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a b s t r a c t

The light absorbing fraction of dissolved organic carbon (DOC), known as chromophoric dissolved
organic matter (CDOM) showed wide seasonal variations in the temperate estuarine zone in front of the
Po River mouth. DOC concentrations increased fromwinter through spring mainly as a seasonal response
to increasing phytoplankton production and thermohaline stratification. The monthly dependence of the
CDOM light absorption by salinity and chlorophyll a concentrations was explored. In 2003, neither DOC
nor CDOM were linearly correlated with salinity, due to an exceptionally low Po river inflow. Though the
CDOM absorbance coefficients showed a higher content of chromophoric dissolved organic matter in
2004 with respect to 2003, the spectroscopic features confirmed that the qualitative nature of CDOM was
quite similar in both years.

CDOM and DOC underwent a conservative mixing, only after relevant Po river freshets, and a change in
optical features with an increase of the specific absorption coefficient was observed, suggesting a pre-
vailing terrestrial origin of dissolved organic matter.

Published by Elsevier Ltd.
1. Introduction

The general circulation in the Northern Adriatic Sea (NA) is
characterized by a northward current along the eastern coast and
a Western Adriatic Current (WAC) flowing southwards along the
western coast. Near the Po River delta the stratification persists
throughout most of the year (Artegiani et al., 1997). The structure of
the plume depends on the discharge rate and the stratification of
the water column, resulting in maximum offshore extension under
high runoff, strong Bora wind forcing and summer stratification
(Mauri and Poulain, 2001). The Po River freshwater may flow
southward along the shelf strengthening the WAC (Malanotte-
Rizzoli and Bergamasco, 1983) or cross the shelf extending
toward Istria in the central basin (Mauri and Poulain, 2001). In
particular, during periods of weak stratification, in absence of wind
forcing, vortices constrain fresh Po river waters to a southward flow
along the Italian shelf (Orli�c et al., 1992). In contrast, during periods
of stratification, particularly in springesummer, the Po freshwater
: þ39 041 5547897.
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plume spread across the basin to the Istrian coast to form a front
that divides the northern basin (Franco and Michelato, 1992;
Jeffries and Lee, 2007). The extent of Po River inflow and wind
forcing, therefore, modulate freshwater (FW) penetration in the NA
(Kourafalou, 1999; Jeffries and Lee, 2007). Dilution processes are
the main factor controlling dissolved and particulate organic
matter concentrations in the mixing zone of Po River (Pettine et al.,
1999 and references therein).

Many efforts have been devoted to understand the dissolved
organic carbon (DOC) cycle and the role of chromophoric dissolved
organicmatter (CDOM) in themarine environment (Blough and Del
Vecchio, 2002 and references therein). The coastal zone, especially
in areas adjacent to the estuaries of major rivers, is a marine
environment where key biogeochemical processes occur (Hansell
and Carlson, 2002). DOC represents the major fraction (60%) of
riverine organic matter (Spitzy and Ittekkot, 1991); in addition,
a local source of autochthonous DOC from phytoplankton and
bacterial activity may be observed in the region influenced by
freshwaters (Sempéré et al., 2000; Raymond and Bauer, 2001). The
estuaries are often characterized by high mixing rates that make it
difficult to discriminate between different DOC sources (e.g.:
Stedmon and Markager, 2003). As CDOM is the most important
sunlight-absorbing substance in the sea especially in the UV and
blue region of the spectrum (Ferrari, 2000 and references therein)
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its optical properties provide information on DOM as a whole and
on DOC fractions which are fundamental for studies on organic
matter and carbon fluxes in aquatic ecosystems (Bacastow and
Maier-Reimer, 1991). A fraction of CDOM consists of a mixture of
aliphatic and aromatic substances deriving from the degradation of
terrestrial and aquatic plants (Kirk, 1994). This material contributes
to form the light absorbing fraction of DOM and its absorption is
strongest in the UV region, restricting the penetration into surface
waters of biologically damaging UV radiation and protecting
phytoplankton and other aquatic organisms (e.g.: de Mora et al.,
2000) but, at the same time, limiting the in depth production
because of its shading effect (Stedmon et al., 2000).

The aim of this work was to investigate the winter to spring
variations of dissolved organic matter and its chromophoric frac-
tion in the temperate estuarine zone of the Northern Adriatic in
two periods (during 2003 and 2004) characterized by significantly
different Po river inflows, in order to elucidate its origin and
composition. Correlations among DOC, CDOM and physicale
chemical parameters were also discussed in terms of processes
involved.

