
Matrix-State Particle Filter
for Wishart Stochastic Volatility Processes

Roberto Casarin1
Dep. of Economics, University of Brescia,

Dep. of Mathematics, University Paris Dauphine
E-mail: casarin@eco.unibs.it

Domenico Sartore2
Dep. of Economics, University Ca’ Foscari

E-mail: sartore@unive.it

Abstract: This work deals with multivariate stochastic volatility models, which account
for a time-varying variance-covariance structure of the observable variables. We focus on
a special class of models recently proposed in the literature and assume that the covariance
matrix is a latent variable which follows an autoregressiveWishart process. We review
two alternative stochastic representations of the Wishartprocess and propose Markov-
Switching Wishart processes to capture different regimes in the volatility level. We apply
a full Bayesian inference approach, which relies upon Sequential Monte Carlo (SMC) for
matrix-valued distributions and allows us to sequentiallyestimate both the parameters and
the latent variables.
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1. Introduction

Many financial time series share some common features, also known as stylized facts. The
following features: time-varying volatility, clusteringin volatility and excess of kurtosis
are well described by univariate stochastic volatility models. See the seminal works of
Taylor (1986, 1994) and Jacquieret al. (1994).
In order to capture dependencies and spill-over effects between the volatility of different
variables, the univariate models have been successfully extended to the multivariate case
by Harveyet al. (1994), Aguilar and West (2000) and Chibet al. (2006). We also refer
the reader to Asai and McAleer (2006a) and Asaiet al. (2006) for an updated review on
multivariate stochastic volatility(MSV) models.
Earlier MSV models assume a constant correlation between the observable variables. This
assumption is quite unrealistic for many economic and financial series (see for example
Engle (2002) and Pelletier (2006)). Thus in the last few years there has been an increasing
attention to a new class of stochastic volatility models, which account for time-varying
and stochastic correlation structure.
In this work we deal with the MSV models proposed by Philipov and Glickman (2006)
and Gourierouxet al. (2004). They use two different stochastic representationsof a
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Wishart autoregressive process for the stochastic volatility. Their models allow for time-
varying variances and covariances, which determine implicitly a time-varying stochastic
correlation structure between asset returns. For an updated discussion on the different
ways of introducing the time-varying correlation into MSV models we refer to Asai and
McAleer Asai and McAleer (2006b, 2005).
The first contribution of this work is to propose some extensions of the Wishart MSV
model. In particular following Soet al. (1998) we are interested in capturing different
regimes in the volatility behavior. To this aim we assume that the parameters of the
Wishart autoregressive process are driven by a Markov-Switching process. We study the
effect of the Markov-switching process on the volatility and on the correlation structure of
the observable, which results implicitly determined by thevolatilities and the covariances.
In this work we propose a on-line filtering approach for the Wishart-type MSV models.
The on-line estimation of the latent Wishart process is veryuseful in a applied context,
but represents a challenging inference problem. The inference task is difficult not only
due to the nonlinear and non-Gaussian dynamics, but also dueto the fact that the posterior
distribution has not closed form and that the hidden states are matrices, possibly of high
dimension. Note that the Kalman Filter was originally defined for vector-valued state
(Kalman (1960) and Kalman and Bucy (1960)), but in many applications (such as finance
and engineering) the states of a stochastic system are naturally defined by a matrix. In
our work the time-varying volatility structure of set of time series are naturally defined
by a nonsingular positive-definite matrix. We propose a general probabilistic state space
representation of the MSV model and solve the inference problem by using nonlinear
filtering techniques. In this work, we bring into action sequential Monte Carlo techniques
(Berzuiniet al. (1997), Arulampalamet al. (2001), Doucetet al. (2001)) and apply them
to the Wishart-type MSV models.
The proposed regularised particle filters belong to the family of simulation based meth-
ods. These include the simulated maximum likelihood methodproposed by Danielson
and Richard (1993), and Danielsson (1994), MCMC method proposed by Jacquieret al.
(1994) and improved by Kim and Chib (1998), maximum likelihood Monte Carlo (Sand-
mann and Koopman (1998)), the simulation method using important sampling and anti-
thetic variables proposed by Durbin and Koopman (2000), efficient method of moments
(EMM) by Gallant and Tauchen (1996).
The last contribution of the work is to propose a full Bayesian approach to the joint esti-
mation of the parameter and the latent variable. We augment the state space of the system
by considering the parameter as latent variable. The original state-space model can be
represented in a vector form and the filtering problem can be applied to the vectorized
form. The vectorized version of the system is useful becauseit allows us to evaluate many
quantities of interest, such as general measures of filtering and prediction abilities of the
model. However the vectorized version is not suitable for dealing with constrains on the
hidden states. In our work and following Bar-Itzhacket al.(2006) and Choukroun (2003)
we do not vectorize the system and follow an alternative route, which make advantage of
the probabilistic structure of the model. Note that our general state-space representation
includes as special case the linear and Gaussian matrix-valued state space models studied
in Bar-Itzhacket al. (2006) and Choukroun (2003).
In that case the Matrix Kalman Filter proposed by the authorsis optimal solution of the
filtering problem when compared to our nonlinear filtering approach. Note however that
our state-space...
The structure of the work is as follows. Section 2. proposes some new Wishart MSV



