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Abstract. The search of a model for representing and evaluating the
similarities between shapes in a perceptually coherent way is still an
open issue. One reason for this is that our perception of similarities is
strongly influenced by the underlying category structure. In this paper
we aim at jointly learning the categories from examples and the similar-
ity measures related to them. There is a chicken and egg dilemma here:
class knowledge is required to determine perceived similarities, while
the similarities are needed to extract class knowledge in an unsuper-
vised way. The problem is addressed through a game theoretic approach
which allows us to compute 2D shape categories based on a skeletal rep-
resentation. The approach provides us with both the cluster information
needed to extract the categories, and the relevance information needed
to compute the category model and, thus, the similarities. Experiments
on a database of 1000 shapes showed that the approach outperform other
clustering approaches that do not make use of the underlying contextual
information and provides similarities comparable with a state-of-the-art
label-propagation approach which, however, cannot extract categories.

1 Introduction

The unsupervised learning of shape categories is a central problem in computer
vision with significant theoretical and practical impacts. There are two interre-
lated aspects to the problem: The first is the discovery of the shape categories
present, and this can be effectively addressed as a problem of clustering shapes,
while the second is the generalization of the class properties, i.e., the ability to
assign each newly encountered shape to one of the extracted classes, or to rec-
ognize it as an outlier. Fundamental to both tasks is the problem of determining
how similar two shapes really are.

These issues have been extensively studied with geometric characterizations
of shape using both simple descriptors such as landmark points on the bound-
ary [4], or more complex ones such as curve descriptors [8]. Shape-classes can
then be located by vectorizing the shape-attributes and applying standard cen-
tral clustering techniques to the shape-vectors, while the problem of determining
the membership to a class can be solved by performing principal components
analysis. An alternative to the use of a single vectorial representation of the
shape’s geometry is to use a structural abstraction where the object is divided
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into atomic components whose arrangement is then represented using a rela-
tional graph [7, 20]. Typically in this context, the similarity between two shapes
is a measure of how well the primitives forming the shapes and/or their spatial
organizations agree, and the assessment of whether a shape belongs to a par-
ticular class is performed by comparing in isolation the shape to one or more
prototypes and by applying the nearest neighbor rule, while categories can be
extracted using pairwise clustering [15].

One problem with these approaches is that they all assume the existence of
a single universal measure of similarity between shapes, often requiring metric
properties as well, while psychological experiments suggest that the human per-
ception of similarity is not only non-metric [5], but also strongly dependent on
the surrounding context [17, 11]. In particular, the observed variation within a
shape-class is fundamental for determining the perception of the similarities of
the shapes belonging to that class. Recently, this issue has also been surfaced
from a computational point of view [19, 9].

In this paper, we propose a game theoretic approach to compute shape cat-
egories in an unsupervised way. There is a chicken and egg problem here: Class
knowledge is required to determine perceived similarities, while the similarities
are needed to extract class knowledge. We solve this problem using a EM-like
approach where we iteratively estimate the class memberships and maximize for
the parameters of our category representation. The expectation of class member-
ship is obtained by adopting a game theoretic clustering framework presented
in [16]. Then the similarities are computed as the edit-distance of a skeletal rep-
resentation presented in [3] using the newly estimated cost coefficients. Central
to the approach is the ability of the clustering framework to provide both the
cluster information needed to extract the categories, and the relevance informa-
tion (or the degree of membership) needed to compute the category model, and
thus the similarities, in a robust way. Interestingly, the contextual similarity de-
fined in [3] is not symmetric, making the ability of the game-theoretic approach
to deal with asymmetric affinities particularly attractive.

2 Disconnected Skeletons and Category Influenced

Matching

Skeletons are one of the most common representation scheme for generic shape
recognition [20, 14], as they capture part structure and provide insensitivity to ar-
ticulations and occlusions. However, in practice, two visually very similar shapes
might have structurally different skeletons, hence this instability issue should be
resolved either in extracting the skeleton or in the matching process. In this re-
gard, disconnected skeletons [2, 1] provide an alternative solution as the method
aims at obtaining a coarse yet a very stable skeleton representation from scratch.

Disconnected skeletons are defined in terms of a special distance surface
(Aslan surface), the level curves of which are increasingly smoothed versions of
the initial shape boundary, and which has a single extremum point that captures
the center of a blob-like representation of the shape (Fig. 1(a)). Each branch ex-
tracted from this surface is classified as either positive or negative, identifying
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Fig. 1: Disconnected skeletons. (a) Level curves of Aslan surface (b) Positive and neg-
ative skeleton branches, respective drawn in blue and red (before pruning) (c) Spatial
organization of skeleton branches (taken from [3]).

whether it originates from a positive curvature maxima (a protrusion) or a nega-
tive curvature minima (an indentation). Among the extracted branches, at least
two positive and two negative branches reach the shape center, and these are
called major branches since they represent the most prominent visual features
of the shape. All the other branches terminate at some disconnection points
where a positive branch and a negative branch collide (Fig. 1(b)). It has been
shown that these points are very stable under visual transformations such as
articulation and deformation of parts. The skeletal attributes used to represent
each skeleton branch are simply its type, the location of its disconnection points
(r, θ), and its length l measured in the formed coordinate frame.

