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ABSTRACT 

The Mediterranean Basin  receives sedimentary contributions from several 

sources with different geological characteristics.  The most important natural source of 

dust is the Saharan desert. Data from aerosol dust samples collected in a remote site in 

the Central Mediterranean Basin were used to investigate incursions of Saharan dust 

during a seven-month period (October-April). This paper is an attempt to trace source 

areas and transport of dust plumes by means of grain-size, mineralogical, and chemical 

analyses.  Two sets of aerosol samples typical of "desert-influenced" and 

"anthropogenic-influenced" air masses were studied. We propose a model for 

assessment of the effects of latitude on the chemistry and mineralogy of the Central 

Mediterranean aerosol. Calculations and measurements of fluxes, in particular for Al ( 

80 µg/cm2 . yr-1) and Ca ( 28µg/cm2 . yr-1), were performed, and results were 

compared with fluxes from the literature calculated in other stations in the 

Mediterranean Basin.        
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INTRODUCTION 

Aeolian dust deposits are prominent in many parts of the world, in both 

continents and oceans (Pye, 1987), and play a major role in the formation of soils and 

deep-sea sediments. The continents are the primary sources of mineral aerosols, 

particularly in arid and semi-arid regions. Estimates of the amount of mineral aerosol 

generated in the particle-size range capable of long-range transport are in the order of 

hundreds to thousands of million tons annually (Peterson and Junge, 1971; Robinson 

and Robbins, 1968; Schütz, 1980). Fluxes of atmospheric solid particles across the air-

sea interface can be of geological, pedological, and ecological importance. Aeolian 

dust can also affect the composition of ice in glaciers (De Angelis and Gaudichet, 

1991; Waghenbach and Geis, 1989). 

 The Mediterranean Basin receives sedimentary material from a large number of 

sources with different geological characteristics. Saharan dust originating from North 

Africa is the major source of natural atmospheric particles over the North Atlantic and 

Mediterranean. The aeolian transport of desert aerosol is also responsible for the  

episodes of "red snow" or "red rain" described in various parts of Europe (Prodi & 

Fea, 1979; Bücher et al., 1983; Bergametti, 1987; Pye, 1987).  In the following 

discussion, the generic term Saharan refers mainly to northwestern Africa (southern 

regions of Morocco, Algeria, Tunisia and Libya), which is considered to be the 

dominant dust source for the Central Mediterranean Basin. Whereas much time and 

study have been devoted to the transport of dust to the west (over the North Atlantic), 

very little is known about its transport to the north (over the Mediterranean ).  The 

transport of Saharan dusts over the Mediterranean region is poorly documented, 

although a few authors have studied one or two dust events from the meteorological, 

mineralogical or chemical points of view (Tomadin et al., 1984; Bücher et al., 1983; 

Ganor and Mamane, 1982; Chester et al., 1984; Lefèvre et al., 1986; Loye-Pilot et al., 

1986; Dulac et al., 1987). Because these studies are limited in time, major questions 
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remain about the frequency of Saharan dust events in this region, and also about their 

source regions,  transport processes and deposition patterns.  The elemental chemistry 

of particulate material in the Mediterranean is essentially controlled by dilution of 

European background material (anthropogenic-influenced) with desert components 

(Chester et al., 1981). This diversity of sources is reflected in the composition of the 

aerosols; mineralogical markers can also be used to recognise typical mineral 

assemblages of the source areas, and to differentiate Saharan dusts from other crustal 

components (Tomadin and Lenaz, 1989). It would appear that latitudinal control exists 

over the distribution of mineral aerosols in the Mediterranean basin, with a general 

increase to the south (Guerzoni et al., 1989).  

Furthermore, relatively little compositional data are available which may be 

used to characterize the desert-derived components and so identify actual incidents of 

the incursion of the dust over the central Mediterranean. In an attempt to investigate 

such incursions of Saharan dust, a series of aerosol collections were made in Sardinia. 

