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Abstract. A wide range of cheap and simple to use 3D scanning devices
has recently been introduced in the market. These tools are no longer
addressed to research labs and highly skilled professionals. By converse,
they are mostly designed to allow inexperienced users to easily and in-
dependently acquire surfaces and whole objects. In this scenario, the
demand for automatic or semi-automatic algorithms for 3D data pro-
cessing is increasing. Specifically, in this paper we concentrate on the
segmentation task applied to the acquired surfaces. Such a problem is
well known to be ill-defined both for 2D images and 3D objects. In fact,
even with a perfect understanding of the scene, many different and in-
compatible semantic or syntactic segmentations can exist together. For
this reasons, we refrain from any attempt to offer an automatic solu-
tion. Instead we introduce a semi-supervised procedure that exploits an
initial set of seeds selected by the user. In our framework segmentation
happens by iteratively visiting a weighted graph representation of the
surface starting from the supplied seeds. The assignment of each element
is driven by a greedy approach that accounts for the curvature between
adjacent triangles. The proposed technique does not require to perform
edge detection or to fit parametrized surfaces and its implementation is
very straightforward. Still, despite its simplicity, tests made on scanned
3D objects show its effectiveness and easiness of use.

1 Introduction

Segmentation is an important preliminary task in many 2D and 3D data process-
ing pipelines. For instance, splitting an image or a 3D object in smaller parts is
very useful to perform high-level recognition [1, 2], reverse engineering [3, 4] and
even tracking [5]. Of course, the expected outcome of a segmentation procedure
is different depending on the intended use of the resulting parts. If the goal is
to produce a set of image macro pixels, segments will be searched at a purely
syntactic level, grouping together pixels of uniform color or texture, regardless of
their belonging to one object or another. By contrast, different scenarios require
a more semantical splitting, with the aim of separating foreground from back-
ground or finding the boundaries of the objects found in the scene. Of course
these approaches tend to be more specialized, since the cues to exploit strongly
depend on the problem context and on the availability of humans in the loop.

When dealing with the 3D domain, segmentation is mostly targeted at split-
ting an object or a surface into subdomains that can be later interpreted as
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parametrized primitives. The complexity of such primitives can range from ba-
sic items, such as planes, cylinders or spheres, to complete parametrized models,
depending on the overall goal of the pipeline. Simple primitives are fitted to the
segmented parts mainly for object simplification [6, 7], while completed models
can be used for direct 3D object recognition with resilience to clutter [8] or in-
variance to scale [9]. Finally, another important application that needs surface
decomposition is the angle and distance-preserving piecewise parametrization
needed to apply textures to objects [10].

Surface segmentation can happen through many different methods. Some
of them use standard clustering techniques or borrow segmentation procedures
from the 2D domain, other exploit graph partitioning algorithms, shape fitting
or even the distribution of symmetry planes over watertight objects.

Shlafman at al. propose to use a variation of K-means to group the triangles
of the mesh into clusters [11]. This is a quite direct adaptation: first the user
specify the desired number of clusters (k), then the process start by randomly
selecting a set of k well spaced seed triangles and it iterates by alternating an
assignment step (where each non-seed triangle is assigned to the nearest seed)
and an adjustment step (where new seeds are selected by picking the triangle
nearest to the center of each cluster).

Another classical technique is adapted by Moumoun et al., that suggests the
use the Watershed principle [12] on a hierarchical transformation of connected
faces structure based on the principal curvature. An interesting perspective on
3D segmentation is supplied by Podolak et al. [13], whose solution exploits the
relation between mesh elements and the symmetry planes of the whole object.

Katz et al. [13] split the problem into two separate steps: first a probabilistic
clustering is used in order to obtain meaningful but fuzzy components, then
exact boundaries are constructed by assigning shared faces to the final cluster.
A couple of years later, the same authors present an additional hierarchical
method [14] that performs three steps: the transformation of the surface into a
pose insensitive representation by mean of Multi-Dimensional Scaling (MDS);
the localization of prominent feature points to be used as seeds; the extraction
of clusters by refinement of core components obtained using spherical mirroring.