In [3], disconnected skeletons are represented as rooted attributed depth-1

trees and tree-edit distance is used to match these structures. Moreover, Baseski
and coworkers [3] used the category of one of the shapes to be matched to de-
termine the edit-costs. The cost functions are computed on the basis of category
specific statistics about the skeletal attributes that are stored in an auxiliary tree
union structure. In this version, the cost function for the label change operation is
defined in terms of a generic cost function. The idea resembles Mahalanobis dis-
tance in that when the distance within the observed range of skeletal attributes,
but rapidly increases outside of that region.

3 Grouping Game

In [16], a novel framework for grouping and clustering was presented which
was derived from a game-theoretic formalization of the competition between the
hypotheses of group membership. The basic idea is as follows: Let the hypotheses
that each element belongs to a group compete with one-another, each obtaining
support from compatible elements and competitive pressure from all the others.
Competition will reduce the population assuming hypotheses that do not receive
strong support from the rest, while it will allow populations assuming hypotheses
with strong support to thrive. Eventually, all inconsistent hypotheses will be
driven to extinction, while all the surviving hypotheses will reach an equilibrium
with all receiving the same average support. Clustering was thus formalized as a
repeated non-cooperative game where competition for class membership selects
elements belonging to a coherent cluster.



Specifically, let O = {1, · · · , n} be the set of available elements, for each pair
of strategies i, j ∈ O, aij represents the payoff of an individual playing strat-
egy i against an opponent playing strategy j. A mixed strategy is a probability
distribution x = (x1, . . . , xn)T over the available strategies O.

∆ =
{

x ∈ IRn : xi ≥ 0 for all i ∈ O, 1T x = 1
}

,

where 1 = (1, . . . , 1)T , while the support of a mixed strategy x ∈ ∆, denoted
by σ(x), is defined as the set of elements chosen with non-zero probability:
σ(x) = {i ∈ O | xi > 0}.

The expected payoff received by a player choosing element i when playing
against a player adopting a mixed strategy x is (Ax)i =

∑

j aijxj , hence the

expected payoff received by adopting the mixed strategy y against x is yT Ax.

The best replies against mixed strategy x is the set of mixed strategies

β(x) = {y ∈ ∆ | yT Ax = max
z

(zT Ax)} .

A strategy x is said to be a Nash equilibrium if it is the best reply to itself,
i.e.,

∀y ∈ ∆ xT Ax ≥ yT Ax . (1)

Within this formalization, Nash equilibria abstracts the main characteristics
of a group: internal homogeneity, that is, a high mutual support of all elements
within the group, and external dishomogeneity, or low support from elements
of the group to elements that do not belong to the group. Equilibria, and thus
groups, are found using the replicator dynamics [18], a well-known formalization
of a natural selection process.

The main characteristics of the framework are that it is generic, as it can
deal with asymmetric as well as negative affinities; it does not require a priori

knowledge of the number of clusters as it is inherently a multi-figure/ground dis-
crimination process; and it provides immediate measures of both the cohesiveness
of the cluster in the form of its average payoff xT Ax, and of the participation of
an element to the cluster. In fact the value xi can be interpreted as a degree of
participation of element i to the cluster defined by the stable point x.

4 The Proposed Method

In this study, we attempt to solve the interrelated problems of discovering shape
categories and computing the corresponding contextual similarities using a EM-
like approach where we iteratively estimate the class memberships and maximize
for the parameters of our category representation. The expectation of class mem-
bership is obtained by adopting the game theoretic clustering framework sum-
marized in Section 3. Then the similarities are computed as the edit-distance of
a skeletal representation presented in [3] using the newly estimated cost coeffi-
cients. The details of these steps are as follows.



4.1 Discovering Shape Categories

We define the shape category in terms of a clustering game where shapes present
in the training set compete for category membership. The outcome of the compe-
tition is determined by the payoff or utility matrix A = (aij) which represents the
similarity of shape i with shape j. Initially, these payoffs simply correspond to the

similarities among the given set of shapes obtained with aij = exp
(

− (dist(i,j))2

σ2

)

where σ is a scaling factor, and dist(i, j) is the tree-edit distance between the
disconnected skeletons of the shapes i and j.

