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Abstract: This work deals with multivariate stochastic volatility ohs, which account
for a time-varying variance-covariance structure of theessable variables. We focus on
a special class of models recently proposed in the litezatnd assume that the covariance
matrix is a latent variable which follows an autoregresdiishart process. We review
two alternative stochastic representations of the Wispiartess and propose Markov-
Switching Wishart processes to capture different regiméise volatility level. We apply

a full Bayesian inference approach, which relies upon SattpleMonte Carlo (SMC) for
matrix-valued distributions and allows us to sequentiediffmate both the parameters and
the latent variables.
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1. Introduction

Many financial time series share some common features, atsorkas stylized facts. The
following features: time-varying volatility, clustering volatility and excess of kurtosis
are well described by univariate stochastic volatility ralsd See the seminal works of
Taylor (1986, 1994) and Jacquietral. (1994).

In order to capture dependencies and spill-over effectsdmt the volatility of different
variables, the univariate models have been successfuliyndgd to the multivariate case
by Harveyet al. (1994), Aguilar and West (2000) and Chebal. (2006). We also refer
the reader to Asai and McAleer (2006a) and Aesiaal. (2006) for an updated review on
multivariate stochastic volatilityMSV) models.

Earlier MSV models assume a constant correlation betweseolibervable variables. This
assumption is quite unrealistic for many economic and firzuseries (see for example
Engle (2002) and Pelletier (2006)). Thus in the last few y&agre has been an increasing
attention to a new class of stochastic volatility modelsjclvtaccount for time-varying
and stochastic correlation structure.

In this work we deal with the MSV models proposed by Philipod &lickman (2006)
and Gourierouxet al. (2004). They use two different stochastic representataing
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Wishart autoregressive process for the stochastic wtyafilheir models allow for time-
varying variances and covariances, which determine intiglia time-varying stochastic
correlation structure between asset returns. For an updbseussion on the different
ways of introducing the time-varying correlation into MS\bdels we refer to Asai and
McAleer Asai and McAleer (2006b, 2005).

The first contribution of this work is to propose some extensiof the Wishart MSV
model. In particular following Set al. (1998) we are interested in capturing different
regimes in the volatility behavior. To this aim we assume tha parameters of the
Wishart autoregressive process are driven by a Markove®inig) process. We study the
effect of the Markov-switching process on the volatilitydeon the correlation structure of
the observable, which results implicitly determined byvbktilities and the covariances.
In this work we propose a on-line filtering approach for theshdirt-type MSV models.
The on-line estimation of the latent Wishart process is wesgful in a applied context,
but represents a challenging inference problem. The inéeréask is difficult not only
due to the nonlinear and non-Gaussian dynamics, but alstodhe fact that the posterior
distribution has not closed form and that the hidden statesnatrices, possibly of high
dimension. Note that the Kalman Filter was originally defirfer vector-valued state
(Kalman (1960) and Kalman and Bucy (1960)), but in many aagibns (such as finance
and engineering) the states of a stochastic system areatiatdefined by a matrix. In
our work the time-varying volatility structure of set of tnseries are naturally defined
by a nonsingular positive-definite matrix. We propose a gdr@obabilistic state space
representation of the MSV model and solve the inferencelenolby using nonlinear
filtering techniques. In this work, we bring into action seqgtial Monte Carlo techniques
(Berzuiniet al. (1997), Arulampalanet al. (2001), Doucett al. (2001)) and apply them
to the Wishart-type MSV models.

The proposed regularised particle filters belong to the lfaofisimulation based meth-
ods. These include the simulated maximum likelihood metnaghosed by Danielson
and Richard (1993), and Danielsson (1994), MCMC methodgseg by Jacquiest al.
(1994) and improved by Kim and Chib (1998), maximum likebddvionte Carlo (Sand-
mann and Koopman (1998)), the simulation method using itapbsampling and anti-
thetic variables proposed by Durbin and Koopman (2000)iefit method of moments
(EMM) by Gallant and Tauchen (1996).

The last contribution of the work is to propose a full Bayasa@proach to the joint esti-
mation of the parameter and the latent variable. We augrherdtate space of the system
by considering the parameter as latent variable. The @igitate-space model can be
represented in a vector form and the filtering problem cangmied to the vectorized
form. The vectorized version of the system is useful becdaadlews us to evaluate many
quantities of interest, such as general measures of fiffenal prediction abilities of the
model. However the vectorized version is not suitable falidg with constrains on the
hidden states. In our work and following Bar-ltzhaetkal. (2006) and Choukroun (2003)
we do not vectorize the system and follow an alternativeaowhich make advantage of
the probabilistic structure of the model. Note that our gahstate-space representation
includes as special case the linear and Gaussian matredatate space models studied
in Bar-ltzhacket al.(2006) and Choukroun (2003).

