Lately, an approach
that aims to retain the advantages of both full reference
frames and histograms has been introduced [13]. Other re-
cent contributions include scale invariant detectors [14], [15]
and tensor-based descriptors [16]. Any of these interest point
descriptors can be used to find correspondences between a
model and a 3D scene that could possibly contain it. Most
of the cited papers, in addition to introducing the descriptor
itself, propose some matching technique. These span from
very naive approaches, such as associating each point in the
model with the point in the scene having the most similar
descriptor, to more advanced techniques such as customized
flavors of PROSAC and specialized keypoint matchers that
exploit locally fitted surfaces for computing depth values to
use as feature components [17].

In this paper we introduce a novel feature-based 3D object
recognition pipeline crafted to deal in a robust manner with
both strong occlusion and clutter. This happens by adopting
a histogram-based local surface descriptor to find a set of
matching candidates among a selection of relevant points
on the model and the scene. Such candidates are then
let to compete in a non-cooperative game where payoffs
are proportional to the degree of Euclidean compatibility
between them. This leads to a smaller set of sparse but
reliable surviving matches which, in turn, will be used as
the seeds for an additional game aimed at the selection of
a denser population. While the use of Game Theory for
matching has already been explored [18], the contribution
of this paper is threefold. It introduces a novel pipeline that
outperforms the state-of-the-art for 3D object recognition
in clutter. Further, it suggests a simple but general rule for
samples selection for the purpose of recognition. Finally, it
defines a new kind of game for building a dense surface
correspondence starting from a sparse set of pivot points,
which can be useful also for other matching techniques.



II. A GAME-THEORETIC PIPELINE FOR RECOGNITION

Following [19], we base our matching framework on the
recently introduced Game-Theoretic techniques for inlier se-
lection. The complete pipeline we are proposing is made up
of a preprocessing step and two non-cooperative games (see
Fig. 2). The preprocessing is performed both on the model
and on the scene. This step involves an initial selection of
relevant points on the respective surfaces. The relevance
criteria will be explained in the next section, however, in
this context the general meaning of the culling is to avoid
surface patches that are not significant from a matching
standing point, such as flat areas. All the interest points on
the model are kept while those on the scene are uniformly
subsampled. This makes sense for many reasons. In many
applications the set of models does not change in time, and
thus descriptors must be computed just once. In addition,
as explained in the following sections, the direction of the
matching will be from the scene to the model and having less
source than target points allows the game to proceed faster
without compromising accuracy. Finally, the model tends to
be measured with greater accuracy (either because more time
can be spent on it or because it comes from a CAD model).
A descriptor is computed for all the retained points, and
these are used to build the initial candidates that will be fed
to two matching games. The games are played respectively
to build a coarse initial set of fiducial correspondences and to
make those into dense matches by exploiting neighborhood
relationships.

In general, a matching game [19] can be built by defin-
ing just four basic entities: a set of model points M , a
set of data points D, a set of candidate correspondences
S ⊆M ×D and a pairwise compatibility function between
them Π : S × S → R+. The goal of the gameplay is to
operate a (natural) selection among the elements in the initial
set S. This happens by setting up a non-cooperative game
where the set S represents the available strategies and Π
the payoffs between them. In this game, a real-valued vector
x = (x1, . . . , x|S|)

T that lies in the |S|-dimensional standard
simplex

∆|S| =

x ∈ IR|S| : xi ≥ 0, i = 1 . . . |S|,
|S|∑
i=1

xi = 1


represents the amount of population that plays each strategy
i at a given time. The game starts by setting the initial
population around the barycenter (to be fair with respect
to each strategy). Then, the population can be evolved at
discrete steps by applying the replicator dynamics equation:

xi(t+ 1) = xi(t)
(Πx(t))i

x(t)TΠx(t)
(1)

where Π is a matrix that assigns to row i and column j the
payoff (compatibility) between strategies (correspondences)

i and j. Under very weak assumptions it can be shown
that such dynamics must converge (in an infinite time)
to a Nash equilibrium, i.e., a point in the simplex where
the average payoff obtained by the population is a local
maximum constant for each strategy. In addition, the values
of the elements of x are proportional to the degree of
compatibility of each strategy with the equilibrium [19]. In
practice, a much faster convergence to the equilibrium can be
obtained by replacing the iteration in equation (1) with the
adaptive exponential replicator dynamics introduced in [20].
Since we defined the payoff as the compatibility between
candidates, these are all desirable properties from a selection
standpoint. In our context, M and D always correspond to
the retained model and scene points, while S and Π will
be defined differently for the sparse and dense matching
game. Specifically, for the sparse game the construction of
S will be driven by descriptor similarity, whereas positional
information can be used in the segmentation game. Likewise,
the payoff Π will be proportional to the different notions of
compatibility.