In the present work, we would like to point out the differences between Saharan 

dust and other dusts from different sources, collected as a series of aerosols over a 

seven month period (October 1990 - April 1991). To reach this goal we used  new and 

more complete way to analyze aerosol samples.  Grain-size, mineralogical, and 

chemical parameters were employed for a better characterization of the aerosol.  The 

two sets of aerosols for which data are reported here are representative of "desert-

influenced" and "anthropogenic-influenced" air masses, and should offer ideal sample 

sets for evaluation of the effects of latitudinal controls on the chemistry of the Central 

Mediterranean aerosol.  Moreover, our purpose was to investigate the amount and flux 

Saharan dust over the Mediterranean Sea, therefore some calculations and 

measurements of fluxes, and dry (aerosol dust deposited without rain) and wet (aerosol 

dust deposited during rain) deposition of trace metals to the Central Mediterranean, are 

presented and discussed. 

Terminology 
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In this paper we use the terms according to the terminology in current use in the 

aerosol literature.  The term "crustal-derived" or "crustal-dominated" or "crustal-

components"  is used to include samples .......The term "anthropogenic-influenced" or 

"anthropogenic-dominated" includes  all samples influenced by pollutants and. The 

term "desert-influenced" or "desert-dominated" is used to include all the samples  

 

METHODS 

 

Sampling 

Aerosol samples were collected at Capo Carbonara, a remote coastal station in  

southeastern Sardinia (Fig. 1), between October 1990 and April 1991. The sampling 

sites are 200 km north of the Sahara desert and more than 400 km from continental 

Italy (northeast) and France (northwest). The most abundant rocks in the station area 

are Paleozoic granitic plutons (Fig. 1).  The principal winds are from the west and 

east-southeast, and the station is located far from local sources of pollutants.  

Sampling was carried out using a high-volume  Sierra  Andersen dry sampler, with 

filters made of 10 µm monofilament  fibers located at upper level. Sampling lasted 24 

to 72 hours. 

In this preliminary study we have considered six samples: two with prevailing 

winds from the west; two with prevailing winds from the east-southeast; one with 

mixed wind directions; and one with prevailing winds from the northeast-east. 

 

Analytical techniques 

Aerosols were removed from the filters by washing in 'Milli-Q' DDW in the 

laboratory. Water-soluble particles were removed from the samples.  

Particle size analyses of the insoluble particulate matter were carried out using a 

Model TA II Coulter Counter, linked to an automatic data acquisition system (Boldrin 

et al., 1986) for particle counting. Orifice tubings of 50 µm and 102 µm were used to 
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investigate the size domain after a preliminary scansion during which no larger grains 

were detected.  

            Mineralogical studies were performed by X-ray diffraction on powders and 

oriented-particle mounts. For convenient identification and systematic morphological 

analysis of the different minerals, a scanning electron microscope (SEM) fitted with an 

X-ray energy dispersive system (EDS) was used. Major elements were analysed on a 

flame AA spectrophotometer; trace elements were run using a graphite furnace. 

Analytical precision and procedures are presented in detail elsewhere (Guerzoni et al., 

1987; 1991). 

 

 

RESULTS AND DISCUSSION 

 

Central Mediterranean southern trades (CMST) aerosol population 

Cyclonic activity in the Mediterranean Basin is most intense during late winter 

and spring, when blocking anticyclones are frequently observed over the Atlantic. 

During these periods air masses commonly come from West Europe.  Sometimes (~ 

15% of yearly frequency) a deep Atlantic trough reaches North Africa and causes a 

strong flow from the south over the Mediterranean. Dust storms moving from the 

Sahara to the Mediterranean generally occur between October and May (Bücher 1989). 

Thus, meteorological conditions make concentrations of crustal material in the 

aerosols fluctuate. There is also evidence of the presence of dust "pulses" during the 

collection period. 

The amounts of total suspended particles (TSP) and mineral suspended particles 

(MSP) are reported in Table 1, together with air-mass provenance and wind speed. 

Concentrations of TSP values range from 11.3 µg/m3 for non-crustal  components to 

more than 97.8 µg/m3 for crustal ones. The average TSP content in non-crustal 

components is 24.6 µg/m3, whereas during the southern wind episodes the average 

mass loading increases up to 88 µg/m3. Accordingly, the MSP fraction is 0.8-3.3 
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µg/m3 constituting 3-10 % of the total mass of dust for the former group, and 40-47.6 

µ g/m3, i.e., 49-52% of the total mass of dust transported during southerly episodes. 