Mortara et al. [15] propose a multi-scale method based on blowing bubbles.
The surface segmentation happens by clustering vertices with respect to their
morphological behavior at different scales. This is done by centering on each
vertex spheres of increasing diameter and using the curves resulting by their
intersection with the mesh as a characterizing descriptor for the clustering pro-
cess. Shapira et al. [16] describe a method that exploits the Shape Diameter
Function (SDF), a measure related to the object volume in the neighborhood
of each point that is computed for the barycenter of each triangle. The segmen-
tation procedure relies on a two phase process. In the first phase, a Gaussian
Mixture Model is used to fit k Gaussians to the histogram of all SDF values in
order to produce a probability vector of length k for each triangle indicating its
likelihood to be assigned to each of the SDF clusters. In the second step the
segmentation is refined using the alpha expansion graph-cut algorithm, which is
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used to minimize an energy function that combines the vectors obtained in the
first phase along with boundary smoothness and concaveness.

Attene et al. [17] introduce the use of geometric primitives to drive a hi-
erarchical segmentation. Specifically, at an initial stage each surface triangle
represents a singleton cluster associated to the primitive that best fits it. Such
primitives can be planes, spheres and cylinders. At each step, all the adjacent
clusters are considered for merging and those that can be better approximated
with one of the primitives form a new single cluster. The process stops when
the desired number of segments has been obtained. Lai et al. [18] describe a
procedure based on random walks that operates in two steps. Initially a set of
seeds is chosen and the mesh is over-segmented by assigning each face to the seed
that has the highest probability of reaching it by a random walk. The obtained
segments are then hierarchically merged until the desired number of cluster is
obtained. This is done following an order based on the relative lengths of the
intersections and total perimeters of adjacent segments.

Finally, Golovinskiy and Funkhouser [19] use both normalized cuts and ran-
domized cuts. In a similar manner to [17], normalized cut segmentation happens
by first assigning each face of the mesh to its own cluster and then by merging
them hierarchically in an order determined by the area-normalized cut cost, i.e.
the sum of each segment perimeter (weighted by concavity) divided by its area.
In this way it is possible to obtain segments that exhibit small boundaries along
concave seams while maintaining segments with roughly similar areas. Differ-
ently, randomized cuts segmentation is initially applied to a strongly decimated
mesh, obtaining very large segments. Those segments are then hierarchically
splitted in a top-down manner, starting with all the faces in a single segment.
For each split, a set of randomized cuts is computed over the segment, and the
cut that is most consistent with others in the randomized set is identified. Among
this set of candidates, the one that results in the minimal normalized cut cost is
chosen. In both cases, the process stops when the required number of segments
has been reached.

In this paper we introduce a novel graph-based segmentation approach. Dif-
ferently from other previously proposed algorithms we do not adopt any global
optimization method and we only rely on surface normals. While an initial seed-
ing is required by the user, our approach is very simple to implement and the
experimental validation highlights its speed and its good performance when com-
pared with other graph-based systems.

2 Weighted Graph-Based Seeded Segmentation

Graph-based segmentation has been previously explored by several authors [19,
18, 20]. Most of the approaches found in literature perform some global compu-
tation over the graph in order to evaluate random walk reachability or optimal
cuts. The algorithm presented in this paper, after building a weighted dual graph,
adopts a straightforward greedy approach that directly extends an initial set of
seeds by picking one new vertex at a time.
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(a) (b) (c)

Fig. 1. Steps of the graph creation. From the initial mesh (a) the dual graph is built
creating a vertex for each face and connecting adjacent faces (b). Each edge of this
graph is then weighted according to the dot product between normals of the connected
faces.

2.1 Graph Creation

As for any graph-based mesh segmentation approach our first task is the defini-
tion of an apt graphical model for the surface that will be processed. As shown
in Fig. 1 each node of this graph corresponds to the a triangle of the mesh. There
are no geometrical relations between these node and the absolute position of the
triangles in space. For this reason we do not need any attribute on the graph
nodes. By converse, we are interested in the relations between adjacent faces,
thus we are going to define a scalar attribute for the graph edges. Specifically,
we want to assign to each edge a weight that is monotonical with the “effort”
required to move between the two barycenters of the faces. This effort should be
higher if the triangles exhibit a strong curvature with a short distance between
their centers and it should be low if the opposite happens. To this extent, given
two nodes of the graph associated to faces i and j, we define the weight between
them as:

ω(i, j) =
1− < ni, nj >

|pi − pj |
(1)

where p̄ = (p1, p2...pk) is the vector of the barycenters of the faces and n̄ =
(n1, n2...nk) are the respective normals. < ·, · > denotes the scalar product and
| · | the Euclidean norm.