Since no category information is available in the beginning, the initial simi-
larities were computed in isolation without any context, thus A is a symmetric

matrix. However, in the subsequent iterations, the category structure discovered
in the previous step influences the similarity computations by differentiating the
roles of the shapes in comparison. Now, each row index corresponds to a query
shape whereas each column index is a shape which has a category label assigned
by the previous grouping game (if it is not found to be an outlier), and the cost
functions are determined by the context about the category of the second shape.
Thus, this results in an asymmetric similarity matrix.

Given the payoff matrix A, we extract shape categories by applying a peal-off

strategy. At first, we start with a grouping game that considers all the shapes
and we extract a cluster by running the replicator dynamics. Following that,
we define a new game on the set of remaining (unlabeled) shapes and reiterate
the procedure until all groups are extracted. The game theoretic framework
also provides us a direct way to evaluate the coherency of extracted clusters.
Let S ∈ S be an extracted group, the coherency of S can be computed as its
average payoff xT

SAxS ∈ [0, 1]. By inspecting these values, we obtain an initial
set C (⊆ S) of coherent shape categories which is formed by the clusters S ∈ S
with xT

SAxS > ζ1. This allows us to discard incoherent classes hence enforcing
robustness in the extraction process.

The payoff information can also be used to assign additional members to the
clusters in C. To compute the similarity between a shape i to a cluster S, we

use the weighted similarity function γS(i) =
(Ax

S
)i

x
T

S
Ax

S

. We evaluate this similarity

measure for every unlabeled shape i and assign it to the most similar cluster if
γS(i) ≥ ζ2. Otherwise, it is considered as an outlier shape which does not belong
to any of the extracted categories. The ability of assigning an unclustered object
either to a category or to the outlier class is instrumental to the generalization
capabilities. Note that the outlier class should be interpreted as a “don’t know”
label where the approach cannot say anything about the shape rather than
recognizing the shape as a new class not seen in the other examples.

After reassigning the leftover elements, we re-examine the groups that were
rejected by the first thresholding step and check whether they became more
coherent with the removal of the reassigned elements. To evaluate their coherency
we use an hysteresis strategy: we accept the groups with |S| > 3 whose average
payoffs xT

SAxS > ζ3, with ζ3 < ζ1. The purpose of this hysteresis is to reduce
the effect the implicit change in scale induced by the peel-off strategy and to
increase robustness with respect to the scaling factor σ.



4.2 Computing Contextual Similarities

To model the influence of the discovered category structure on the computa-
tion of shape similarities, we adopt the tree-edit distance based shape matching
method proposed by Baseski et al. [3]. Here, however, we form the union in
an unsupervised way, based on the clusters obtained with the game-theoretic
approach. Further, in the computation of the edit-cost, we substitute the min-
imum and maximum values of the skeletal attributes in the category with soft
bounds that make use of the membership information supplied by the clustering
framework. In particular, we use the weighted mean µx and weighted standard
deviation σx (Eqn. 2) to determine the range µx ± 3σx which has experimen-
tally shown to account for the shape variability and provide a robust inference
process.

µx =

∑n
i=1 xiyi

∑n

i=1 xi

, σx =

√

√

√

√

1

1 −
∑n

i=1 x2
i

n
∑

i=1

xi(yi − µx)2 (2)

In obtaining the affinity matrix A = (aij) at time step t > 0, we introduce a
soft indexing scheme where we propagate the information about the similarities
to the extracted classes: When computing the similarity between the query shape
i and the shape j, if j belongs to a cluster S extracted in the previous step, we
multiply the similarity influenced by the new category information, with the
similarity of the shape i to the cluster S normalized with respect to the most
similar category. This allows us to bias the similarities towards the previously
extracted clusters, thus propagating the membership throughout the iterations.
Clearly, if j is an outlier shape, i.e. no category information is available about
it, we keep the original distance which does not utilize any context information.
Moreover, the corresponding multiplier bij is taken as 1.

aij = bij × exp
(

−(dist(i, j))2)/σ2
)

(3)

where bij =







1 if j is an outlier
γS(i)

max
T∈C

γT (i)
if j ∈ S

Category discovery and similarity computation are iterated until the change
in the ratio of unlabeled (outlier) shapes to the total number of shapes is smaller
than a threshold ζ4. Experimentally it was observed that the resulting group and
distance information, as well as the query performance, are relatively stable after
meeting this condition.

5 Experimental Results

In order to evaluate the performance of the proposed approach, we used the shape
database provided in [3] which contains a total of 1000 shapes from 50 shape
categories, each having 20 examples. We start by extracting the disconnected
skeletons. After the descriptions are formed, we iteratively run the proposed



The Method Rand Index
Corrected
Rand Index

NMI

Our method at t=0 0.9818 0.9929 0.8517
Our method
(asymmetric case)

0.9854 0.9933 0.8722

Normalized Cut [13]
(with # of classes=51)

0.9832 0.9833 0.8381

Normalized Cut [13]
(with # of classes=61)

0.9848 0.9854 0.8380

Foreground Focus [9]
(with # of classes=50)

0.9748 0.7329

Table 1: The quantitative evaluation of the clustering results.

method with the empirically set parameters σ2 = 24, ζ1 = 0.85, ζ2 = 0.95 and
ζ3 = 0.75, and stop when ζ4 ≤ 0.005. In this setting, the algorithm converges at
the 2nd iteration. The shape categories extracted are given in Table 2, where for
each class we show the shape with the highest membership score.