Therefore, four of the samples represent anthropogenic, maritime and local aerosols, 

and two, represent desert-dominated aerosols. 

Both crust-dominated episodes were related to the position of the sub-tropical 

anticyclone over the Northeastern Atlantic and to the presence of polar air-masses over 

both the Atlantic Ocean and the continent. The first was recorded in October 1990 and 

the second in March 1991; the latter is presented in Fig. 2, which shows meteosat 

photographs and the synoptic meteorological situation at 500 mb.  

Our values of TSP during Saharan events may be compared with TSP of 92 

µg/m3 (Lefevre et al., 1986) along the southern coast of Sicily influenced by Saharan 

sources during August 1984, back-air trajectories were predominantly westherly; 

concentrations of 72 µg/m3 south of 40° Lat N on board ship during February 1983, 

back-air trajectories were predominantly  southerly clearly indicates the unique 

contribution from North Africa (Correggiari, et al., 1989); concentrations of 100 

µg/m3 during October 1979, back-air  trajectories were all predominantly southerly 

and indicate that the winds had crossed part of the North African mainland (Chester et 

al., 1984). 

Our values of TSP during non-Saharan events may be compared with TSP of 33 

µg/m3 along the southern coast of Sicily during July 1984, back-air trajectories were 

predominantly northerly; concentrations of 5 µg/m3 southern Tyrrhenian Sea on boerd 

ship during November 1982, back-air trajectories were predominantly northwesterly 

(Guerzoni et al., 1989); concentrations of 11 µg/m3 during  October 1979, back-air 

trajectories predominantly easterly.     

 

Size distribution and mineralogical composition of aerosol 

We have not found any previous studies reporting size analyses of aerosol 

samples collected at land stations.  This is the first study to report the size distribution 

of Saharan dust from a land station. 
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The grain-size distribution of the investigated dust samples is between 0.63 and 

102 µm, mainly falling between 0.63 and 4 µm.  

Comparisons between representative cumulative curves of the samples are 

shown in Fig. 3. Particle size analysis mainly reveals the presence of silty clays or 

clayey silts. The cumulative curves indicate the median (Md), accurately shown at the 

50 percentile.  

The crustal-dominated samples, 3 and 42, have Md values of 4.5 and 2.1 µm, at 

wind speeds of 6 and 5 m/sec respectively from east-southeast; the non crustal-

dominated samples usually have a lower Md values. Sample 22 has a Md  value of 

0.98 µm, at wind speeds of 9 from the west; sample 21 has a Md value of 1.0 µm, at a 

wind speed at 8 m/sec from several directions; sample 28 has a Md value of 1.4 µm, at 

a wind speed of 7 m/sec from northeast-east; and sample 9 has a Md value of 7.2 µm, 

at a wind speed of 12 m/sec from west. Sample 9 seems to be the coarsest dust, 

probably related to different transport velocities, but also it may be considered a true 

local-dominated dust. Sample 28 seems to be a coarse dust, thus it may be contain 

some local material. As indicated in Fig. 3, the size distribution of the two desert-

dominated aerosol is shifted towards different population. Bimodal distribution, 

already reported by Prodi and Fea (1979) as a characteristic of mineral aerosols from 

the Sahara (D'Almeida and Scütz, 1983) was also observed in our samples. In the 

bimodal distribution the smaller-particle mode can be assumed as the well-mixed long-

range transport (> 500 km) fraction of the mineral aerosol over the desert, whereas the 

large-particle mode represents proximal contributions (100 - 500 km) activated during 

the "Sirocco" wind (a typical wind transporting  coarse desert-derived dust in the low 

atmosphere). Instead, the distribution size, of the two anthropogenic and maritime-

dominated aerosols are shifted towards smaller particles, probably related to low 

tranport velocities . It also seems reasonable to attribute individual differences in the 