In that case the Matrix Kalman Filter proposed by the auti®ooptimal solution of the
filtering problem when compared to our nonlinear filteringagach. Note however that
our state-space...

The structure of the work is as follows. Section 2. proposesesnew Wishart MSV



models, those parameters are governed by a Markov-switghotess. Section 3. deals
with the inference problems and proposes a full Bayesiaanmice approach, which relies
upon Sequential Monte Carlo algorithms. We suggest to tdkardage of the matrix
structure of the states to reduce the computational contplekthe nonlinear filtering
procedure. Section 4. exhibits a simulation analysis optieposed inference approach.

2. Wishart Stochastic Volatilty Processes

Let M* C R*** denote the set of all the real-valued symmetric and positafinite
matrices of dimensiot. Let {y,};>0, With y, € R*, represent the stochastic process
of log-returns and X, };>0, with X; € M’j; the matrix-valued stochastic process of the
variance-covariances.

We define the following multivariate model with Wishart dtastic volatility

Yy, ~ Ni(0x, %) (1)
Zt_l ~ Wk (I/t, Et) (2)
fort = 1,...,T, where N, (0, %) is a k-variate normal distribution with null mean

vector. Wi (v, Z;) denotes a Wishart distribution of dimensiénwith possibly time-
varying and stochastic degrees of freedom parametand scale-matri¥;. The Wishart
distribution accounts for the positive definiteness of theance-covariance matrix and
the time-varying parameters can be governed by other lateexogenous variables.

In the following examples we present some alternative stsioh representations of the
Wishart stochastic volatility process defined above. Irfitseexample we follow Philipov
and Glickman (2006), in the second one Gourieretal. (2004). The remaining exam-
ples extend the basic Wishart MSV models by introducing akighaswitching process,
which accounts for sudden changes in the volatility leveie Proposed models can be
considered a multivariate extension of theedal. (1998) univariate stochastic volatility
process with Markov-switching.

Example 1- Autoregressive Wishart Process (ARW(1))
In order to introduce a first-order autoregressive dynamithé stochastic volatility we
set

1 /
S W (g AR A ©

whereA € M*%, A2 is its Cholesky decomposition amlds a scale factor. The matrix
power is defined byd” = A"~!. A, n > 1, A° = I, with I, the identity matrix. The
Wishart process is stationary fdre (—1,+1), as discussed in Philipov and Glickman
(2006). In our study we consider diagonal matfix= diag{(as, . . ., ax) } and scale factor
d € (0,1), in order to avoid an inverse relation between two conseeugalisations of
the covariance process.

Fig. 1 shows observations and latent volatilities simuldtem a stochastic volatility
model of dimensiok: = 5. Fig. 2 exhibits the time evolution of the stochastic catien
structure, which is implicit in the the simulated covariamrocess. In the simulation we
use the following parameter setting:= 0.3, » = 19 and A~! = 0.0125 diag{.'} where
t=1(1,...,1) e R°.

O



Figure 1: Simulated stochastic volatility model. Rightwoh: simulated observable
procesgyy,. Left column: simulated latent volatilitig®y1,, . . ., 055 ), Whereo,;;, denotes
the (i, j)-th element ofs;’?. In the simulation study we assude= 0.3, v = 19,

A~1 =0.0125 I5, wherel,, denotes the identity matrix of dimensién
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Figure 2: Simulated stochastic correlations. Matrix ofpip@representing the time evo-
lution of the componentp;;; = 0;;:/(0iit0;;:), With 5 > ¢ of the correlation matrix,

whereo;;; denotes thé¢:, j)-th element oEtl/Q. The time-varying stochastic correlation
structure is implicit in the simulated Wishart covariancegess.
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Example 2- Wishart Autoregressive Process (WAR(1))

Let x,,, € R*, withm = 1,...,vandv € N,, be a sequence of first-order vector
autoregressive processas:~ N (Ax;_,, %), whereA € M*. Then ak-variate Wishart
process of the first order is defined8s= > x,,«/,, and its transition density is
non-central Wishart, ~ W, (v, 3, A). This definition and some generalisations can be
found in Gourierowset al.(2004). Note that the model in Philipov and Glickman (2006)
is defined also for non-integer values.of