models, those parameters are governed by a Markov-switching process. Section 3. deals
with the inference problems and proposes a full Bayesian inference approach, which relies
upon Sequential Monte Carlo algorithms. We suggest to take advantage of the matrix
structure of the states to reduce the computational complexity of the nonlinear filtering
procedure. Section 4. exhibits a simulation analysis of theproposed inference approach.

2. Wishart Stochastic Volatilty Processes

Let Mk
+ ⊂ R

k×k denote the set of all the real-valued symmetric and positive-definite
matrices of dimensionk. Let {yt}t≥0, with yt ∈ R

k, represent the stochastic process
of log-returns and{Σt}t≥0, with Σt ∈ Mk

+, the matrix-valued stochastic process of the
variance-covariances.
We define the following multivariate model with Wishart stochastic volatility

yt ∼ Nk(0k, Σt) (1)

Σ−1

t ∼ Wk (νt, Ξt) (2)

for t = 1, . . . , T , whereNk(0k, Σt) is a k-variate normal distribution with null mean
vector. Wk(νt, Ξt) denotes a Wishart distribution of dimensionk, with possibly time-
varying and stochastic degrees of freedom parameterνt and scale-matrixΞt. The Wishart
distribution accounts for the positive definiteness of the variance-covariance matrix and
the time-varying parameters can be governed by other latentor exogenous variables.
In the following examples we present some alternative stochastic representations of the
Wishart stochastic volatility process defined above. In thefirst example we follow Philipov
and Glickman (2006), in the second one Gourierouxet al. (2004). The remaining exam-
ples extend the basic Wishart MSV models by introducing a Markov-switching process,
which accounts for sudden changes in the volatility level. The proposed models can be
considered a multivariate extension of the Soet al. (1998) univariate stochastic volatility
process with Markov-switching.

Example 1- Autoregressive Wishart Process (ARW(1))
In order to introduce a first-order autoregressive dynamic in the stochastic volatility we
set

Σ−1

t ∼ Wk

(

ν,
1

ν
A1/2(Σ−1

t−1)
d(A1/2)′

)

(3)

whereA ∈ Mk
+, A1/2 is its Cholesky decomposition andd is a scale factor. The matrix

power is defined byAn = An−1 · A, n ≥ 1, A0 = Ik, with Ik the identity matrix. The
Wishart process is stationary ford ∈ (−1, +1), as discussed in Philipov and Glickman
(2006). In our study we consider diagonal matrixA = diag{(a1, . . . , ak)} and scale factor
d ∈ (0, 1), in order to avoid an inverse relation between two consecutive realisations of
the covariance process.
Fig. 1 shows observations and latent volatilities simulated from a stochastic volatility
model of dimensionk = 5. Fig. 2 exhibits the time evolution of the stochastic correlation
structure, which is implicit in the the simulated covariance process. In the simulation we
use the following parameter setting:d = 0.3, ν = 19 andA−1 = 0.0125 diag{ι′} where
ι = (1, . . . , 1)′ ∈ R

5.