In Fig. 1 (c) edge weight is represented by using a proportional width in the
drawing of the line between two nodes. It can be seen how edges that connect
faces with stronger curvatures exhibit larger weight.

2.2 Seeding and Greedy Growing

Once the weighted graph has been created, the segmentation can happen. In our
framework the surface is segmented starting from one or more hints provided by
the user. This human hint expresses a binary condition on the mesh by assigning
a small fraction of all the nodes to a set called user selected green nodes and
another small portion to a set called user selected red nodes. We call green nodes
the faces (nodes) belonging to the segment of interest and red nodes the ones
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Algorithm 2.1: Grow(graph, userSelectGreenNodes, userSelectRedNodes)

greenNodes← ∅
redNodes← ∅
unassignedNodes← ∅
seeds← ∅

for each n ∈ graph.nodes

do


if n ∈ userSelectGreenNodes
then seeds = seeds ∪ {< n, green, 0 >}

if n ∈ userSelectRedNodes
then seeds = seeds ∪ {< n, red, 0 >}

unassignedNodes = unassignedNodes ∪ {n}
while seeds 6= ∅

do



s← arg min
seed

seed.w, seed ∈ seeds

if s ∈ unassignedNodes

then



if s.type = green
then greenNodes = greenNodes ∪ {s.n}

if s.type = red
then redNodes = redNodes ∪ {s.n}

unassignedNodes = unassignedNodes \ {s.n}
for each m ∈ graph.neighbors(s.n)

do

{
if m ∈ unassignedNodes
then seeds = seeds ∪ {< m, s.type, ω(s.n,m) >}

Fig. 2. The simple, yet effective, algorithm proposed to iteratively expand the initial
user-specified seeds to cover the whole mesh.

that are not belonging to it, regardless of the fact that those nodes have been
manually or automatically labeled. The proposed algorithm distributes all graph
nodes in the green nodes and red nodes sets in a greedy way.

We define a seed as triple < n, t, w > where n is the graph node referred
by this seed, t is a boolean flag that indicates if n has to be added to green or
red nodes, w is a positive value in R+. At the initialization step, for each initial
green and red node selected by the user, a seed is created and inserted into a
priority queue with an initial weight value w = 0. All nodes are also added to
the unassigned nodes set. At each step, the seed < n, t, w > with lowest value of
w is extracted from the priority queue and its referred node n is added to green
nodes or red nodes according to the seed’s t flag. The node is also removed from
unassigned nodes to ensure that each node is evaluated exactly once during the
execution of the algorithm. For each node n′ ∈ unassigned nodes connected to n
in the graph, a new seed < n′, t′ = t, w′ = ω(n, n′) > is created and added into
the queue. It has to be noted that it is not a direct consequence of such insertion
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Fig. 3. Benchmark evaluation of our approach (WGraph) with respect to manual seg-
mentation (Human) and other segmentation techniques. The used metrics are respec-
tively the Cut Discrepancy (CD), the Hamming Distance (Hamming), the Rand Index
(RI) and the Consistency Error (CE). See the text for details.

that the final type of n′ (either green or red) is determined by the type t′ of
this seed. At any time multiple seeds referring the same node can exist in the
queue, with the only condition that a node type can be set only once. During
the execution of algorithm either the region of green nodes and the region of red
ones expands towards the nodes that would require less weight to be reached.
Once all nodes in the same connected component are visited, the result of this
assignment is shown to the user who can either refine his initial hint or accept
the proposed segmentation. Of course the procedure can be iterated to obtain
an hierarchical segmentation. In any condition, the algorithm will run in O(N)
time since, with the described greedy approach, each node is visited once.