2. Material and methods

2.1. Sampling

Water sampleswere collected at 6 stations on a transect from the
Po Prodelta eastwards (Fig. 1) from February to May 2003 (ten
cruises) and fromFebruary to June 2004 (ten cruises). Surfacewaters
were sampled using 5 L Niskin bottles. Water samples for DOC and
POC analyses were filtered through Whatman GF/F, precombusted
at 480 �C for 4 h,100 mL of HgCl2 (1 g L�1) were added to 10 ml of the
seawater sample for DOC conservation (Cauwet, 1999). About 2 L of
seawater were filtered on Whatman GF/F for chlorophyll a (Chl a)
analyses. All samples were stored at �20 �C until analysis.

2.2. Analytical procedures

Temperature, depth and salinity were determined by a CTD
probe (Conductivity, Temperature, Depth, SEA BirdElectronics - SBE
25). Vertical CTD profiles were performed at all stations during
cruises in 2003 and 2004.

DOC concentrations of seawater samples were measured using
a Shimadzu TOC 5000 Analyzer and a 1.2% Pt on silica catalyst at
680 �C. Potassium hydrogen phthalate was used as standard. The
reproducibility of the analytical procedure was within 2e3%.

POC was determined with a CHN Elemental Analyzer Carlo Erba
Mod. EA1110, after acidification with HCl (1 N), to remove the
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Fig. 1. Samplin
inorganic carbonate fraction. Acetanilide was used as standard. The
reproducibility of the analytical system was lower than 2%.

Chl awasextracted inacetone90% anddeterminedbyUVeVISATI
Unicam UV2 double beam spectrophotometer (Parson et al., 1984).

UVeVisible spectra of CDOM in waters were recorded from 280
to 800 nm by UVeVIS ATI Unicam UV2 double beam spectropho-
tometer with quartz cells (5 cm) using Milli-Q water as blank. Data
were expressed as absorption coefficients: al¼ 2.303Al/L, where Al

is the absorbance at a given wavelength and L is the path length in
meters. A baseline correction was applied by subtracting the
absorbance average value at 650 nm.

The absorption coefficient of CDOM at 355 nm (aCDOM355) was
chosen (Blough and Del Vecchio, 2002), as the specific wavelength
of 355 nm coincides with the pulsed frequency tripled Nd:YAG
excitation laser currently used in shipborne and airborne laser
fluorescence spectroscopy sensing (Ferrari and Dowell, 1998).

aCDOM280 at 280 nm was chosen because it is the spectral
region where aromatic substances (Traina et al., 1990), which are
mainly of terrestrial origin as lignin, absorb.

The slope of the absorption spectra, SCDOM, describing the rate of
decrease of CDOM absorption with increasing wavelength, was
extracted from the absorption data using an exponential decay
curve fitted to the plot of absorption coefficient (al, m�1) versus
wavelength (l) over the range 350e480 nm. The SCDOM parameter
was calculated according to Green and Blough (1994):

aðlÞ ¼ aðloÞe
�SCDOM ðl�loÞ

where lo ¼ 480 nm is the initial wavelength, and SCDOM is the fitted
parameter (nm�1) for the exponential decay of al with increasing l.

Nutrients (ammonium-NH4
þ, nitrite-NO2

�, nitrate-NO3
�, ortho-

phosphate-PO4
3� and orthosilicate-Si(OH)4, were analysed spec-

trophotometrically (Parsons et al., 1984) by a Technicon TRAACS
800 autoanalyzer. Dissolved inorganic nitrogen (DIN) was calcu-
lated as the sum of the NH4

þ, NO2
� and NO3

� concentrations.
The salinity is expressed on the basis of the UNESCO practical

salinity scale (PSS 1978).
For the graphical representations Grapher 7 (Golden Software

Inc, USA) was used. Statistical analyses were performed using Sta-
tistica 6 (Statsoft, USA).
3. Results and discussion

3.1. Po river inflow

During the period 1918e2004 it has been observed that the
Po river flow regimen was generally characterized by two main
2.50° 13.00° 13.50° 14.00°
Long. E
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Fig. 2. Daily average inflow of Po River in 2003 and 2004. Av 1918e2004¼ average
inflow in the period 1918e2004; av 1918e2004 � sd¼ average inflow in the period
1918e2004 � standard deviation.

Fig. 3. Variation of the vertical salinity gradient (between bottom and surface) at
increasing distances from the coast.

D. Berto et al. / Marine Environmental Research 70 (2010) 73e81 75
periods of high rate in late spring (MayeJune) and autumn (Octo-
bereNovember) and by a minimum in summer (JulyeAugust).
These variations are due to the seasonal rainfall in the drainage
basin and to the melting of snows on the mountains in late spring.
Themean daily inputs of the Po River in 2003 and 2004 are reported
in Fig. 2 along with the average flow in the period 1918e2004.

