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ABSTRACT 

Since 1997, the Department of Environmental Sciences of Ca’ Foscari University of 

Venice has undertaken numerous research projects aimed at deepening understanding 

of pedogenic processes in the Dolomites, and at highlighting the fundamental 

contribution that soil science can give to the conservation of natural resources and 

achieve sustainable management of mountain ecosystems. A total of several hundred 

profiles have been described, analyzed and mapped. This paper reports the results 

from the analysis of pedo-environmental characters of profiles developed from 

different parent materials, at altitudes between 1300 m and 2900 m and in different 

conditions of slope, exposure and vegetation cover. Soil forming factors, landforms 

and land surfaces have been interpreted to understand the soil-landscape in the 

mapped areas and to develop a qualitative model of soils geography into the 

Dolomites scenery. The application of land evaluation methods in some of the 
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investigated territories that are subjected to intensive tourist fluxes revealed some 

criticisms. Collected results also highlighted the high environmental heterogeneity of 

soils of  the Dolomites. 

KEYWORDS: Alpine environment, Dolomites, Soil evolution, Pedogenesis model, 

Pedogenic factors, Land evaluation 

1. INTRODUCTION 

The Alpine environment has always attracted human attention, not only for its natural 

aspects, (rocks, glaciers, flora, fauna and streams), but also for aesthetic reasons 

through its peerless sceneries of mountain landscapes, where soils contribute with 

their heterogeneity in morphology, colours and horizons. Soils of the Alpine 

environment occur extensively throughout the major mountain systems of the world, 

such as the Alps, the Andes, the Himalayas and the Rocky Mountains, and to lesser 

degree in other mountainous areas, at elevation ranging between 1500 and 3000 m 

a.s.l.. In Italy their greater extent is in the Alps (Previtali, 2002), but small areas of 

such soils occur also in the Apennines Chain (Baroni et al., 1990). In recent years, 

soils of the Dolomites region, in the eastern Italian Alps, have been studied by several 

scientists (Zilocchi, 2003; Sartori et al., 2005; Bini et al., 2008; Egli et al., 2008; 

Merkli et al., 2009), who outlined soil genesis and evolution under different 

lithological, geomorphologic and climatic conditions. Nevertheless, studies on the 

geographical distribution, pedological features and processes of soils in the alpine 

environment, as well as the development of interpretative schemes of the soil 

variability of the Alps, are far from being complete. 

The Dolomites region, in Northern Italy (the name Dolomites comes from the Triassic 

calcareous rock discovered by the French geologist Dolomieau) is characterized by an 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

enormous variability of soil landscapes, due to the quite young geological structure, to 

different lithological types and to morphological dynamics (Previtali, 2002; Merkli et 

al., 2009). Both geological and climatic conditions, as well as anthropogenic activities 

(e.g. skiing installation, etc.), contribute to landform processes: frequent landslides, 

rock falls and current erosion processes modify the landscape, and influence soil 

formation and evolution (Hall et al., 2002; Egli et al., 2003), besides posing serious 

threats to local people and to tourists. 

The variety of the Dolomites landscape, deriving from the combination of different 

rocks, steep slopes and gentle footslopes, pasture and forest stands or dry and bare 

meadows (Sburlino et al., 1999), is known all over the world, and was recently (2009) 

recognised by the UNESCO as a World Human Heritage. The complexity of the 

geology adds difficulty to the study of the soil cover of the area, but at the same time 

it makes it extremely interesting, and allows a complete panorama of soils in this 

mountain and alpine environment. 

In this work, most effort is concentrated on alpine and subalpine soils located in the 

centre of the Dolomites Group, at elevations ranging between 1500 and 2400 m a.s.l.. 

The main objective of the study is the characterization of the soils of the Dolomites 

mountains. In relation to this objective, it is possible: i) to investigate the role of the 

different soil forming factors and processes in the alpine environment, and ii) to 

develop a qualitative model of soil evolution and geography in the Dolomites 

landscape. 

Soils are fundamental components of ecosystems. The stability of mountain 

ecosystems depends primarily on soil conservation. Alpine soils are of particular 

concern because of their potential role in neutralizing acid deposition (Rochette et al., 

1988; Briggs et al., 1989), in acting as a sink for atmospheric carbon dioxide (Garlato 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

et al., 2009), and contributing to slope stability and protection from erosion (Harden, 

2001; Bini et al., 2010), through the maintenance of traditional agricultural and forest 

activities. 

A second objective of this study, therefore, is to assess the role and function of soil in 

controlling the geomorphologic fragility of the terrain, where increasing number of 

tourists, changes in land use, and climate change are expected to intensify soil erosion 

(Bosco et al., 2009). This objective may be achieved by evaluating the actual soil 

erosion hazard, and the land suitability for different land uses (e.g. agriculture, 

forestry, pasture, and tourism), thus providing useful tools in soil protection strategies 

and sustainable land planning. 

 

2. STUDY AREA 

  

The Dolomites’ range is located in the northeast region of the Italian Alps (Fig.  1, 

Table 1), where it covers approximately 140,000 ha, including eighteen peaks which 

rise to above 3,000 meters. Elevation ranges between 900 and 3400 m (Marmolada 

Glacier). Because of the landscape’s exceptional beauty, the scientific relevance, and 

based on their outstanding universal value, the Dolomites have been added to 

UNESCO's World Heritage List in June 2009. Within the whole area designated by 

UNESCO, six reference sites located in the central part have been selected on the 

basis of their great geological and geomorphologic variability (Bosellini, 1996), with 

a close connection between rocks, landforms, vegetation cover and soil development. 

The selected areas, moreover, also represent some of the most naturalistically and 

economically important areas of the Dolomites, among which Cortina is known as the 

Dolomites’ pearl, one of the most famous tourism places in the world. 
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2.1. GEOLOGY AND GEOMORPHOLOGY 

 

The geology and lithology strongly influence the geomorphology of the studied areas, 

through karst processes (where the mountain ranges consist predominantly of 

limestone and dolomite) and differential erosion processes, enhanced by the high 

variability of rocky outcrops, due to both erosional and tectonic processes (Neri and 

Gianolla, 2007). Yet, the main parent materials outcropping in the six areas can be 

divided into four main lithological domains (Sartori et al., 2005; Neri and Gianolla, 

2007): 

* areas of calcareous rocks highly resistant to erosion; 

* areas of siliceous metamorphic and volcanic and sandstones which can vary from 

resistant to moderately resistant to erosion; 

* areas of outcrops of marls, conglomerates and sandstones which can vary from 

moderately to poorly resistant to erosion;  

* areas of recent (Plio-Pleistocene and Holocene) deposits; glacial, alluvial and 

colluvial materials, which are composed exclusively of calcareous or siliceous 

lithotypes, or of a mixture of them,  with different degrees of heterogeneity (Corsini et 

al., 2001).  

Some of the study areas (e.g. Cortina) also show important examples of different 

types of ancient and active landslides (collapse, overturning, sliding), which have a 

primary role in the morphological evolution of the landscape (Neri and Gianolla, 

2007), powerfully affecting the main course of the principal streams that cross the 

region (Corsini et al., 2001). 

Past and present climatic conditions also contribute to landscape evolution in the 
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Dolomites areas. In particular, Quaternary glaciers, and fluvioglacial systems 

connected with them, were responsible for typical morphologies related to both 

erosion processes, as glacial cirques and hanging valleys, and depositional forms such 

as front and lateral moraines, and alluvial terraces (Corsini et al., 2000; Soldati et al., 

2004). Therefore, the resulting landforms are strongly related to the activity of 

glaciers in the Late Pleistocene and Holocene (Corsini et al., 2001; Soldati et al., 

2004), and their age can be estimated to be in the range between 16,000 and 12,000 

years B.C. (Merkli et al., 2009). This relatively short geomorphologic evolution 

directly influences the age of the soils, which started to form after the Last Glacial 

Maximun (LGM)  (Egli et al., 2008; Favilli et al., 2010). 