A. Feature Detection and Description

For both efficiency and robustness reasons, the proposed
matching technique works on a subset of the model and
scene data. First, a culling of all the vertices is per-
formed. This happens by computing for each point a single-
component Integral Hash [21] at a given support scale σ, and
thus retaining only those samples that obtain a negative value
(i.e., that belongs to a concave surface patch). In practice,
this means that we are avoiding flat and convex areas which
we experimented to be less distinctive. By modulating the
value of σ a more or less selective sample selection can
be made (see Fig. 3). All the model relevant points are
kept. By contrast, an optional uniform subsampling can be
performed on the relevant points in the scene. Finally, a
descriptor vector must be computed for each vertex to be
matched. To this extent, any of the descriptors discussed
in the introduction could be used; however, after an initial
round of tests, SHOT [13] was chosen as it obtains the best
performance over the whole pipeline. In the experimental
section both the influence of the relevant point selection and
of the adopted descriptor are studied.

B. Sparse Matching Game

In this matching game the set of candidates S is built
by associating each reference point in the scene with the k
nearest points in the model in terms of the descriptor:

S = {(a, b) ∈ D ×M |b ∈ dnk(a)}, (2)

where dnk(a) is the set of the k model vertices with
the nearest descriptor with respect to the descriptor of a.
In practice, this means that each sample in the scene is
considered to be a possible match with samples in the model
that exhibit similar surface characteristics, and we limit the



Figure 3. In order to avoid mismatches and reduce the convergence time it is important to use only relevant points. Model vertices selected with a σ
respectively equal to 8, 5 and 2 times the median model edge are shown from left to right.

number of “attempts” to k. It should be noted that candidates
are built from scene to model. Since we are interested in
finding a correspondence between the model and part of
the surface in the scene, we are looking for a subset of
candidates that enforce the Euclidean rigidity constraint.
Such candidates are likely to lay on the same surface both in
the scene and in the model and thus to be a viable solution.
To this extent, we define this distance measure between pairs
of strategies in S as

δ((a1, b1), (a2, b2)) =
min(|a1 − a2|, |b1 − b2|)
max(|a1 − a2|, |b1 − b2|)

(3)

where a1, a2, b1 and b2 are respectively the two model
and scene vertices in the compared strategies. The value
of δ will be 1 if the corresponding source and destination
points are separated by exactly the same Euclidean distance.
By contrast, δ will be small when the two pairs exhibit
very different distances. This kind of check will succeed
with correct pairs and will give false positives only for a
small amount of cases, those preserving the rigid constraint
by chance. However, since our game is seeking for a large
group of candidates with large mutual payoff, such sneaky
outliers will be filtered out with high probability by the other
strategies that participate to the Nash equilibrium. Finally,
we also want to avoid many-to-many matches, since we do
not expect any point in the scene to correspond to more than
one point in the model. This can be done easily by forcing to
0 the compatibility between candidates that share the same
source or destination vertex [19]. Thus, the final payoff for
the sparse matching game that we are defining will be

Π =

{
δ((a1, b1), (a2, b2)) if a1 6= a2 and b1 6= b2

0 otherwise
(4)

Once the candidate set and the payoff matrix are built, the
game is started from the barycenter of the simplex: when
a stable state is reached, all the strategies supported by a
large percentage of the population (above a threshold based
on the most played strategy) are considered non-extinct and
retained as correct matches (see Fig. 4). If the surviving
matches are more than a fixed minimum (set to 8 in our

experiments), then the object is recognized and its pose can
be computed.