O
Example 3- Markov-Switching Autoregressive Wishart (MS-ARW(1))
We introduce a Markov-switching process in the dynamicfiefARW(1)
1
2;_11 ~ Wk (l/stﬂ, —Ai{fl(zt_l)dstﬂ (Ai’t/fl)/) (4)
St+1
str1 ~ Psg = jlse =1) =py; with i,j€{l,..., E} (5)
whered; € M* Vi € {1,..., E}. The Markov-switching process accounts for sudden
changes of regimes in the volatility behavior. When the patars,,, , = v andd;,,, =

d, i.e. they are constant over regimes, then the MS-ARW(1Q@ats for different regimes
in the volatility levels. Fig. 3 and 4 give a simulated exaenpf MS-ARW(1) with A, , |
diagonal matrix, which excludes spill-over effects. Thegimees-switching in the matrix
A,,,, influences the scale of the observable producing differrel$ of volatility (see
Fig. 3). Note that the correlation matrix (Fig. 4) is notesated by the Markov-switching
process.

O

Example 4- Markov-Switching Wishart Autoregressive (MS-WAR(1))
Let x,,, € R¥, withm = 1,...,v andv € N, be a sequence of Markov-switching
first-order vector autoregressive processes~ N, (As,x;_1,%,,,,), Where4; € M*
Vie{l,...,E}. Theny, = "M ., is a MS-WAR(L).

O

3. Matrix-State Particle Filter

The estimation of the latent-variable model presented ©ti@e 2. configures a prob-
lem of discrete-time nonlinear filtering, with unknown paweters. In our model neither
the Kalman-Bucy nor the Hamilton-Kitagawa filters can bedyskus alternative proce-
dures should be considered. We bring into action a simuidiased nonlinear-filtering

procedure called Particle Filter, which is in the generatkslof Sequential Monte Carlo
methods.

We follow a full Bayesian estimation approach and proposgdimt sequential estimation
of the parameters and states of the matrix-valued dynamiem®he Bayesian approach
is general enough to account for nonlinear models and for prformation on the para-

meters. Another feature of this framework is to allow the atsimulation methods in

the inference process.



Figure 3: Simulated MS volatility model. Left column: simatéd observable process
y, (black ling and hidden volatility regimes; (grey ling. Right column: simulated
latent volatilities(ayy,, . .. , 055, ), Whereo,;, denotes thei, j)-th element ofs;”. In
the simulation study we assume= 0.3, v = 19, A;' = 0.11;, A;* = 0.04I; and

A7t = 0.0125 I, wherel,, denotes the identity matrix of dimensién
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Figure 4: Simulated stochastic correlations. Matrix ofddrsrepresenting the time evolu-
tion of the componentg;;, of the correlation matrix. The correlation structure is licip
in the simulated Wishart process and is not affected by thielsing dynamics.
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3.1 Parametersand Latent Variables Estimation

Following Harrison and West (1997) in this contribution weppose a probabilistic repre-
sentation of a stochastic dynamic model with matrix-valstades and observations. Let
M, C Rw*ms, M, C R and M, be the observation, state and parameter spaces
respectively. LefY, € M, denote the matrix of observationX, € M, the matrix-
valued hidden state an§l € M, the parameter. A matrix-valued dynamic Bayesian
model can be defined as

Y, ~ p(Y{X€) (measurement density) (6)
X, ~ p(Xy|Xi-1,Y14-1,€) (transition density) (7
Xy ~ p(Xol€) (initial density) (8)
& ~ p(&) (prior density) 9

witht=1,....T.

The MSV models presented in our work are special cases ofgneral state space
model, where¢ = ((a1y,...,ap),d,v) € R*2 Y, = y,, withy, € RF and X, =
¥, with 3, € M". The first advantage of the proposed probabilistic reptesien is
that it allows us to naturally introduce nonlinear filteringethods techniques based on
simulation methods. Another advantage is that it includespacial cases many well
know dynamic models. It includes also the matrix-valueddingaussian model, recently
studied in Choukroun (2003) and Bar-Itzhaatkal. (2006).

In the stochastic filtering literature the matrix-valuedtetand observations are usually
stacked into vectors and the filtering procedure is theniegpd the vectorized system.
The vectorized representation could be used to define tiraaldtiter. Note however that
working with the vectorized system representation coudd l® some difficulties. When
the original model is nonlinear and non-Gaussian the aicalyiorm of the vectorized-
state transition density is not straightforward and thebphalistic constraints, such as
the positive definiteness of the states matrix, on the aalgimodel could not be easily
imposed in the vectorized system.