 

2.2. CLIMATE  

 

 Depending on the distance from the North Adriatic Sea, the Dolomites can be divided 

into two different areas: the Internal and the External Dolomites (Pignatti, 1994). This 

distinction is due to the fact that humid winds coming from the Adriatic Sea, affecting 

the southern side of the Alps, produce fogs and intense rains. These present their 

maximum effects on the first peaks of Pre-Alps, diminishing little by little on the 

External Dolomites, while they hardly involve the internal ones, which present a drier 

climate. Consequently, the Internal Dolomites are characterized by a continental 

climate (maP= 1238 mm/year, maT= 6.2°C; rainfall is distributed with two peaks in 

spring and autumn) (Fig. 2a). The External Dolomites, instead, are characterized by a 

sub-oceanic climate (maP= 1422 mm/year, maT=5.2°C; rainfall is distributed during 

the months from April to November) (Fig.  2b). Nearly all the areas investigated are 

located within the Internal Dolomites, with the exception of Valzanca and Valsorda 
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(in the Paneveggio-Pale di San Martino Regional Park), Val Visdende and the far 

south-eastern area of the territory of Cortina d’Ampezzo, which present the 

characteristics of the external ranges (Del Favero, 2001). 

 

2.3 VEGETATION COVER 

 

Relevant changes in the vegetation cover, in particular forests, are recorded in the two 

parts of the Dolomites range (Sburlino et al., 1999; Bini et al., 2002). In fact, the 

Internal Dolomites are dominated by coniferous stands composed of spruce, larch and 

Swiss pine (Pignatti, 1994), an arctic-alpine species residual from the Quaternary 

glaciations. The timberline, in the Internal Dolomites, rises up to 2400 m a.s.l. In the 

External Dolomites, in contrast, forests are composed of mixed softwood (spruce) and 

hardwood stands (beech), and the timberline is just at 1900 m a.s.l.. 

Pioneer communities of mountain pine (Pinus mugo Turra) are also quite widespread 

on rocky and not stabilized debris slopes, subjected to periodic landslides and 

avalanches. However, anthropic activity has broadly affected all the forests of the 

Eastern Alps, through the elimination of beech and silver fir in favour of spruce and 

pastures.   

In the whole terrain examined, woods alternate with partly mown mountain meadows. 

As in the rest of the Alps, mown meadows are abandoned, rapidly disappearing 

ecosystems (Poldini and Bressan, 2007), and tend to turn into woods once more 

(Poldini and Oriolo, 1995). In numerous areas located above the timberline, at 

elevations between 2000 and 2500 m, vegetation is characterized by the dominance of 

pasture and shrubs. Marshlands, dominated by the typical vegetation of bogs with 

shallow water, are quite widespread in the investigated terrain, although of limited 
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extent. 

3. MATERIALS AND METHODS 

3.1 SOIL SURVEY, ANALYSIS AND CLASSIFICATION 

 

In the framework of studies carried out by our department on Alpine soils, since the 

1997 a soil inventory was carried out in six selected areas of the Dolomites range. In 

each study area, investigation started with the interpretation of aerial photographs, and 

the identification of different landscape units. Afterwards, for each unit, 

representative soil profiles were described and sampled following the Italian 

guidelines (Costantini, 2007). The soil profiles were selected during an inventory 

giving an overview of the different soil types, their characteristics and variability in 

each area. Soil pits were dug from the topsoil down to the C horizon. A total of 225 

sites were investigated. 

All samples have been analyzed according to the procedures described by the manuals 

of the Italian Ministry of Agriculture and Forestry. Soil samples were air-dried and 

sieved to 2 mm. On the fine fraction the following parameters were determined: pH in 

water and in KCl (electrometric method described by Violante and Adamo (2000)), 

carbonates (gas-volumetric measurement by calcimetry, method described by Boero 

(2000)), organic carbon and organic matter (oxidation at the temperature of reaction 

method, described by Walkley and Black (1934) and by Sequi and De Nobili (2000), 

cation exchange capacity, total acidity, base saturation (Barium Chloride–

Triethanolamine at pH 8.1 procedure, described by Gessa and Ciavatta (2000) and 

texture (pipette method preceded by destruction of organic matter pretreatment, 

described by Genevini et al. (1994)).  
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Climate data provided by ARPAV Meteorological Service Center in Teolo (PD) and 

referring to the period 1995-2004 have been used. For each selected site, data refer to 

stations located at altitudes both higher and lower than 2000 m a.s.l., in order to take 

into account the high altitudinal range of the investigated areas. Data on monthly 

temperatures and precipitations for the various areas have been elaborated with the 

Thornthwaite and Mather model (1957), modified by Armiraglio et al. (2003) to 

calculate the soil water balance. 

Based on the water balance, soil moisture and temperature regimes have been defined 

according to the criteria of the latest edition of the American System of Soil 

Classification (Soil Survey Staff, 2010). All profiles described and analyzed from 

1997 to 2009 were reclassified on the basis of reviewed soil temperature and moisture 

regimes, field observations and chemical and physical analyses.  

 

3.2 STATISTICAL DESIGN  

 

Multivariate techniques have been applied to investigate the influence of different 

environmental factors on soil geography in the Dolomites mountain area. The location 

of each observation was chosen randomly to sample different mountain ranges, 

elevation, topographic positions and substrates. The data set includes 210 soil profiles 

for which all the necessary pedological and environmental data were available. Data 

related to each profile comprise a total of 8 variables, both discrete and continuous. 

Five of them are local-scale environmental variables: elevation (meters above the sea 

level), exposure (in degrees: North (N) 0° = 360°), slope inclination (in percentage), 

parent material (6 classes) and vegetation cover (7 classes). The other three variables 

are related to soils: classification of soil (10 Suborders), total profile depth 
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(centimeters), total number of horizons (Table 2). 

Four continuous pedological and environmental data (total profile depth, exposure, 

slope and elevation) were analyzed by principal component analysis (PCA), while 

multiple correspondence analysis (MCA) has been used for discrete variables (soil 

classification, vegetation cover, parent material, total number of horizons). A coinertia 

analysis of these two sets of data was then carried out according to the methods 

described by Dolédec and Chessel (1994). A permutation test (also called Monte-

Carlo test, or randomization test) was used to assess the statistical significant 

correlation between the two data sets. All multivariate analyses were carried out by 

using the ADE-4 software package (Thioulouse et al., 1997). 

 

3.3 MAP PROCESSING AND LAND EVALUATION 

 

A conventional soil map (with the original scale of 1:50,000) was produced for each 

of the investigated areas to obtain more information about the soils of the region, and 

to increase the existing soil database (Costantini, 2007).  

Soil maps and thematic maps derived from the previous ones were processed using 

GIS softwares (ArcView3.2; ArcGis 9.3). The thematic maps concerned the most 

significant aspects of the terrain investigated, namely soil erosion risk, forest land use 

and tourism impact. Derived maps were developed applying land evaluation methods 

for specific purposes (F.A.O., 1976; Calzolari et al., 2009). The current method, as 

reported by Calzolari et al. (2009), consists of attributing specific numerical values to 

selected pedological and environmental characters (e.g. profile depth, texture, pH, 

base saturation, bulk density, slope inclination, depth to groundwater, etc.), which 

may constitute a limitation for a given land use of the various land units. The number 
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of the selected characters may change depending on the land use under consideration. 