C. Dense Matching Game

If the matching game succeeds, then a fiducial set of
correspondences has been found; it would be interesting
to use these matches as a seed for segmenting the surface
belonging to the model from the scene. In most cases,
growing from the fiducial points to the connected part of
the range surface would be enough. However, in cluttered
range images the unintentional merging between surfaces
of different objects is quite frequent, thus a better selection
mechanism could be useful. In order to demonstrate the flex-
ibility of the Game-Theoretic framework we define another
type of game to solve these problems (albeit other more
direct solutions are also possible). We start by using the
initial correspondences to estimate the rigid transformation
between the model and the scene using the closed form
method proposed in [22]. The computed transformation is
then used to register the model within the scene coordinate
system. At this point, if the initial matches are correct, the
model vertex corresponding to each scene point should be
in its neighborhood. For this reason we define the set of
candidates S as

S′ = {(a, b) ∈ D ×M |b ∈ enk(a)} (5)

where enk(a) is the set of the k nearest model vertices
with respect to the Euclidean distance from a. Note that
since we trust the alignment to be good (even if it is not
perfect) we do not need point descriptors anymore. We want
to enforce the rigidity constraint for this game as well, thus
the compatibility δ defined in the previous game could still
be used. However we would like to apply two modifications
to the payoff function. The first one is the introduction of
an exponent α to the measured compatibility. This is needed
because within this game all the points are very close to
each other and small variations in the position of a point
in the model and its scene correspondence can easily lead
to low compatibility. The second modification is related to
the observation that we are interested in operating a model-
driven segmentation of the scene, thus we are not really



Figure 4. An example of the evolutionary process (with real data). A set of 8 matching candidates is chosen (upper left), a payoff matrix is built to
enforce their respective Euclidean constraints (upper right, note that cells associated to many-to-many matches are set to 0) and the replicator dynamics
are executed (bottom graph). At the start of the process the population is set around the barycenter (at 0 iterations). This means that initially the vector x
represents a quasi-uniform probability distribution. After a few evolutionary iterations the matching candidate B2 (cyan) is extinct. This is to be expected
since it is a clearly wrong correspondence and its payoff with respect to the other strategies is very low (see the payoff matrix). After a few more iterations,
strategy A1 vanishes as well. It should be noted that strategies D4/D5 and E6/E7 are mutually exclusive, since they share the same scene vertex. In fact,
after an initial plateau, the demise of A1 breaks the tie and finally E6 prevails over E7 and D4 over D5. After just 30 iterations the process stabilizes and
only 4 strategies (corresponding to the correct matches) survive.

looking for a one-to-one correspondence between points, but
rather we are trying to match each vertex in the scene to at
least one reasonable vertex in the model to which it belongs.
To this extent, the one-to-one constraint enforced in the
previous game can be relaxed to a many-to-one constraint
and the payoff function can be defined as

Π′ =

{
δ((a1, b1), (a2, b2))

α if a1 6= a2

0 otherwise
(6)

Again, this segmentation game can be played by starting
from the barycenter of the standard simplex and letting the
population evolve by means of appropriate dynamics.

III. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
pipeline we performed a wide range of tests and comparisons
with recent techniques. To offer a fair comparison we used
the model/scene dataset adopted in [14], [16], [17]. This
dataset is composed of five high resolution models scanned
from real objects (chef, dino1, dino2, chicken and rhino),
plus about two hundred range scans of these objects under
various conditions of occlusion (due to the overlap of objects

and limits on the field of view of the sensor) and clutter (due
to the presence of many objects in the scene). All the tests
were performed on a standard desktop PC equipped with a
Core Duo processor clocked at 1.6Ghz. The evolutionary
process makes use of the adaptive exponential replicator
dynamics [20]. The minimum number of matches to assume
the model as recognized in the scene was 8. The value of α
for the segmentation game was 0.2. For the sparse matching
game, the SHOT descriptor [13] was used.

A. Comparison with the State-of-the-art

In Fig. 5 we compare our results in terms of recog-
nition rate with recent state-of-the-art algorithms (respec-
tively [14], [16], [17]) and with the well-known 3D Spin
Image matching technique [10], which is often used as a
baseline. Looking at the recognition rate with respect to
model occlusion, the proposed pipeline outperforms even
the most recent techniques. Regarding the evaluation of
the effects of clutter we could compare our algorithm only
to [14], since an implementation for the other approaches
and the data they used were not available. Still, it is apparent
that the Game-Theoretic approach obtains good recognition
with uniform performance. Some examples of critical scenes
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Figure 5. In the top row the recognition rate of our pipeline is compared with state-of-the-art techniques, which are outperformed with respect to both
occlusion and clutter. In the bottom row the contribution of each part of the overall approach is tested separately (see text for details).