3 Experimental Validation

3.1 Quantitative Evaluation

In order to assess the results obtained by the proposed technique in a quantita-
tive manner some kind of benchmark is needed. We chose to adopt the dataset
and metrics proposed in [21]. Namely, the dataset consists in 380 surface meshes,
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Fig. 4. Qualitative comparisons between the segmentation obtained with our method
(second column) and with a semi-supervised Fitting Primitives respectively with 5
segments (third column) and 10 segments (fourth column). In the first column the
ground truth segmentation is shown.

organized in 19 different object categories. A ground truth of 4300 manually gen-
erated segmentations is supplied. Since the authors provided both the dataset
and the code for running the benchmark, we replicated some of their experi-
ments and added our approach to the set of algorithms to be tested against
the ground truth. The evaluation adopts four different metrics. The first one
is the Cut Discrepancy, that sums the distances from points along the cuts in
the obtained segmentation with respect to the closest cuts in the ground truth
and vice-versa (CD in Fig. 3). The idea is to measure how well the segment
boundaries overlap with the ground truth. The second metric is the Hamming
Distance, that measures the overall region-based difference between two seg-
mentations. In particular we evaluate two directional Hamming Distances, the
missing rate (Hamming Rm in Fig. 3) and the false alarm rate (Hamming Rf in
Fig. 3). In addition also the average between the two is calculated (Hamming Rf

in Fig. 3). The third metric is the Rand Index (RI in Fig. 3), that accounts for
the likelihood that two triangles belong both to the same o to different clusters
in two segmentations. Finally also two Consistency Error metrics are evaluated
to measure a triangle-based compatibility between segments that is neutral to
differences in hierarchical granularity. Specifically the Global Consistency Error
(GCE in Fig. 3), that forces all local refinements to be in the same direction,
and the Local Consistency Error (LCE in Fig. 3), that allows for different re-
finement directions in different parts of the same object (refer to [21] for more
details about these metrics). The compared method were Randomized and Nor-
malized Cuts [19], Shape Diameter Functions [16], Core Extraction [14], Random
Walks [18], Fitting Primitives [17] and KMeans [11]. While most of these method
are not supervised, some required parameters such as the number of segments
to extract or initial seeds. For each approach we used the optimal parameter set
suggested in [21]. In addition also a set of totally human-supervised segmentation
is available in the benchmark. From the results shown in Fig. 3, it is apparent
that the proposed method outperforms all the compared approaches. Of course
this is somewhat expected since we use an initial set of hints supplied by the
user. However the algorithm was always fed with less than 10 seeds, resulting in
just a few seconds of operator time. It is interesting to observe that, even with
this limited user interaction, the performance obtained is on par with the fully
supervised human segmentation.
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Fig. 5. Qualitative comparisons between the supervised segmentation obtained with
our method (second column) and with other state-of-the art unsupervised methods.
Respectively Randomized Cuts (third column) and Normalized Cuts (fourth column).
In the first column the ground truth segmentation is shown.

3.2 Qualitative Evaluation and Running Time

In addition to the quantitative results provided by the benchmark we also present
some sample segmentation images in order to give an insight about how the dif-
ferent methods actually compare from a qualitative point of view. In Fig. 4 we
compare the fully supervised ground truth segmentation (first column) with the
result obtained by our method setting just 2 hint seeds for each segment. We
tried to replicate this result using the interactive Fitting Primitive tool avail-
able from [17], however were not able to obtain a proper segmentation with only
5 clusters (third column), while adding more clusters led the method to over-
segmentation (fourth column). In Fig. 5 comparisons are made with the best
performing automatic approaches. While objects with sharp edges are usually
easily segmented by all methods (teddy bear in the first row), some synthetic
shapes can lead to failures for Randomized Cuts and a slight imprecision for Nor-
malized Cuts (CAD model in the second row). Organic shapes (such as the bird
in the third row and the vase on the fourth) can make it difficult for automatic
algorithm to spot semantically relevant edges.
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Fig. 6. Evaluation of the time required respectively for creating the weighted graph and
to perform a single segmentation on an object. Both scatter-plots relate the execution
time to the number of triangles in the mesh.

Regarding the execution time (Fig. 6), the graph building step is the more
time consuming, but it can always be performed in less than a second even for
large models. The segmentation step itself is very fast and it typically requires
less than 50 milliseconds.

4 Conclusions

In this paper we introduced a simple yet effective segmentation procedure for
3D objects and surfaces. While our method requires an initial set of user hints,
results that are on par with fully supervised segmentations can be obtained even
with a very limited amount of seeds placed without special care by the user.
Moreover the time required to perform a segmentation is in the order of few
millisecond with meshes that count tens of thousands of vertices. This allows for
the inclusion of the method in tools that exploit real-time interactive use. Finally,
the proposed growing algorithm is very simple and can be easily implemented.
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