The values attributed to single characters of each land unit are subdivided in classes; 

their summation is compared with the values of the classes of the system utilized. The 

comparison between the resulting value of all characters and the classes (usually four) 

defined by the method, allows attributing each land unit to a specific class: for 

example, very suitable (S1), moderately suitable (S2), scarcely suitable (S3), or not 

suitable (N) class of the selected utilization. 

To evaluate the soil erosion risk of the examined area, the original CORINE model 

formulation (Briggs et al., 1989) has been modified by introducing a geological 

factor, besides the land components usually considered (climate, soils, topography, 

land cover), in order to take into account the heterogeneous lithological composition 

of rock outcrops in the Dolomites. Considering the terrain to be highly prone to 

erosion, to the four risk classes suggested by the original CORINE method a fifth 

class  (very high risk) was added. Once estimated the various factors involved in 

erosion phenomena (climate, geology, soil, topography), the PSER (Potential Soil 

Erosion Risk) was calculated as follows: 

 

PSER = soil erodibility * rain erosivity * slope index. 

 

The Potential Soil Erosion Risk refers to a low land cover and a low level of 

protection practices, and it is expressed by four classes of increasing potential risk, 

from 1 (no PSER) to 4 (high PSER).  

The summation of the land cover effect to the PSER evaluation allows estimating the 

actual soil erosion risk (ASER), as expressed by five classes of increasing risk (from 

absent to very high risk). 
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Land suitability for forestry was evaluated applying the method proposed by Bartelli 

(1978). This method involves attributing numerical estimates to twelve characters 

considered the most important for their influence on forest productivity, namely: soil 

depth, texture, stoniness (field estimate), permeability, available water capacity 

calculated following Armiraglio et al. (2003), drainage, pH, cation exchange capacity 

(laboratory determinations), wood species, dominant tree height (field estimate), 

slope, erosion risk. For the purposes of this research, the method was modified adding 

the parameter "environmental risk", which accounts for the risk of flooding or 

landslides, to the twelve characters considered the original method. For each 

character, scores range from 1 for the most favourable cases to 10 for the worst 

situation. Scores for “erosion” character were assigned using the results of soil 

erosion risk assessment of the land produced by the CORINE method, described 

above. Concerning the wood species to be considered, only species well adapted to 

local climatic and pedological conditions were selected, according to Giordano (2002) 

suggestions: Picea excelsa (Lam.) Link, Pinus cembra L., Larix decidua, Mill.,  Pinus 

mugo Turra and Pinus sylvestris L.. 

Finally, for evaluating the land suitability for tourism, the methodology developed by 

Massidda and Puddu (1997) has been applied. According to these authors, the 

assessment of land suitability for tourism was carried out considering thirteen 

environmental and pedological characters, assigning them different scores, similarly 

to what was previously described for forest suitability evaluation. The selected 

characters are divided into three different groups related to: 

- resources, defined as land characteristics which can be attractive from the 

touristic point of view (soil typology included); 

- management, including characteristics which express how resources are proposed 
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and developed for tourist services; 

- conservation, defined as the sum of characteristics, which define land vulnerability 

(soil features included). 

The allocation of units to different suitability classes is done by assigning a score 

according to a sliding scale from 10, for the best condition, to 1, for the worst one. 

As the use of a parametric evaluation method may involve a subjective approach in 

assessing the weight to be given to each characteristic, the technique of scoring 

must be such as to minimize this subjectivity. Therefore, values assigned to each item 

are converted to ten percent (e.g. 4 becomes 40% = 0.4) and then: 

- a simple arithmetic average of the estimates attributed to resources characters for 

each land unit is calculated; 

- a lowered average of the estimates attributed to management characters for each 

land unit is calculated, counting the lowest score for three times before calculating the 

average; 

- a lowered average of the estimates attributed to conservation requirements for each 

land unit is calculated, counting all the data with a score lower than 4 three times 

before calculating the average. 

The summation of these three average values calculated for each land unit results in a 

single numeric value, which allows attributing the land unit to the specific class of 

suitability for tourism. 

 

4. RESULTS 

 

4.1 PEDOGENIC ENVIRONMENT  
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The USDA Soil Taxonomy system provides a classification of soil types into four 

pedogenic categories: Order, Suborder, Great Group, Subgroup (Soil Survey Staff, 

2010). 

Orders group those soils have or have not specific diagnostic horizons, as an 

expression of pedogenic factors responsible for soil formation. 

Suborders comprehend soils, within each Order, subdivided according to soil 

moisture regimes, parent material and other characters. 

Great Groups include soils of previous categories with specific properties (e.g. 

texture, base saturation, colour, mottles, duripan, etc.).  

Subgroups indicate steps (intergrades) to other major groups. 

In the investigated area, a total of 5 orders, 11 suborders, 17 groups and 38 subgroups 

have been identified (Table 3). Nomenclature follows Latin or Greek roots, with some 

exceptions. In particular, the soil Orders identified are: 

*Entisols: recent soils that do not show any profile development other than a surface 

horizon (A horizon) over the parent material. 

*Inceptisols: soils that form quickly through weathering of parent material; they are 

more developed than Entisols and have a mineral subsurface B horizon, resulting 

from in situ physical alterations and chemical transformations (cambic horizon). 

*Mollisols: soils that have a deep blackish surface horizon (mollic epipedon), 

resulting from long-term accumulation of organic materials. Their parent material is 

typically base-rich and calcareous. 

*Spodosols: soils that have a subsurface B horizon (spodic horizon), enriched in 

humic acids, iron and Al-oxyhydroxides. 

*Histosols: soils that consist primarily of organic materials. 

Lower taxonomic categories reported in Table 3 indicate differences in soil moisture, 
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depth, base saturation and other specific properties of investigated soils. 

Field observations allowed identifying different pedogenic environments at selected 

sites, based on different lithology, morphology, climate and vegetation cover.  

Specifically, the upper parts of the main mountain ranges, located at altitudes above 

2000 m a.s.l., have been distinguished from those located at lower elevations, 

characterized by different soil temperature regimes. More particularly, in the upper 

areas, extending up to 3000 m a.s.l., soils are characterized by cryic temperature 

regime (mean annual soil temperature between 0 and 8 °C , without permafrost) and 

perudic moisture regime (rainfall exceeds evapotranspiration during all months of 

normal years) (Soil Survey Staff, 2010). Since these areas are located, for the most 

part, above the tree line, their vegetation cover consists mainly of alpine grasslands 

and meadows and, at lower elevation, mountain pine or alder, rhododendron and 

sparse coniferous stands. 

Conversely, in the areas located at lower altitudes, between 800 m and 2000 m a.s.l., 

soils are characterized by frigid temperature regime (mean annual temperature 

between 0 and 8 °C, with a difference between mean summer and mean winter soil 

temperature of 6 °C or more) or mesic (mean annual soil temperature between 8 °C 

and 15 °C) and udic (soil moisture control section not dry in any part for as long as 90 

cumulative days in normal years) or perudic moisture regime (Soil Survey Staff, 

2010). The vegetation of these areas consists mainly of forests composed of spruce, 

Swiss pine and silver fir; these forests are replaced by pasture where slopes are gentle, 

and by mountain pine where slopes are more unstable and steep. 

Moreover, two main lithological domains have been distinguished at altitudes both 

higher and lower than 2000 m a.s.l.: mainly calcareous lithotypes (dolomite, 

limestone, calcareous debris, marls) and siliceous lithotypes (sandstones, 
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metamorphic and volcanic rocks and debris). Soils developed from these two different 

lithotypes show very different features and properties, varying from sub-alkaline to 

strongly acidic in reaction, from base saturated to unsaturated, from carbonate-rich to 

completely lacking, etc. Mixed debris creates a sort of continuity between the two 

lithological domains described above. 