size distribution of the Saharan dust collected at Capo Carbonara to different transport 

times, which are in turn related to different transport velocities and the different 

lengths of airborne trajectories.  
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Mineralogical analysis shows the following mineral assemblage: quartz, (the 

most abundant non-clay mineral), calcite, feldspars, dolomite, talc, illite, kaolinite, 

chlorite, and palygorskite. Our main purpose was to identify local and Saharan 

indicators, taking into account both morphology and particle species. We looked for 

mineral associations of some species generally considered as indicators of Saharan 

origin.  In the two observed samples, the mineralogical assemblage is similar to that of 

other well-known Saharan dusts (Coudé-Gaussen, 1981; Pye, 1987). As in those dusts, 

besides a substantial proportion of quartz grains, the Capo Carbonara dusts show 

feldspars, kaolinite, palygorskite, and abundant dolomite. The two events of African 

contributions are of concern and are studied by SEM and EDS analysis.  Shape and 

surface features of the particles are related to the processes resulting from aeolation 

because liberation from the source and SEM/EDS analysis of particle mineralogy 

reveals their possible allogeny.   

Some authors have found that most particles forming a desert-dust plume 

originate during the wind erosion process as products of mechanical breakage of 

particle crusts or "splashing"  (Gillette, 1981). Both coarse and very fine silt were 

observed by SEM. The high frequency of small, chemically rounded particles and clay 

mineral clusters also points to in-situ erosion of already very small particles.  The most 

probable source areas for small particles are silt and clay sediments from floodplains, 

and fine-grained aeolian sediments probably rejuvenated by fluvial erosion (Coudé-

Gaussen, 1982).  

The most characteristic mineral in Saharan dusts is palygorskite, which is a 

very common clay in the limestone plateaus of the northern Sahara. The occurrence in 

our crustal-influenced samples of rounded palygorskite is a very good indicator of 

aeolian transport (Fig. 4 a - b). The size of these palygorskite particles ranged between 

4 and 40 µm.  Such grains are wind-shaped from varied clayey substrata of the Sahara 

and transported beyond the desert margins (Coudé-Gaussen and Blanc, 1985). 

Another characteristic mineral found was dolomite, sometimes  very well preserved 

(Fig. 4 c).  Most of the quartz particles have a subrounded or rounded form, and vary 
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in size considerably (Fig. 4 e - f). Among the altered grain types, calcite and feldspar 

grains commonly occur (Fig. 4 h).   

Mineralogical and morphological properties also characterize particles of non-

Saharan origin.  It appears from mineralogical observation that quartz, feldspars, and 

talc are the characteristic local inputs, because we did find some unusually coarse (~40 

µm) angular quartz (Fig. 4 d)  and some very well-preserved feldspars (Fig. 4 g) that 

obviously came from the local plutons.   

 

Elemental chemistry of total aerosol 

 Geochemical analysis of the total aerosol samples was performed. The 

concentrations of selected indicator elements are given in Table 2. The contents of Si, 

Al, Ca, Mg, and K in the Saharan samples was 10 to 30 times higher than in the 

others; the largest increase was observed for Ca content, associated with enrichments 

in calcite and dolomite. Concentrations correlated very well those of dust-loadings, in 

tandem with major contributors of crustal elements to TSP. The Al values of the 

crustal dust samples were high (~3000 ng/m3), whereas the lowest  Al values (~25 

ng/m3) were observed in non-crustal samples. Particulate Al in the atmosphere was 

associated almost exclusively with aluminosilicates, and for this reason it is commonly 

employed as an indicator of the amount of crustal material in an aerosol population 

(Chester et al., 1981; 1984; 1986).  Clearly, the high Al concentrations over the Capo 

Carbonara station are the result of the transport of crustal material to that region from 

Saharan sources. Our Al concentrations are within the same orders of magnitude of 

those found for the northeast tradewinds off West Africa  (e.g., Chester et al., 1979).  