�



Figure 1: Simulated stochastic volatility model. Right column: simulated observable
processyt. Left column: simulated latent volatilities(σ11t, . . . , σ55t), whereσijt denotes
the (i, j)-th element ofΣ1/2

t . In the simulation study we assumed = 0.3, ν = 19,
A−1 = 0.0125 I5, whereIk denotes the identity matrix of dimensionk.
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Figure 2: Simulated stochastic correlations. Matrix of graphs representing the time evo-
lution of the componentsρijt = σijt/(σiitσjjt), with j ≥ i of the correlation matrix,
whereσijt denotes the(i, j)-th element ofΣ1/2

t . The time-varying stochastic correlation
structure is implicit in the simulated Wishart covariance process.
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Example 2- Wishart Autoregressive Process (WAR(1))
Let xmt ∈ R

k, with m = 1, . . . , ν and ν ∈ N0, be a sequence of first-order vector
autoregressive processes:xt ∼ Nk (Axt−1, Σ), whereA ∈ Mk. Then ak-variate Wishart
process of the first order is defined asΣt =

∑M
m=1

xmtx
′
mt and its transition density is

non-central Wishart,Σt ∼ Wk (ν, Σ, A). This definition and some generalisations can be
found in Gourierouxet al. (2004). Note that the model in Philipov and Glickman (2006)
is defined also for non-integer values ofν.

�

Example 3- Markov-Switching Autoregressive Wishart (MS-ARW(1))
We introduce a Markov-switching process in the dynamics of the ARW(1)

Σ−1

t+1 ∼ Wk

(

νst+1
,

1

νst+1

A1/2

st+1
(Σ−1

t )dst+1 (A1/2

st+1
)′
)

(4)

st+1 ∼ P (st+1 = j|st = i) = pij with i, j ∈ {1, . . . , E} (5)

whereAi ∈ Mk
+, ∀i ∈ {1, . . . , E}. The Markov-switching process accounts for sudden

changes of regimes in the volatility behavior. When the parametersνst+1
= ν anddst+1

=
d, i.e. they are constant over regimes, then the MS-ARW(1) accounts for different regimes
in the volatility levels. Fig. 3 and 4 give a simulated example of MS-ARW(1) withAst+1

diagonal matrix, which excludes spill-over effects. The regimes-switching in the matrix
Ast+1

influences the scale of the observable producing different levels of volatility (see
Fig. 3). Note that the correlation matrix (Fig. 4) is note affected by the Markov-switching
process.

�

Example 4- Markov-Switching Wishart Autoregressive (MS-WAR(1))
Let xmt ∈ R

k, with m = 1, . . . , ν andν ∈ N0, be a sequence of Markov-switching
first-order vector autoregressive processes:xt ∼ Nk

(

Ast
xt−1, Σst+1

)

, whereAi ∈ Mk

∀i ∈ {1, . . . , E}. ThenΣt =
∑M

m=1
xmtx

′
mt is a MS-WAR(1).

�

3. Matrix-State Particle Filter

The estimation of the latent-variable model presented in Section 2. configures a prob-
lem of discrete-time nonlinear filtering, with unknown parameters. In our model neither
the Kalman-Bucy nor the Hamilton-Kitagawa filters can be used, thus alternative proce-
dures should be considered. We bring into action a simulation based nonlinear-filtering
procedure called Particle Filter, which is in the general class of Sequential Monte Carlo
methods.
We follow a full Bayesian estimation approach and propose the joint sequential estimation
of the parameters and states of the matrix-valued dynamic model. The Bayesian approach
is general enough to account for nonlinear models and for prior information on the para-
meters. Another feature of this framework is to allow the useof simulation methods in
the inference process.



Figure 3: Simulated MS volatility model. Left column: simulated observable process
yt (black line) and hidden volatility regimesst (grey line). Right column: simulated
latent volatilities(σ11t, . . . , σ55t), whereσijt denotes the(i, j)-th element ofΣ1/2

t . In
the simulation study we assumed = 0.3, ν = 19, A−1

1 = 0.1 I5, A−1

1 = 0.04 I5 and
A−1

1 = 0.0125 I5, whereIk denotes the identity matrix of dimensionk.