The flow diagram in Fig. 3 shows the soil evolution from different parent materials at 

altitude both higher and lower than 2000 m a.s.l.. Specifically:  

- soils at the earliest stages of evolution from mixed debris (in the centre); 

- soils from calcareous parent material (on the left);  

- soils from siliceous parent material (on the right);  

- wetlands soils (at bottom). 

 

4.2 STATISTICAL ANALYSIS 

 

The results of the coinertia analysis indicate that the set of variables explained 60% 

and 22% of pedological variability along axes 1 and 2, respectively. The co-structure 

between the two data sets was significant, as indicated by Monte-Carlo permutation 

test (0.147 P=0.001). 

The graphs in Figure 4 show: 

 the factor loadings, i.e. the correlation between the experimental variables and 

the factors extracted by the Principal Component Analysis (PCA) (ranging 

between – 1, + 1) (Fig. 4 above); 

 the scores calculated by the application of the Multiple Correspondence 

Analysis (MCA) (ranging between - , + ) in the coinertia plane (Fig. 4 

below). 
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The two plots are different, due to graphical reasons, but they have to be interpreted 

simultaneously as the projection plane is the same. Data interpretation needs to keep 

in mind the basic rules of the multivariate analysis. For example, the variables “total 

soil depth” and “elevation” have a high weight in the PCA and are independent each 

other. In the coinertia plane these variables are located in the IV and I quadrants, 

respectively. In the same quadrants of the coinertia plane the qualitative variables 

“coniferous forests” (IV quadrant) and “grasslands” (I quadrant) occur. This indicates 

that these two different kinds of vegetation cover are linked to total soil depth and to 

the elevation, respectively (i.e. coniferous forests are related to deep soils, grasslands 

only to high elevation, irrespective of the soil depth). 

Therefore, as shown in Figure 4 (top), the first axis of variation is indicative of a 

temperature gradient driven by elevation. The second axis of variation corresponds 

primarily to the total profiles depth, influenced by morphological factors, especially 

slope.  

The results revealed that the parameter “exposure” is not related to any other 

parameter. In contrast, elevation is correlated with most of the parameters (total soil 

depth, kind of vegetation, parent material, total number of horizons) (Fig. 4, bottom). 

In particular, total soil depth decreases when elevation increases, being elevation 

negatively correlated with soil depth. At the same time, the total number of horizons 

of each profile increases with total soil depth (H7) (positive correlation) and decreases 

(H1) when elevation is higher (negative correlation). Despite this, profiles with a high 

number of horizons are also positively correlated with high elevation (H7).  

With regard to vegetation cover, grasslands, pastures and shrubs show a positive 

correlation along the first coinertia axis. Coniferous forests, mixed forests and 

meadows, in contrast, show a negative correlation along the same axis. Mixed forests, 
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together with wet meadows, are also negatively correlated along the second axis and, 

consequently, with the total soil profile depth. 

Concerning the parent material, calcareous rocks show both a positive correlation 

along the first coinertia axis, and a negative correlation along the second one. Other 

sedimentary rocks (marlstones, conglomerates and sandstones) show a clear positive 

correlation along the second axis, while unconsolidated material (debris) show, in 

general, a correlation along the first axis. While calcareous, arenaceous and mixed 

debris are negatively related with the first axis, siliceous debris is positively correlated 

along it.  

Suborders of the American Soil Classification System also show some interesting 

correlations along the coinertia axes. Cryods (Subord5) show a clear positive 

correlation along the first axis, while Cryepts (Subord4), conversely, show a clear 

positive correlation along both. Udolls (Subord10) show a high positive correlation 

along the second axis as, to a lesser extent, Saprists (Subord8) and Orthods (Subord7). 

Orthents (Subord3) or Rendolls (Subord2) appear positively and negatively 

correlated, respectively, only along the first axis.  

Orthents and Cryepts show a positive correlation both with calcareous and siliceous 

rocks, while Cryods, Humods and Orthods (Subord5, 6 and 7) are correlated only with 

siliceous parent material. Rendolls seem to be more correlated with calcareous or 

mixed debris than with carbonate rocks. 

Finally, soils showing a correlation along the first axis show also a correlation with 

specific types of vegetation cover: Orthents, Cryepts, Cryods, Humods and Orthods 

are clearly correlated with grassland, pastures and shrubs, while Rendolls are 

correlated especially with meadows and mixed forests.   
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4.3 LAND EVALUATION FOR SPECIFIC PURPOSES - Cortina d’Ampezzo valley 

case study 

 

Current methods of land classification (F.A.O., 1976; Calzolari et al., 2009) for 

specific purposes were applied to the investigated areas, in order to derive maps to be 

used in land planning. The following maps were derived from the soil map: Soil 

Erosion Risk, Land Suitability for Forestry and Land Suitability for Tourism. Full 

information on processed maps is available in Bini et al. (2008) and Zilioli and Bini 

(2009a). As an example of application, the case of Cortina d’Ampezzo territory is 

reported. The soil map of the whole valley, composed of 24 cartographic units  (Table 

4), has been processed in order to derive thematic maps. 

Since the Cortina territory is affected by erosion and intense morphological dynamics, 

attention was focused primarily on the soil erosion risk assessment. The CORINE 

procedure allowed subdivision of the land into 5 classes of increasing risk (Fig.  5).  

 Extremely high erosion risk 

 High erosion risk 

 Moderate erosion risk 

 Low erosion risk 

 No erosion risk 

The evaluation showed that great part of the terrain (50%) is affected by moderate 

erosion risk (Table 5), with 21% affected by extremely high risk, in areas with 

random vegetation cover on loose colluvial materials and steep morphology.  

The units 6, 7, 9-11, 14-19 in Table 4 have been classified as subjected to moderate or 

high soil erosion risk, due to the absence of a continuous vegetation cover and to the 

presence of steep slope, but also to shallow soils. Also the units 20 and 21, with soils 
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developed from marly and clayey debris, showing liquefaction phenomena present 

moderate soil erosion risk. 

The low erosion risk class is composed of five units (8, 12, 13, 22 and 23 in Table 4), 

characterized by gentle slopes, deep soils, and continuous vegetation cover. 

The only unit in the class where soil erosion risk does not occur, is the unit 24, 

characterized by continuous vegetation cover, deep soils, and concave topography. 

A second land classification of the same territory was undertaken to evaluate its 

suitability for forestry. The map resulting from the evaluation procedure, as shown in 

Figure 6, subdivides the land into five items: 

 S1: very suitable areas 

 S2s: moderately suitable areas (soil properties restrictions indicated by the 

letter “s”) 

 S3sc: scarcely suitable areas (soil properties and climate restrictions indicated 

by the letters “s” and “c”)  

 N: not suitable areas 

 NR: not detected areas 

Land suitability for forestry evaluation showed a terrain predominantly not suitable or 

poorly suitable to wood production (Table 5) because of extensive areas located at 

elevation higher than the timberline, on steep slopes and very shallow soils (units 2-7, 

9-11, 13, 14 and 16 in Table 4).  

Some areas resulted not suitable also because of the high flooding and landsliding risk 

(units 20 and 21). Approximately one third of the land, however, presents a good 

suitability for forestry (units 8, 12, 15, 17-19, 22-24 in Table 4), even if partly limited 

by unfavorable soil properties  (mainly shallow soils with low AWC) and topographic 

factors (slopes from moderately to very steep slopes).  
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Finally, a land suitability evaluation for tourism has been carried out. According to 

the procedure suggested by Massidda and Puddu (1997), the investigated terrain has 

been divided into four classes: 

 S1: Very suitable 

 S2: Moderately suitable 

 S3: Scarcely suitable 

 N: Not suitable 

The results, shown in the Land Suitability for Mass Tourism Map (Fig.  7), indicate a 

very low suitability of the land to tourism (Table 5), with restrictions due to the fact 

that the same aspects that make this terrain very attractive from a touristic point of 

view, are also those that make it particularly vulnerable to an excessive anthropic 

pressure, as strong seasonal tourist fluxes.  