Table 2 also shows variations in the Al/Si ratios for the six samples. This ratio 

changes with particle size. Thus, anthropogenic and maritime-influenced samples 21 

and 22 (the finest sampled) have an Al/Si ratio significantly lower than that of desert-

influenced samples 3 and 42 (Fig. 3). This indicates the occurrence of a component of 

fine Si particles which are not, for their major part, associated with Al. These results 
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indicate an important relation between geochemical and grain-size analyses as shown 

also in Coude-Gaussen et al., 1987 their Fig. 11 .    

Concentrations of other elements (Zn, Pb, Cd, and Cr) in the aerosol also show 

considerable variations between the two groups of samples (desert-dominated and 

anthropogenic-dominated) and, in order to understand the compositional differences in 

terms of crustal and non-crustal elemental sources, enrichment factors (EF) were used. 

Table 3 shows the EF of the analysed elements, calculated employing Al as a crustal 

reference element and according to the equation:  EFcrust = (E/Alair)/ (E/Alcrust), in 

which E/Alair and E/Alcrust are the concentrations of an element E and of Al in the 

atmosphere and in the crustal material respectively (e.g., Taylor, 1964).    Enrichment 

factors close to one are taken to indicate that an element has a mainly crustal origin, 

and those greater than about 10 are considered to indicate that a substantial portion of 

the abundance of an element has a non-crustal source.  

In the following sections, the possible origin of some of the elements is 

discussed and an attempt is made to distinguish the natural from the anthropogenic 

signature. In terms of EF,  the Mediterranean Basin aerosols can be divided into three 

general groups: (1) non-enriched elements, with EF generally less than 10, i.e.,  Si, Ca, 

K, Mg, and Cr; (2) intermediate elements, with EF between 10 and 100, i.e., Cr, Ni, V, 

Cu, and (3) enriched elements, with EF which may exceed 100, i.e., Zn, Cd, Pb 

(Chester et al.,1984). Table 3 shows that enriched and non-enriched elements behave 

differently in the two sets of samples. Non-enriched elements generally have low 

ranges of EF in all samples. In contrast, there are considerable variations in the EF of  

enriched elements (Zn, Cd, and specially Pb). However, the EF for these elements are 

considerably higher in the non-Saharan samples. So high values cannot be considered 

of crustal origin, we never found any mineralogical evidence to support this hipotesis.   

Thus, a clear distinction can be made between the two sets of samples. This result is in 

agreement with most previous work on the Mediterranean Sea (Dulac et al., 1987; 

Bergametti, 1988; Chester et al., 1984; Correggiari et al., 1989) and shows that aerosol 

composition is influenced by both pollutants and crustal sources. 
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For comparative purposes, mean concentrations and EF crust data of trace metals in 

crust-dominated aerosols of various areas are listed in Table 4.  CMST data are 

compared with an aerosol collected off the west coast of Africa (ANET) and with the 

Arabian Sea (AS) aerosol, collected during the northeast monsoon. These samples are 

among the most crust-dominated populations found in the World Ocean (Chester, 

1986). Table 5 shows mean concentrations and EFcrust data of trace metals in 

anthropogenic-dominated aerosols of different marine areas, compared with the 

Sardinian samples. 

 

Total atmospheric  particle and trace metal fluxes 

A considerable amount of data have been reported on mineral dust and trace 

metal fluxes over Atlantic (Buat-Menard and Chesslet, 1979) and on the qualitative 

aeolian contribution  in the Mediterranean (e.g.,Chester et al., 1984; Tomadin et al., 

1984) . However, few such flux data are available for CMS and from sampling sites 

close to the Saharan source.  

Aerosol deposition from the atmosphere is controlled by a combination of wet and dry 

processes. Dry-deposition velocities of trace metals from the atmosphere vary with 

particle size (Arimoto and Duce, 1986). Acccording to data reported for the deposition 

of trace metals to the surface of the North Sea and Western Mediterranean (Dulac et 

al., 1987), dry-deposition velocities for crustal elements (Al, Fe, Si) are about 1.5 

cm/sec and, because of nearness to the land, an average value of 1.5 cm/sec was 

assumed for these elements in CMST aerosols. In contrast, depositional velocities for  

anthropogenic elements (e.g., Pb, Zn and Cd), which are found on small particles, are 

reported to be less than 0.5 cm/sec.  