In this work we do not vectorize the system and present idstea optimal filtering
problem for the original dynamic Bayesian model. In ordeestimate the parameter
we introduce a general definition of statg; = (X, £,) and of augmented state space:
M, = M, x M,. The state and observation one-step-algadiction densitieand the
augmented-staffdtering and thesmoothing densitiesre

P(Ze1|Y 1) = / P( X1 Xo, Y, €441)0¢, (€441)0(Z¢|Y 1.0)dZ, (10)

z

p(Yia|Yie) = / P(Y 41 X1, &0)P(Z 11| Y 14)d Z 111 (11)

z

p(Yt+1|Zt+1)p<Zt+1|Y1:t)
Z;1Y . = 12
PZen|¥ien) P(Y 11| Y 1) (12)
In this work we extend th®egularised Auxiliary Particle Filte(R-APF) due to Liu and
West (2001) to matrix-valued state space models and applythie proposed Wishart
MSV models. Lef{ Z:, wi}¥ | be a weighted random sample, which is approximating the
filtering density at time. At the time stegg + 1, as a new observatioyi, ,; arrives, we




Figure 5: The absolute Effective Sample Size at each itaratistimated ovel) indepen-
dent runs of the R-APF on different simulated datasets. \ji¢yahe R-APF to samples
of 3,000 observations simulated from Eq. (1)-(2). Left-chart: ESGif = 5, varying the
number of particlesN = 1, 000 (light grey), NV = 5,000 (dark grey and10, 000 (black).
Right-chart: ESS folvV = 1, 000 varying the dimension of the state-matrix: frgm= 2
to £ = 5. The darker the line color, the lower the valueiof
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can approximate the prediction and filtering densities 0) @ind (12) as follows

N
PV (Zena [V 1) =) p( X X5, Y, &) Kn(€y o — €)w] (13)

i=1
N

pN(Zt+1\Y1:t+1) X Zp<Yt+1‘Zt+1)p(Xt+1‘Xia Y., £i>Kh(£t+1 - 5i)w§ (14)

i=1

A simple way to obtain a weighted random sample from the apprated filtering density
at timet¢ + 1 is to apply importance sampling to the density given in Eq4).(1We
propagate each particle of the set through the importanesitye(Z,,1|Z!, Y 1..11) =
(X1 | X}, Y1, &40 Kn (&1 — &), then particle weights,,; update as follows

p(Yt+1 \ Zt+1)Kh(5t+1 - £i)p(zt+1 |Zi, Y., €t+1)w§

Wiy, o '
t+1 q(Zt—‘rl‘Z;?Yl:t""l)
X wi p(YH-l ‘ Zfﬁ—i—l)' (15)

4. Simulation Results

We apply the regularised SMC algorithm for matrix-valueteto the MS-ARW(1) given

in Example 3. We initialize the algorithm by running a Giblasnpler on 100 observa-
tions. We omit here the details about the choice of the prtbesfull conditionals used in
the Gibbs sampler. The parametgn regularisation step of the SMC algorithm has been
chosen following usual optimal criteria. In this work we geat the simulation results
about the efficiency of the algorithm for this model.



We measure the numerical efficiency of the algorithm by eatahg at each iteration the
Effective Sample SiZESS), that is defined as

N ; 2\

Ess= Y (#) (16)

i=1 Ej:l wy
and varies between 1 (all but one particle weights are nal) & (equal weights). A
related criterion is the coefficient of variation (see Liwdabhen 1998). For the MSV
model in Example 3 we evaluate the ESS varying the numberntities (V = 1, 000,
5,000, 10, 000) and the dimension of the state-matrix € 2, 3,4, 5). For givenN and
k, at each time step, the mean ESS has been estimated overep@mnuEnt runs of the
R-APF on different simulated datasets. Fig. 5 shows thdteesu
As one could expect, increasifgimproves the absolute efficiency of the filtering proce-
dure (left-chart), although the relative efficiendy{S;/N) is decreasing. As showed in
the right-chart the efficiency is also affected by the dinnemsf the latent variable space.
The higher the state-matrix dimension is, the lower the mgakefficiency is.

5. Conclusion

In this paper we propose new Wishart stochastic volatiligdels. The parameter of the
Wishart autoregressive process is governed by a first-diddekov chain. We propose a
Sequential Monte Carlo approach for the joint estimatiothefparameter and the hidden
state-matrix. By means of simulation experiments, we disthie efficiency of the method
and the dimensionality problem.
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