Eleven units (unit 24 and units 2-17 in Table 4) resulted not suitable for mass tourism, 

because of very severe limitations due to high elevation, to difficult accessibility and 

the presence of shallow soils prone the erosion (see Fig 5). 

Only four of the remaining units resulted very suitable to mass tourism (units from 20 

to 23 in Table 4), while the other three (units 1, 18 and 19) were classified as 

moderately suitable because, although not particularly vulnerable to anthropic 

pressures, they resulted not very attractive from the touristic point of view.  

 

5. DISCUSSION 

 

5.1 QUALITATIVE MODEL OF SOIL EVOLUTION 

 

Information provided by field observations and statistical analysis allowed us to 
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develop the qualitative model of soil evolution in the Dolomites environment shown 

in Figure 3. The distribution of soil orders in the study area is mainly consistent with 

climate, with parent material and with landform stability, as reported for other alpine 

regions (Sartori et al., 1997; Previtali, 2002). Conversely, in the Dolomites region the 

vegetation cover does not appear to be an important soil forming factor, as also 

highlighted for other mountain regions (Briggs et al., 2006). 

Calcareous lithology has a typically hard-brittle behavior that leads, in the 

investigated area, to the formation of steep ridges. As an example of soil distribution 

in calcareous environments, a cross-section on calcareous parent material is shown in 

Figure 8.  The upper part of calcareous reliefs is characterized by rock outcrops and 

extensive glacial or slope deposits. At higher altitudes (above 2000 m) and with steep 

morphology ( > 35°), therefore, the soil cover is often discontinuous. Soils that 

characterize the sites with greater erodibility (depending on slope and on parent 

material consistency) are frequently poorly developed (Udorthents or Cryorthents), 

thin (from Lithic to Typic), rich in skeleton (mineral particles > 2 mm in size), with a 

coarse texture, sub-alkaline to alkaline (Previtali, 2002). 

The same is true at lower altitudes, on very steep slopes, partly colonized by pioneer 

vegetation, where the prevailing parent material is calcareous glacial deposits.  

An increase in soil thickness corresponds to decreasing slope (Sartori et al., 2005). On 

structural gently sloping surfaces ( < 35°), under continuous vegetation cover and a 

high rate of organic matter production, soil evolution may proceed through Mollisols  

(Cryrendolls and Haplocryolls or Haprendolls depending on altitude), up to 

Inceptisols (Eutrudepts or Eutrocryepts) (Previtali, 2002). 

The formation of Mollisols, depending on slope, depth and profile differentiation 

(Lithic/Typic Cryrendolls and Lithic/ Typic/Inceptic Haprendolls), is particularly 
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influenced by organic matter which has the role to trigger the formation of very stable 

organic-mineral complexes, with the consequent formation of soils with a very dark 

and rich in bases surface horizon. These soils are characterized by a sub-alkaline or 

alkaline pH and are moderately deep and rich in coarse particles. They represent only 

a small percentage of investigated soils (Table 3) because, under heavy rainfalls and 

rapid drainage, as observed also by Egli and Fitze (2001), they are subjected to a 

faster decomposition of the organic matter and to intense leaching phenomena, which 

involve a partial desaturation of the profile, with consequent pH decrease, carbonate 

removal and transition from a mollic epipedon to an umbric one. As a consequence, 

deep brown soils with a cambic horizon develop, with a pH from sub-alkaline to 

neutral. These soils, especially at lower altitudes, are the most common soils in the 

calcareous environment, on glacial deposits or on recent fluvial terraces, under 

continuous forestry vegetation cover (Neri and Giannolla, 2007). In some cases, 

desaturation processes can be so intense to lead to leached and decarbonated brown 

soils. The different degree of desaturation and development of these soils is reflected 

in the various subgroups (Typic Haplocryepts and Humicryepts or Lithic / Typic / 

Rendollic / Dystric Eutrudepts (Sartori et al., 1997).  

On siliceous parent material, the high erodibility of the rocks creates a subrounded 

gentle morphology, with average slopes less than those of calcareous environments.  

As an example of soil distribution in siliceous environments, a cross-section on 

siliceous parent material is shown in Figure 9.  The upper part of siliceous relieves is 

characterized by rock outcrops and extensive glacial or slope deposits (Previtali, 

2002). At higher altitudes (above 2000 m), at sites characterized by high instability 

due to severe slope or to erosion phenomena caused by overgrazing, the soil cover is 

often discontinuous and poorly developed soils are widespread, under pioneer 
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vegetation or pastures. These soils are shallow, rich in coarse mineral particles and 

poorly differentiated, with a pH from subacid to acid (acid Udorthents and 

Cryorthents). The subgroups in which they are subdivided vary mainly as a function 

of the slope, the profile depth and the substrate typology (Lithic/Typic Udorthents and 

Cryorthents). 

In siliceous environments, soil evolution follows the typical sequence of desaturated 

soils (Sburlino et al., 1999; Previtali, 2002), which consists in the further development 

of brown soils on mixed debris, neutral to subacid and partially desaturated 

(Humicryepts and Haplocryepts or Eutrudepts), and more acidic brown soils on 

exclusively siliceous materials (Dystrocryepts and Dystrudepts). 

In all cases these soils are moderately deep, with a greater differentiation of the 

profile than in the previous cases, and with a cambic horizon; especially at lower 

altitude, these soils are the most common on siliceous environments, on moderately 

steep stable slopes (Sartori et al., 2005). 

Only a small fraction of the investigated soils, developed in areas of greater stability 

(usually on gentle slope deposits), under continuous vegetation cover (in particular 

coniferous stands or acidophylous pastures), at elevations over 1500 m a.s.l., shows a 

further stage of development, with a higher profile differentiation. In these areas, in 

particular on north-facing sites, characterized by lower temperature, lower 

evapotranspiration and higher moisture, the degree of chemical weathering increases 

(Egli et al., 2006). 

These are the podzolic soils, moderately deep, in which podzolization processes may 

have been, in some cases, weak (Spodic Dystrudepts), in other cases rather intense 

(Haplocryods and Placocryods or Haplorthods and Haplohumods according to the 

elevation). The different degree of development of the profiles, based on local 
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intensity of translocation processes (Lundström et al., 2000), is expressed by the 

various subgroups in which these soils are subdivided (Entic/Typic Haplocryods and 

Placocryods or Lithic/Entic/Typic Haplorthods and Haplohumods). 

The Dolomites are rich in water-saturated wetlands areas, in which the changing level 

of groundwater controls soil evolution from types with high content of undecomposed 

organic matter (Hydric Haplofibrists, Hydric/Fluvaquentic Haplohemists and Typic 

Haplosaprists), to more mineralized soil typologies (Typic Endoaquents, Aquic 

Udorthents and Aquic/Aquic Dystric Eutrudepts). Morphologically, these wetland 

areas coincide, at higher elevation, with glacial and karst basins or tectonic 

depressions. At lower elevation, however, they are located between counterslopes 

generated by landslides bodies involving poorly permeable geological formations 

(Neri and Giannolla, 2007).  

All comments reported in this paragraph are summarized into the flow diagram in 

Figure 3.  