Very few  data on the wet/dry deposition ratio of trace metals over the 

Mediterranean are available (Gueiu et al., 1991; Guerzoni et al., 1991). We therefore 

integrated those data into the model proposed by Duce et al. (1976), in which it was 

assumed that wet deposition is approximately three times that of dry deposition, so that 

the total metal flux is four times the dry deposition flux. 
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The average trace metal concentrations  of TSP, Ca and Al of all samples 

collected in seven months were used to calculate the dry and wet+dry deposition 

fluxes to the sea surface over the CMS as outlined above, and the total atmospheric 

deposition was weighted to take into account 10 months of dry deposition and only 

two months of wet+dry deposition. The frequency of crust-dominated versus 

anthropogenic/ maritime-dominated episodes was also considered in calculations. The 

yearly fluxes are 800 µg/cm2 for mineral particles, ∼80 µg/cm2 for Al and  ∼30 

µg/cm2 for Ca. Contributions to sediments in the Central Mediterranean are therefore 

less than 1 mg/cm2 year, i.e., 1 cm of sediment every 1000 years. 

Figure 5 elucidates flux comparisons and indicates the effects of latitude on the 

MSP content of the Mediterranean aerosol. MSP  aerosol values collected during 

southern events onboard-ship by our Institute in the period 1981-1983 (Correggiani et 

al., 1989) were  plotted versus latitude, with other samples collected in the Central 

Tyrrhenian Sea by Chester and coworkers (Chester et al., 1984). In the same figure are 

also plotted dust loadings of samples (averages with ranges) collected from land-based 

stations with southern winds, at two different latitudes: Messina, Sicily (38°.1  Lat N, 

six years of weekly sampling by the Italian Meteorological Service; Cruciani et al., 

1991) and Corsica (42°.3 Lat N,  two years of daily sampling; Bergametti et al., 1988), 

together with our Sardinian station (39°.1 Lat N). 

The very clear and constant latitudinal trend of dust loading in the Mediterranean 

atmosphere is striking, in spite of different periods and sometimes different collection 

techniques. The decrease in MSP concentration is exponential northwards, and the 

very good correlation coefficient (r=-.76, p<0.001%) of the logarithm of MSP with 

latitude indicates halving of values approximately every 200 km. 

Figure 5 also indicates the fluxes calculated in Sardinia and those derived from 

records in Alpine ice cores (45°.6 Lat N, Waghenbach and Geis,1989; De Angelis and 

Gaudichet, 1991), together with the amount of dust that travels every year northwards 

from the Sahara (100x106 tons). The curve may explain the variations comparison 

between the two sites in terms of fluxes: the distance from Sardinia to the Alps is 
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approximately 800 Km (4x200 Km) and differences in fluxes are 10-20 times (i.e., 24, 

equivalent to four halvings).  

 

 

SUMMARY AND CONCLUSION  

(1) Combined analysis of the grain-size, mineralogical, and chemical properties 

of aerosol dust is a good way to discriminate between "desert-influenced" and 

"anthropogenic-influenced" air masses. 

(2) The volume size distribution of desert-influenced aerosols is shifted towards 

larger particles and a bimodal distribution was observed. Instead, the volume size 

distribution of anthropogenic-influenced air masses is shifted towards smaller 

particles. 

(3) Palygorskite, dolomite, calcite, and rounded quartz are strongly suggestive 

of desert-influenced air masses. 

(4) Si, Al, Ca, Mg, and K concentrations in desert-influenced samples are about 

10 to 30 times higher than in anthropogenic-influenced samples. 

(5) The Al/Si ratio is a good discriminator between desert- and anthropogenic-

influenced samples, with high values in the former group and low ones in the latter. 

(6) Enrichment factors (EF) for enriched elements (Zn, Cd, and especially Pb) 

do not exceed 100 in desert-influenced samples. Instead, they exceed 100 many times 

in anthropogenic-influenced samples. 

(7) An exponential curve for aerosol mineral loading was calculated between 

35° and 45° Lat N, and the northward decrease of MSP values fits most of the 

published data. 