0 1000 2000 3000

−0.5
0

0.5
1

1.5
y 1t

0 1000 2000 3000

−0.5
0

0.5
1

1.5

y 2t

0 1000 2000 3000

−0.5
0

0.5
1

1.5

y 3t

0 1000 2000 3000

−0.5
0

0.5
1

1.5

y 4t

0 1000 2000 3000

−0.5
0

0.5
1

1.5

y 5t

0 500 1000 1500 2000 2500 3000

0.1
0.2
0.3
0.4

σ 11
t

   
   

   
   

0 500 1000 1500 2000 2500 3000

0.1
0.2
0.3
0.4

σ 22
t

   
   

   
   

0 500 1000 1500 2000 2500 3000

0.1
0.2
0.3
0.4

σ 33
t

   
   

   
   

0 500 1000 1500 2000 2500 3000

0.1
0.2
0.3
0.4

σ 44
t

   
   

   
   

0 500 1000 1500 2000 2500 3000

0.1
0.2
0.3
0.4

σ 55
t

   
   

   
   

Figure 4: Simulated stochastic correlations. Matrix of graphs representing the time evolu-
tion of the componentsρijt of the correlation matrix. The correlation structure is implicit
in the simulated Wishart process and is not affected by the switching dynamics.
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3.1 Parameters and Latent Variables Estimation

Following Harrison and West (1997) in this contribution we propose a probabilistic repre-
sentation of a stochastic dynamic model with matrix-valuedstates and observations. Let
My ⊂ R

ny×my , Mx ⊂ R
nx×mx andMξ be the observation, state and parameter spaces

respectively. LetYt ∈ My denote the matrix of observations,Xt ∈ Mx the matrix-
valued hidden state andξ ∈ Mξ the parameter. A matrix-valued dynamic Bayesian
model can be defined as

Y t ∼ p(Y t|X t, ξ) (measurement density) (6)

X t ∼ p(X t|X t−1, Y 1:t−1, ξ) (transition density) (7)

X0 ∼ p(X0|ξ) (initial density) (8)

ξ ∼ p(ξ) (prior density) (9)

with t = 1, . . . , T .
The MSV models presented in our work are special cases of thisgeneral state space
model, whereξ = ((a11, . . . , akk), d, ν)′ ∈ R

k+2, Y t = yt, with yt ∈ R
k andX t =

Σt, with Σt ∈ Mk
+. The first advantage of the proposed probabilistic representation is

that it allows us to naturally introduce nonlinear filteringmethods techniques based on
simulation methods. Another advantage is that it includes as spacial cases many well
know dynamic models. It includes also the matrix-valued linear gaussian model, recently
studied in Choukroun (2003) and Bar-Itzhacket al. (2006).
In the stochastic filtering literature the matrix-valued state and observations are usually
stacked into vectors and the filtering procedure is then applied to the vectorized system.
The vectorized representation could be used to define the optimal filter. Note however that
working with the vectorized system representation could lead to some difficulties. When
the original model is nonlinear and non-Gaussian the analytical form of the vectorized-
state transition density is not straightforward and the probabilistic constraints, such as
the positive definiteness of the states matrix, on the original model could not be easily
imposed in the vectorized system.
In this work we do not vectorize the system and present instead the optimal filtering
problem for the original dynamic Bayesian model. In order toestimate the parameter
we introduce a general definition of state:Zt = (X t, ξt) and of augmented state space:
Mz = Mx ×Mξ. The state and observation one-step-aheadprediction densitiesand the
augmented-statefiltering and thesmoothing densitiesare

p(Zt+1|Y 1:t) =

∫

Mz

p(X t+1|X t, Y 1:t, ξt+1)δξt
(ξt+1)p(Zt|Y 1:t)dZt (10)

p(Y t+1|Y 1:t) =

∫

Mz

p(Y t+1|X t+1, ξt+1)p(Zt+1|Y 1:t)dZt+1 (11)

p(Zt+1|Y 1:t+1) =
p(Y t+1|Zt+1)p(Zt+1|Y 1:t)

p(Y t+1|Y 1:t)
(12)