where the proposed technique fixes matches missed by the
other methods are shown in Fig. 7. The behavior with respect
to false positives has not been plotted since the proposed
pipeline does not get any throughout the whole dataset. In
the second row of Fig. 5 several combinations of components
of the pipeline are evaluated one at a time in order to
shape their respective contribution. Specifically, we show
the results obtained using the same descriptor [13] with
the classical matcher proposed by Lowe [5] (Lowe-SHOT),
the Game-Theoretic matcher without operating the initial
relevance-based sampling (GT-Uniform), the descriptors and
matching proposed in [21] (Integral-Hashes) and finally the
full proposed pipeline (GT-Relevant). It is apparent that the
proposed pipeline only works with all the components in
place (note that with these latter experiments the sampling
of the plots is more dense).

B. Resilience to Noise

All the experiments so far have been done using a dense
model and slightly less dense scenes produced with a range
scanner. Although there is not an exact correspondence
between model and scenes, they are still very similar by con-
struction. It would be interesting to study the performance of
the proposed method in presence of positional noise. To do
so, we added Gaussian displacement of varying intensity to
each vertex in the scene. In Fig. 6 the results obtained with
two different SHOT parameterizations are shown. As ex-
pected, performance gets lower as the noise level increases;

still, reasonable recognition rates are maintained also with
a moderate amount of noise (with standard deviation equal
to 30% the median edge length).

C. Sparse to Dense Matching

An example of the dense matching game used to segment
the parts of the scene belonging to the model is shown in the
last row of Fig. 7. Segmented points are highlighted both on
the model and on the scene. In this case the naive growing
approach would have failed since in the range scene the
chef’s foot is partially merged with the hind foot boundaries
of dino1.
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respect to increasing positional noise applied to the scene.



Figure 7. In the first and second rows we show an example of models correctly matched in scenes that break the method by Mian et al. (the chicken
in the first row has been missed) and the method by Bariya-Nishino (the chef in the second row has been missed). In the third row we show the results
obtained by playing a segmentation game (right) starting with the matches produced by a sparse game (left).

D. Performance Considerations

We did not systematically evaluate the performance of
the proposed pipeline. In practice, the most demanding step
from a computational point of view is the evolutionary
process. Since this is an iterative process, it is difficult to
give an upper bound for its convergence time. However, the
time required for each iteration is roughly proportional to
the square of the number of strategies, which in turn means
that the overall complexity could reach O(n4) with respect
to the number of mesh points. However, since only the initial
subset of strategies is used, the actual complexity is much
lower and can be controlled by the parameter k (described
in section 2). Empirically we always observed convergence
of the process within 50 iterations (tens of seconds).

IV. CONCLUSIONS AND FUTURE WORK

We described and empirically evaluated a novel pipeline
for model-based 3D object recognition and segmentation in
cluttered range scans. The pipeline starts with the detection
of distinctive keypoints in the scene, which in turn is
composed of a relevance filter, a subsampling step and

the calculation of a descriptor for each sample kept. Such
keypoints are then pairwise matched with all the relevant
points of the model and a set of candidate pairings is
obtained. Finally, two non-cooperative games are played: a
rigid-matching game and a dense-growing game. The first
one performs the actual recognition step and returns a sparse
set of reliable matches. The second game expands these
matches to segment all the surface patches in the scene
that are compatible with the model. The overall approach
combines a simple but effective relevance sampling schema
with a recent local surface descriptor and with techniques
borrowed from the emerging field of Game-Theoretic inlier
selection. An extensive experimental evaluation shows that
the proposed method outperforms recently proposed state-
of-the art techniques on the same dataset. The contribu-
tion of the sampling schema is highlighted by testing the
performance of the same pipeline leaving out this step;
moreover, different keypoints descriptors are shown to give
worse results. Finally, resilience to noise and the ability
to obtain dense correspondences are evaluated individually
obtaining encouraging results. The running time of the



matching algorithm is in line with the techniques currently
found in literature. In the immediate future we are aiming at
the extension of the proposed framework to both non-rigid
and scale-invariant object recognition. We believe that such
an extension could take place by introducing in the payoff
function of the selection game a measure taking into account
the geodesic path between the pairs of matching candidates,
rather than attempting to preserve their Euclidean distance.
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