(8) The same curve may also explain  variations between particle fluxes 

calculated at Capo Carbonara (less than 1 mg/cm2 year) and those recorded in ice 

cores in the Alps. 
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 TABLE CAPTIONS 
 

Table 1. Sample number, air-masses origin, wind speeds, total suspended particles 

(TSP), mineral suspended particles (MSP) and insoluble fraction collected at 

Capo Carbonara. 

 

Table 2. Chemical composition and Al/Si ratio of samples collected at Capo 

Carbonara. 

 

Table 3. Enrichment factors (EF) of the study samples. 

 

Table 4. Mean concentration (ng/m3) and EF  values of trace metals in desert-

dominated aerosol. 

              CM:      Central Mediterranean/ present study 

              ANET:  Atlantic northeast trade/ Murphy, 1985  

              AS:       Arabian Sea/ Chester et al., 1991.  

  

Table 5. Mean concentration (ng/m3) and EF values of trace metals in anthropogenic-     

dominated aerosols. 

              SARDINIA: present study 

              CORSICA:  Bergametti et al., 1988 

              N. SEA:       Cambray et al., 1975. 
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FIGURE CAPTIONS 

Fig.  1.  Geographical map of Mediterranean Sea, and location of sampling station 

with geological sketch. (1) colluvial, alluvial, fluviolacustrine and 

fluvioglacial deposits, Pleistocene ; (5) alkaline and subalkaline basalts, 

trachybasalts, basanites, tephrites and sodic trachyandesites, andesitic basalts, 

Neogene; (7) rhyodacites, rhyolites and liparites, Miocene; (10) granites and 

granodiorites, Paleozoic; (11) tonalites including smaller masses of diorites, 

Paleozoic; (13) gabbros, Paleozoic; (14) rhyodacites and rhyolites 

(ignimbrites), Permo-Carboniferous; (24) marls, commonly with chert, of 

pelagic facies, Middle-Lower Miocene; (81) marine deposits, mainly 

arenaceous units, Silurian-Ordovician; (82) marine deposits, mainly shaly 

units, sometimes carbonaceous, Silurian-Ordovician.    

Fig. 2.   IR Meteosat photo (top) and synoptic meteorological situation at 500 mb    

(bottom) of southern transport episode of March 1991. 

Fig. 3.   Cumulative grain-size curves of six dust samples collected at Capo Carbonara.  

Solid line: Saharan samples; broken line: non-Saharan curves. 

Fig. 4.    Scanning electron micrographs of tracer minerals: (a) wind-shaped 

palygorskite grain; (b) close-up of (a) showing palygorskite fibers, sample 42; 

(c) very well-preserved dolomite crystal, sample 42 ; (d) huge angular quartz 

(~40µm), sample 22; (e) very small smooth quartz of desert type, sample 3; (f)  

large wind-shaped quartz grain, sample 42; (g) very well preserved angular 

feldspar grain, sample 28; (h) rounded and altered feldspar grain, sample 3. 

Fig. 5.  MSP values  of aerosol dusts plotted against latitude. Open squares are 

samples collected onboard-ship by Institute in period 1981-1983 (Correggiari et 

al., 1989);  filled squares: samples collected onboard-ship in Central Tyrrhenian 

Sea by Chester and coworkers (Chester et al., 1984). 
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Filled symbols indicate average values (with ranges) from land-based station on 

islands: triangle: Messina, Sicily, 5 years weekly sampling (Cruciani et al., 

1991); asterisk: Capo Carbonara, Sardinia, present work; circle: Capo Cavallo, 

Corsica 18 months daily sampling (Bergametti et al., 1988). Lower part of plot: 

sketch profile from Africa towards Europe along 9° Long E. Left: Africa,  

showing amount of dust that leaves Africa northwards (D'Almeida 1986). 

Centre: Capo Carbonara, fluxes calculated in this study. 

Right: Alps, average fluxes (40 years) recorded in ice cores (Waghenbach  and 

Geis, 1989; De Angelis and Gaudichet, 1991.)   

 

 

 

 

  

                

 

      
 