 

5.2 RELATIONSHIPS BETWEEN ENVIRONMENTAL AND PEDOLOGICAL 

PARAMETERS 

 

Results of statistical analysis show that total soil depth decreases when elevation 

increases, elevation being negatively correlated with soil depth. This is due to the 

worsening of climatic conditions: at high elevation the soil temperature regime 

changes to cryic conditions, and pedogenic processes are slowed down (Legros, 1992; 

Bockheim and Koerner, 1997). At the same time, the total number of horizons of each 

profile decreases when elevation is higher and increases with total soil depth. Despite 

this, the results show also that the profiles with a high number of horizons are  
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correlated with high elevation and this is probably due to a very variable slope factor 

in the alpine environment. Irrespective of elevation, geomorphologic conditions can 

change from stable concave sites to highly unstable convex surfaces. (Zilocchi, 2003). 

With regard to vegetation cover, grasslands, pastures and shrubs, showing a positive 

correlation along the first coinertia axis, confirm their abundance, for climatic 

reasons, at higher elevations. The climate also affects the distribution of coniferous 

and mixed forests in the subalpine belt at lower elevation, as shown by their negative 

correlation along the same axis. Also meadows show this negative correlation along 

the first axis, and this is probably due to their dependency on traditional mowing 

activities, which are concentrated at lower elevations (Bini et al., 2008). 

Mixed forests, together with wet meadows, are also negatively correlated along the 

second axis and, consequently, with the total soil profile depth, showing that these 

two kinds of vegetation cover, are influenced by both elevation and soil depth, 

growing on shallower soils than the other types of vegetation. 

Concerning the parent material, results strongly support the theory that pedogenesis in 

this environment involves in situ bedrock weathering, as reported also for other alpine 

regions (Munroe et al., 2007). 

Results show that calcareous rocks (primarily dolostones and limestones) outcrop at 

higher elevations and, being more resistant to erosion than other sedimentary rocks, 

prevent, together with the extreme climatic conditions, the development of deep soils. 

Other sedimentary rocks (marls, conglomerates and sandstones) show a clear positive 

correlation along the second axis and this is due to their low resistance to chemical 

and physical alteration processes, which enhance soil deepening. Unconsolidated 

materials (debris) show, in general, a correlation along the first axis. In particular, 

siliceous debris is positively correlated along it and this is due to the outcropping of 
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siliceous parent material and, consequently, to the debris produced by its alteration, 

predominantly at higher elevation (Zilioli and Bini, 2009b).  

As described above, Suborders of the American Soil Classification System (Soil 

Survey Staff, 2010) also show some interesting correlations along the coinertia axes. 

In particular, while Cryods (Subord5), showing a clear positive correlation along the 

first axis, are distributed predominantly at higher elevations, Cryepts (Subord4), 

conversely, show a clear positive correlation along both axes, becoming shallower 

when the elevation increases. Udolls (Subord10) and, to a lesser extent, Saprists 

(Subord8) and Orthods (Subord7), showing a high positive correlation along the 

second axis, indicate their major correlation with morphologic factors, with an 

increase of total soil depth and total horizons number, compared to other less 

developed soils as Orthents (Subord3) or Rendolls (Subord2). These two suborders 

are positively and negatively correlated, respectively, only along the first axis and this 

is due to the fact that they are predominantly influenced by the temperature gradient, 

with Mollisols widespread at lower elevations and Entisols at higher elevation, where 

pedogenic processes are slower. Orthents and Cryepts show also a positive correlation 

both with calcareous and siliceous rocks, confirming their distribution on both these 

kinds of parent materials, while Cryods, Humods and Orthods (Subord5, 6 e 7), as 

expected, are distributed only on siliceous rocks or debris (Zilioli and Bini, 2009b). 

Finally, the profiles show also a correlation with specific types of vegetation cover. In 

fact, while Orthents, Cryepts, Cryods, Humods and Orthods are clearly distributed 

predominantly under grasslands, pastures and shrubs, Rendolls seem to be related 

especially with meadows and mixed forests.   

 

5.3 CONSIDERATIONS ON LAND EVALUATION RESULTS - Cortina d’Ampezzo 
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valley case study 

 

As reported above, results obtained by the evaluation of soil erosion risk point to a 

generally fragile terrain with little developed soil cover and marked erosion episodes, 

particularly due to the anthropic impact. The units that have been classified as areas 

with high soil erosion risk coincide for the most part with pasture and grasslands at 

higher elevations. Once exposed, thin soils distributed at high elevations, poorly 

developed and characterized by a coarse texture (Udorthents or Cryorthents) (Zilioli 

and Bini, 2009b), are very vulnerable and prone to erosion. In fact, at higher 

elevation, low temperature and frost, combined with steep morphology, mean that 

rehabilitation of vegetation cover is slow. The action of frost is particularly severe on 

alpine humus soils when they are not protected by snow cover in late autumn and 

after the thaw (Hitz et al., 2001).  

A lot of ski resorts and, therefore, intense winter tourism activities are concentrated in 

these areas. A large number of actions to extend ski runs and to create new sports 

facilities are implemented here every year. Therefore, it is reasonable to expect 

important environmental impacts such as destruction of vegetation and removal of 

surface layers of the soil, resulting in further increases in soil erosion levels. The 

Falzarego Pass, located on the west side of Cortina valley, is an important example of 

such processes: here, during snow melting, it is possible to observe large areas devoid 

of vegetation and subjected to large soil losses (Bini et al., 2008). 

Results of land evaluation for tourism also show a very low suitability to mass 

tourism of pastures and meadows located in the most elevated parts of the terrain. 

However, in these areas characterized by thin soils particularly prone to erosion, mass 

tourism is very intense, reaching a number of tourists which can rise up to 1,000,000 
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visitors every year, even if only for few months (Zilioli and Bini, 2009a). 

Land suitability for forestry evaluation shows, furthermore, a terrain predominantly 

not suitable to wood production. Particularly interesting are the areas on which the 

city of Cortina d’Ampezzo extends, classified not suitable to moderately suitable for 

wood production because of their location on landslide bodies (Filippi, 1985; Soldati, 

1999).  

In fact, the Cortina valley shows examples of different types of active landslides, 

which have a primary role in the morphological and pedological evolution of the 

landscape (Soldati, 1999; Borgatti and Soldati, 2005). This is confirmed by a lot of 

soil profiles, showing a surface mantle of recently deposited material usually poorly 

developed (100-300 years; Filippi, 1985), covering a buried soil (mainly Cryorthents 

or Eutrocryepts on buried Haplocryepts) (Zilioli and Bini, 2009b). 

Despite the low suitability for forestry, these areas are presently subjected to an 

important naturalization process, consisting of the development of secondary 

vegetation growth that has led to the progressive colonization by shrubs and trees, and 

then to the formation of a large forest (Conti and Fagarazzi, 2004, 2005).  

The advancement of forest, in the last decades, on landslide areas around the urban 

area and close to human settlement, poses serious problems of slope stability, and 

therefore special attention is required in land planning. The soils of these units located 

on steep slopes and developed on marly and clayey debris, are particularly prone to 

liquefaction phenomena. The mobilization of blankets of soils particles and debris 

located around the urban area, in fact, could lead to a high risk not only for the 

environment but especially for population (Zilioli and Bini, 2009a). 

By crossing the results of land evaluations for soil erosion risk, forestry and tourism 

(Table 4), it can be noticed that mapping units located around the urban area that are 
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classified as not suitable for forestry, are also unsuitable for touristic land use; this is 

mainly due to the abandonment of traditional mountain activities abandonment and to 

the consequent secondary vegetation growth on the land mentioned above, making the 

landscape monotonous and diminishing its aesthetic value (MacDonald et al., 2000; 

Conti and Fagarazzi, 2004). It would be worthwhile, therefore, to suggest a different 

management of these units, not finalized to wood production, but rather, to the 

recovery of traditional activities aimed at the development of sustainable tourist land 

use, diminishing, at the same time, the high flux of tourists in areas at higher 

elevation, which are very interesting from the natural point of view, but also very 

vulnerable to excessive anthropogenic pressure, mainly because they are already 

subjected to a very high soil erosion risk (García-Ruiz et al., 1991). For these 

purposes, as highlighted also by McFee and Kelly (2005), the interaction of soil 

scientists and stakeholders groups is necessary for the development of sustainable 

management and research policy of forest soils and mountain ecosystems. 