In this work we extend theRegularised Auxiliary Particle Filter(R-APF) due to Liu and
West (2001) to matrix-valued state space models and apply itto the proposed Wishart
MSV models. Let{Zi

t, w
i
t}

N
i=1 be a weighted random sample, which is approximating the

filtering density at timet. At the time stept + 1, as a new observationY t+1 arrives, we



Figure 5: The absolute Effective Sample Size at each iteration, estimated over10 indepen-
dent runs of the R-APF on different simulated datasets. We apply the R-APF to samples
of 3, 000 observations simulated from Eq. (1)-(2). Left-chart: ESS for k = 5, varying the
number of particles:N = 1, 000 (light grey), N = 5, 000 (dark grey) and10, 000 (black).
Right-chart: ESS forN = 1, 000 varying the dimension of the state-matrix: fromk = 2
to k = 5. The darker the line color, the lower the value ofk.
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can approximate the prediction and filtering densities in (10) and (12) as follows

pN (Zt+1|Y 1:t) =
N
∑

i=1

p(X t+1|X
i
t, Y 1:t, ξt+1)Kh(ξt+1 − ξi

t)w
i
t (13)

pN (Zt+1|Y 1:t+1)∝
N
∑

i=1

p(Y t+1|Zt+1)p(X t+1|X
i
t, Y 1:t, ξ

i
t)Kh(ξt+1 − ξi

t)w
i
t (14)

A simple way to obtain a weighted random sample from the approximated filtering density
at time t + 1 is to apply importance sampling to the density given in Eq. (14). We
propagate each particle of the set through the importance density q(Zt+1|Z

i
t, Y 1:t+1) =

p(X t+1|X
i
t, Y 1:t, ξt+1)Kh(ξt+1 − ξi

t), then particle weightswt+1 update as follows

w̃i
t+1 ∝

p(Y t+1|Zt+1)Kh(ξt+1 − ξi
t)p(Zt+1|Z

i
t, Y 1:t, ξt+1)w

i
t

q(Zt+1|Z
i
t, Y 1:t+1)

∝ wi
t p(Y t+1|Z

i
t+1). (15)

4. Simulation Results

We apply the regularised SMC algorithm for matrix-valued state to the MS-ARW(1) given
in Example 3. We initialize the algorithm by running a Gibbs sampler on 100 observa-
tions. We omit here the details about the choice of the priors, the full conditionals used in
the Gibbs sampler. The parameterh in regularisation step of the SMC algorithm has been
chosen following usual optimal criteria. In this work we present the simulation results
about the efficiency of the algorithm for this model.



We measure the numerical efficiency of the algorithm by evaluating at each iteration the
Effective Sample Size(ESS), that is defined as

ESSt =





N
∑

i=1

(

wi
t

∑N
j=1

wj
t

)2




−1

(16)

and varies between 1 (all but one particle weights are null) and N (equal weights). A
related criterion is the coefficient of variation (see Liu and Chen 1998). For the MSV
model in Example 3 we evaluate the ESS varying the number of particles (N = 1, 000,
5, 000, 10, 000) and the dimension of the state-matrix (k = 2, 3, 4, 5). For givenN and
k, at each time step, the mean ESS has been estimated over 10 independent runs of the
R-APF on different simulated datasets. Fig. 5 shows the results.
As one could expect, increasingN improves the absolute efficiency of the filtering proce-
dure (left-chart), although the relative efficiency (ESSt/N) is decreasing. As showed in
the right-chart the efficiency is also affected by the dimension of the latent variable space.
The higher the state-matrix dimension is, the lower the numerical efficiency is.

5. Conclusion

In this paper we propose new Wishart stochastic volatility models. The parameter of the
Wishart autoregressive process is governed by a first-orderMarkov chain. We propose a
Sequential Monte Carlo approach for the joint estimation ofthe parameter and the hidden
state-matrix. By means of simulation experiments, we discuss the efficiency of the method
and the dimensionality problem.
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