Table 1 shows some cluster validity measures [6] on the classes extracted
with our approach. The first measure is the standard Rand index, i.e. the ratio
of agreements over all possible pairs. The second measure is a corrected version
of the Rand index where the disagreements in the outlier class are not penalized,
as this class is not supposed to form a coherent group. Note that the latter form
of the Rand index favors more conservative approaches, where we prefer the
approach not to label a shape when in doubt, while the former version favors
bolder assignments where we prefer to make a few mistakes rather than not assign
a shape to a class. Which version is to be preferred is clearly dependent on the
application. The last measure is the normalized mutual information (NMI) which
measures the closeness between the class distributions and the ground truth.

In an attempt to assess information content in the asymmetry of the similar-
ity matrix, we also perform the same experiment using the same parameters but
rendering the affinities symmetric before applying pairwise clustering. In this
case, the approach requires 3 iterations to converge. When the number of outlier
shapes and the average precision recall values (Fig. 2) are considered alone, the
symmetric case seems to work better than the asymmetric case. However, the
difference between the plain and corrected Rand index show that the asymmetric
approach is more conservative, i.e. it has a higher tendency to label shapes as
belonging to an unknown class, but makes fewer misclassifications when it does
assign shapes to a class, on the other hand the symmetric approach is more likely
to assign shapes to a class, even when this results in more misclassifications.

We compared the results with several alternatives. The first, which should
be seen as a baseline comparison, is performed by applying a pairwise clustering
approach in order to extract the class structure, while assuming global, non-
contextual similarities. Here we used Normalized Cut [13] as a baseline pairwise
clustering approach. Note that the normalized cut approach requires the number
of classes to be known ab initio. Here we choose two different values: 51 (the
existing 50 semantic categories plus 1 for the outliers) and 61 (a number closer to
the number of categories extracted with our approach). The additional number



of classes is due to the fact that there can be a substantial semantic gap between
appearance and categories, and allowing more freedom can result in better overall
categorization. Indeed, as it can be seen in Table 1, normalized cut performs
better with more degrees of freedom, but still performs significantly worse than
the proposed approach.

The second approach we are comparing against is Foreground Focus [9]. This
is an unsupervised algorithm proposed to learn categories from sets of partially
matching image features. Just like our approach, it utilizes an EM-like algorithm
to infer the categories. However, its goal is to learn relevant features rather than
the actual contextual similarities. In order to compare with this method, we first
form Inner-Distance Shape Context [10] descriptions of each shape by uniformly
sampling 100 landmark points across the shape boundary and using a total of
5 inner-distance bins and 12 inner-angle bins. Earth Mover’s Distance (EMD)
algorithm [12] is then used to compute the matchings of shape features and
similarities, and Normalized Cut [13] is used to determine the clusters. Here, the
total number of extracted clusters is kept fixed at 50 (the actual number of shape
categories exist in the database). Table 1 and Fig. 2 show that the performance
of this approach is even significantly lower than the baseline normalized cuts over
the skeletal distance. The huge difference can probably be explained by the lower
descriptive power of the Inner-Distance Shape Context features with respect to
disconnected skeletons, or bad performance of EMD matching algorithm.

The last comparison is with the label propagation method [19] and is limited
to the retrieval performance of the contextual similarities. This method has three
parameters which are used to construct the affinity matrix, the neighborhood size
and the window size that are respectively set as C = 0.275, neighborhood size
K = 10, window size W = 250 × 250. When applied to the initial (symmetric)
similarities, the approach offers a slightly better precision/recall (Fig. 2). How-
ever, note that the approach solves a slightly different problem; it concentrates
only on improving retrieval rate and does not provide any category structure or
an estimation of perceptually relevant similarities.

6 Summary and Conclusion

In this paper, we presented an approach for the simultaneous discovering of
2D shape categories and the corresponding contextual similarities. This was
achieved by adopting the game theoretic clustering approach introduced in [16]
and by modifying the shape retrieval system presented in [3] in order to account
for the uncertainty in the category information. The game theoretic framework
naturally provides us the membership information about the extracted categories
which quantifies this uncertainty, and is capable of dealing with the asymmetric
similarities obtained using the contextual information. We have demonstrated
the potential of the proposed framework on a large shape database composed of
highly varying 1000 shapes from 50 categories.
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