 

6. CONCLUSIONS 

 

The data collected highlight the high environmental heterogeneity of the soils of the 

Dolomites. This heterogeneity can be explained with the considerable variability in 

the intensity of actions and interactions among different soil forming factors, and 

results in a wide range of soil typologies. Years of research in the Dolomites area, 

allowed us to understand better the different roles of environmental factors in the 

evolution of soils of this Alpine region. The importance of climate and parent material 

as soil forming factors emerges from the whole study. The reason can be found in the 

short time of soil formation due to the relative short historical geomorphology of 
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Dolomites, after the last glacial maximum (approx 12,000 y B.P.), and to the extreme 

environmental conditions under which soils develop. Although rainfall is intensive, 

temperature is rigid (cryic and frigid regimes), in particular in the higher part of the 

valleys, slowing down pedogenic processes. Moreover, steep slopes cause erosion 

problems and therefore soil rejuvenation acts against the formation of more developed 

soils, contributing to the formation of thin soils with a lithic contact within few 

centimetres. The importance of parent material is evident in soil development trends: 

the main trend is clearly divided into two sections, one of soils on siliceous rocks and 

one of soils on calcareous rocks. The first is more complex since, generally, soils on 

limestones, dolostones and marls are less developed than the others. This is due to the 

resistance of this kind of rock to weathering processes in the alpine environment. 

Statistical analyses, moreover, proved a useful tool to examine relationships between 

environmental and pedological variables, and to highlight soil evolution in relation to 

landforms. 

Finally, land evaluation for specific purposes methods showed that the territory of 

Cortina d’Ampezzo is generally poorly suitable for the uses considered, with only few 

units (20, 21, 22, 23) classified as S1 for tourism and only one unit (17) highly 

suitable for forestry. Also significant is the fact that only five units (8, 12, 13, 22 23) 

present low soil erosion risk, suggesting that the terrain and the population are 

exposed to this important natural hazard. 

Therefore, land evaluation results allowed us to identify some criticisms of the land 

management practices in the investigated areas (little developed soil cover and 

marked erosion episodes, forest advancement, negative impacts of tourism) and to 

suggest alternative land uses commensurate with to the potentiality of the terrain (e.g. 

traditional mowing and pastures), highlighting the fundamental contribution that the 
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study of soils c can provide to natural resource conservation and the sustainable 

management of mountain ecosystems in the framework of UNESCO Dolomites 

World Heritage protection requirements. 
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FIGURE CAPTIONS: 

 

Fig.  1. Research area and selected sites in Trento and Belluno provinces (NE Italy): 

(1) Paneveggio-Pale S. Martino Regional Park, (2) Fassa valley, (3) Valfredda valley, 

(4) Gares valley, (5) Cortina d’Ampezzo territory, (6) Visdende valley. 

 

Fig.  2. Ombrotermic diagrams showing average monthly temperatures (AMT) and 

rainfalls (AMP) in Internal (Cortina d’Ampezzo Station, on the top) and in External 

Dolomites (S. Martino di Castrozza Station, on the bottom) and corresponding 

average annual temperatures (AAT) and rainfalls (AAP) values. 

 

Fig.  3. Flow diagram showing soil evolution in the Dolomites region from different 

parent materials, at elevations higher and lower than 2000 m a.s.l.. Left: soils on 

calcareous parent material; center: soils found on both the substrates; right: soils on 

siliceous parent material. Bottom: soils sequence in wetlands (from: Zilioli and Bini, 

2009 b, modified). 

 

Fig.  4. Coinertia analysis: plot of factor loadings of PCA analysis on coinertia plane 

(common plane) (above); plot of multiple correspondence coordinates on coinertia 

plane (common plane) (below). 

 

Fig.  5. Cortina d’Ampezzo’s Municipal Territory Soil Erosion Risk Map (reported 

scale ratio 1:150,000).  

 

Fig.  6. Cortina d’Ampezzo’s Municipal Territory Land Suitability for Forestry Map 
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(reported scale ratio 1:150,000).  

 

Fig.  7. Cortina d’Ampezzo’s Municipal Territory Land Suitability for Mass Tourism 

Map (reported scale ratio 1:150,000).  

 

Fig. 8. Cross-section on calcareous parent material: an example of soil distribution. 

Above the timberline poorly developed soils (Cryrendolls and Cryorthents) are 

widespread. At lower elevation an increase in soil thickness enhances profile 

development, forming Haprendolls and Eutrudepts on gently sloping landforms. 

 

Fig. 9. Cross-section on siliceous parent material: an example of soil distribution. 

Above the timberline poorly developed soils (Cryorthents) are widespread. 

Podzolization processes occur in stable north-facing sites above 1500 m a.s.l.. In some 

cases they are weak, and brown soils (Dystrocryepts and Dystrudepts) are formed; in 

other cases they are rather intense, and podzols (Haplocryods and Haplohumods) are 

formed. 
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Fig. 1 
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Fig. 2. A 

 
Fig. 2. B 
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Fig. 3. 
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Fig. 4. Above 

 

 
 

Fig. 4. Below 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Table 1 

Extensions and elevation ranges of studied sites. 

 
SITE NAME PROVINCE EXTENT 

(Km
2
) 

ELEVATION RANGE 

(m a.s.l.) 

Paneveggio-Pale S. Martino 

Regional Park 

Trento 197 1200 - 2400 

Fassa valley Trento 200 1175 - 2810 

Valfredda valley Belluno 5 1800 - 2400 

Gares valley Belluno 36,5 890 - 3192 

Cortina d’Ampezzo territory Belluno 255 1224 - 3244 

Visdende valley Belluno 70 1250 - 2700 
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Table 2 

Codes and decodes of discrete variables classes analyzed by MCA. 

 

Suborders Vegetation cover Total number 

of  horizons  

Parent material 

Code Decod. Code Decod. Code Decod. Code Decod. 

Subord1 Udepts I Coniferous 

forest 

H1 1 I Calcareous 

rocks 

Subord2 Rendolls II Mixed 

forest 

H2 2 II Siliceous 

rocks 

Subord3 Orthents III Shrub  H3 3 III Calcareous 

debris 

Subord4 Cryepts IV Meadow H4 4 IV Siliceous 

debris 

Subord5 Cryods V Grassland H5 5 V Arenaceous 

and mixed 

debris 

Subord6 Humods VI Pasture H6 6 VI Other 

calcareous 

sedimentary 

rocks 

Subord7 Hortods VII Wet 

meadow 

H7 7  

Subord8 Saprists  

Subord9 Hemists 

Subord10 Udolls 
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Table 3 

Taxonomic sketch of the investigated soils (Soil Survey Staff, 2010) and their 

abundance at Order level. 

 
Orders Abundance 

% 

Suborders Groups Subgropus 

Entisols 43 Orthents Cryorthents Lithic/Typic/Aquic 

Udorthents, Lithic/Typic/Aquic 

Aquents Endoaquents Typic 

Inceptisols 36 Cryepts Haplocryepts Typic 

Humicryepts Typic 

Dystrocryepts Typic 

Udepts Eutrudepts Lithic/Typic/Aquic/Dystric/Aquic 

Dystric/Rendollic 

Dystrudepts Lithic/Humic 

Lithic/Humic/Typic/Spodic 

Spodosols 9 Cryods Placocryods Typic 

Haplocryods Entic/Typic 

Orthods Haplorthods Lithic/Entic Lithic/Typic 

Humods Haplohumods Lithic/Typic 

Mollisols 9 Rendolls Haprendolls Lithic/Typic/Inceptic 

Cryrendolls Lithic/Typic 

Histosols 3 Hemists Haplohemists Hydric 

Fibrists Haplofibrists Hydric/Fluvaquentic 

Saprists Haplosaprists Typic 

 
 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

Table 4 

Comparison between land evaluations results for each mapping unit. 

 

Mapping units Soil Erosion 

Risk 

Suitability for mass 

tourism 

Suitability for 

forestry 

1 - Not detected area (city center, mining areas, 

water bodies) 

Non detected 

area 

Non detected area Non detected area 

2 - Calcareous rocky outcrops Extremely high N N 

3 - Siliceous rocky outcrops Extremely high N N 

4 - Other calcareous sedimentary rocky outcrops Extremely high N N 

5 – Debris outcrops Extremely high N N 

6 Mixed area composed of rocky outcrops and 

Lithic Cryrendolls or Lithic and Typic 

Cryorthents. Elevation above 2000 m. Low or 

medium slope, Predominant land use: high-

altitude grasslands mixed with calcareous rocky 

outcrops. 

High N N 

7 - Complex of Lithic Cryorthents and Lithic 

Cryrendolls. Elevation above 2000 m. Low or 

medium slope, Predominant land use: shrubbery 

with dominance of mountain pine. Calcareous 

rocks and debris. 

 

Moderate N N 

8 - Consociation of Lithic Cryrendolls. Elevation 

above 2000 m. Low or medium slope, 

Predominant land use: from sparse to very dense 

forest with dominance of spruce, larch and swiss 

pine. Calcareous rocks. 

Low S3 S2s 

9 - Complex of Entic Haplocryods and Typic 

Placocryods. Elevation above 2000 m. Low 

slope, Predominant land use: high-altitude 

grassland mixed with siliceous rocky outcrops. 

Sandstones. 

Moderate S3 N 

10 - Consociation of Typic Eutrocryepts. 

Elevation above 2000 m. High or medium slope, 

Predominant land use: from sparse to very dense 

forest with dominance of larch and Swiss pine, 

replaced by heather moorland at higher altitudes 

and in stations characterized by strong slope. 

Siliceous sedimentary rocks. 

Moderate S3 S3sc 

11 - Complex of Typic Eutrocryepts and Lithic 

Cryorthents on buried Haplocryepts. Elevation 

above 2000 m. Medium slope, Predominant land 

use: high-altitude grassland mixed with rocky 

outcrops. Calcareous marlstones and other 

calcareous sedimentary rocks. 

High N N 

12 - Consociation of Lithic (Dystric) 

Eutrocryepts. Elevation above 2000 m. Low 

slope. Predominant land use: high-altitude 

pasture. Limestones and sandstones. 

 

Low S3 S2s 
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13 - Association of Dystric Eutrocryepts and 

Lithic Cryorthents. Medium slope.  Elevation 

above 2000 m. Predominant land use: forests 

with dominance of larch and Swiss pine or, 

secondarily, spruce; shrubs with dominance of 

mountain pine at higher elevations and at stations 

with higher slope. Marlstones and other 

sedimentary rocks. 

Low S3 S3sc 

14 - Mixed area composed of debris outcrops and 

Typic Cryorthents on buried Eutrocryepts. Low 

or medium slope. Elevation above 2000 m. 

Predominant land use: high-altitude grassland 

mixed with calcareous debris outcrops. 

Calcareous and mixed sandy-pelitic debris.  

High N N 

15 - Association of Lithic and Typic Cryorthents 

and Typic Eutrocryepts. Low or medium slope. 

Elevation above 2000 m. Predominant land use: 

high-altitude pasture. Calcareous and mixed 

sandy-pelitic debris.  

Moderate S3 S2s 

16 - Association of Lithic and Typic Cryorthents 

and Typic Eutrocryepts. Low and medium slope. 

Elevation above 2000 m. Predominant land use: 

shrubbery with dominance of mountain pine. 

Calcareous debris.  

High N S3sc 

17 -  Association of Lithic and Typic 

Cryrendolls, Lithic and Typic Haplocryolls and,  

secondarily, Aquic Cryorthents on depressed 

areas or on fine materials. Low slope. Elevation 

above 2000 m. Predominant land use: from 

sparse to very dense forests with dominance of 

spruce, larch and swiss pine. Calcareous debris. 

Moderate N S1 

18 - Complex of Lithic and Dystric Eutrocryepts, 

Lithic and Typic Dystrocryepts. Medium or low 

slope. Elevation above 2000 m. Predominant land 

use: from sparse to very dense forests with 

dominance of larch and swiss pine or spruce or, 

secondarily, scots pine on drier slopes. Mixed 

sandy-pelitic calcareous debris. 

Moderate S2 S2s 

19 - Association of Inceptic Haprendolls and 

Lithic Udorthents. Medium or low slope. 

Elevation below 2000 m. Predominant land use: 

from sparse to very dense forests with dominance 

of larch and swiss pine or spruce or, secondarily, 

scots pine on drier slopes. Calcareous debris. 

Moderate S2 S2s 

20 - Association of Aquic Eutrudepts, Typic 

Haprendolls and Typic Udorthents. Low slope. 

Elevation below 2000 m. Predominant land use: 

from sparse to very dense forests with dominance 

of larch and swiss pine or spruce or, secondarily, 

scots pine on drier slopes. Calcareous debris. 

 

Moderate S1 N 

21 - Association of Typic Udorthents, Typic and 

Aquic Eutrudepts and, secondarily, Hydric 

Haplohemists in depressed areas. Low slope. 

Elevation below 2000 m. Predominant land use: 

mown meadow. On calcareous or mixed debris. 

Moderate S1 N 

22 -  Consociations of Aquic Cryorthents. Low or 

no slope. Elevation above 2000 m. Predominant 

land use: high-elevation pasture. Fine lacustrine 

materials. 

Low S1 S2s 
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23 - Complex of Typic Eutrudepts and Rendollic 

Eutrudepts. Low or no slope. Elevation below 

2000 m. Predominant land use: forests and 

meadows dominated by scots pine. Mixed 

siliceous and calcareous alluvial gravels. 

Low S1 S2s 

24 -  Complex of Typic Cryaquents and 

Fluvaquentic and Hydric Cryohemists. No slope. 

Elevation above 2000 m. Predominant land use: 

high-elevation wet meadows, associated with 

pasture or sparse forests. Tectonic depressions, 

sinkholes or other depressed areas. 

No risk S2 S2s 
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Table 5 

Percentages of areas affected by different erosion risk and characterized by different 

suitability for forestry and for touristic land use in the Cortina valley (Bini and Zilioli, 

2010). 

 

 
Soil Erosion Risk Area % 

 Areas with extremely high risk 21,5 

Areas with high risk 15,3 

Areas with moderate risk 50,2 

Areas with low risk 11,4 

Areas without risk 0,05 

Areas not surveyed  1,5 

Suitability for forestry  Area%  

Not detected area 1,5 

Very suitable – S1 10,5 

Moderately suitable - S2s (soil properties 

restrictions)  

28,3 

Scarcely suitable - S3sc (soil properties and 

climatic restrictions) 

8,3 

Not suitable - N 51,4 

Suitability for mass tourism  Area%  

Very suitable – S1 11,2 

Moderately suitable S2 18,9 

Scarcely suitable - S3 13,2 

Not suitable - N 56,6 

 

 

 

 

 