During 2003, except in January and February, the Po river flow
was lower than the 1918e2004 average, whereas in 2004 there
were two main freshets in February (w3000 m3 s�1) and May
(>5000 m3 s�1): this implied that higher salinities were observed
during 2003 than in 2004.

The stratification in front of the Po mouth was limited to the
coastal waters during thewinterespring period of 2003, whereas in
2004 the plume reached the centre of the NA basin and the
discontinuous discharges caused the advection of FW pools
offshore. Therefore the salinity vertical gradients (Fig. 3) weremore
marked in 2004 (DS¼ 7�4) than in 2003 (DS¼ 3� 4). The situation
observed in front of Po delta is in accordance with the stronger
warming of stratified surface waters observed in spring 2004 in the
NA with respect to 2003, which determined also a higher stability
(De Lazzari et al., 2008). Moreover, the higher river discharge of
2004 caused amore relevant eastwards spreading of the plume than
in 2003 and lower salinities (<35 psu) were observed near the Po
prodelta. Lower rainfall precipitation and higher salinities during
springesummer of 2003 were observed also in other areas of the
Adriatic (Celio et al., 2006; Grbec et al., 2007) and are supported by
the more than 50% lower than average (1918e2004) Po inflows in
spring of 2003 (Fig. 2) and by the lower content of fresh waters
observed in the station in front of Po delta (Fig. 4a).

The surface water temperatures ranged between 7.3 and 18.2 �C
in 2003 and between 5.5 and 21.8 �C in 2004. The colder temper-
atures were observed in February in the less saline waters of the Po
river plume as usually observed in the Northern Adriatic (Russo
et al., 2005). The highest temperatures due to the seasonal warm-
ing were recorded on May 2003 and June 2004 in the shallowest
coastal station. The descriptive statistics for the parameters
measured in surface waters are summarized in Table 1.

3.2. Chlorophyll a and nutrients

The average and standard deviation of Chl a concentrations with
statistically significant differences between the two years are
reported in Table 1.
Chl a concentrations were on average 4 fold higher in 2004 than
in 2003 when an increased nutrient availability sustained a more
relevant phytoplankton biomass (Table 1). The monthly distribu-
tion of Chl a in the 2003 and 2004 (Fig. 4b) years showed high
concentrations in the last period of 2004. The highest value of the
Chl a in the last period of 2004 was probably due to a phyto-
plankton bloom of Cerataulina pelagica, stimulated by the nutrients
carried by the Po river (Socal et al., 2008). The monthly Chl
a concentrations plotted as a function of salinity in 2003 and 2004
(Fig. 5) showed a negative linear relationships between Chl a and
salinity in March 2003 and 2004, April 2004 and MayeJune 2004.
This situation is typically observed in the NAwhen the spring runoff
determines an increase of Chl a concentrations (Barale et al., 2005;
Mauri et al., 2007).

Relevant relationships were found between Chl a and orthosi-
licate concentrations in March, April and MayeJune 2004 (Table 2)
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but were not observed in 2003. Considering that the influence of
the Po River was weaker in 2003 than in 2004, the river inputs
significantly increased the primary production and consequently
the amount of organic matter in the basin.

The concentration of dissolved inorganic nitrogen (DIN) was on
average higher in 2004 than in 2003, reaching the highest values in
winter 2004: DIN had the same trend of NO3

�, which was>76% of
Table 1
Average values for salinity (S), freshwater (Fw), temperature, dissolved organic
carbon (DOC), chlorophyll a (Chl a), nutrients and spectroscopic characteristics of
CDOM in 2003 and 2004, highlighting the significant differences between the two
years.

Parameter Units 2003 2004 t test

n Average SD n Average SD p-value

S 59 36.3 4.4 60 34.6 2.3 <0.001
Fw % 59 4.9 4.6 60 10.1 6.0 <0.001
T �C 59 10.3 3.0 60 10.8 4.9 ns
DOC mM 59 114 36 60 155 31 <0.001
POC mM 59 18.3 9.7 60 50.6 43.7 <0.001
Chl a mg L�1 59 1.06 0.76 60 4.27 5.49 <0.001
PePO4

3� mM 59 0.08 0.06 59 0.05 0.07 <0.05
SieSi(OH)4 mM 59 3.80 2.53 60 6.65 5.25 <0.001
NeNH4

þ mM 59 1.47 1.35 60 0.71 0.90 <0.001
NeNO2

� mM 59 0.41 0.23 60 0.76 0.37 <0.001
NeNO3

� mM 59 8.86 8.90 60 14.92 10.83 <0.001
DIN mM 59 10.74 9.52 60 16.39 11.16 <0.001
aCDOM280 m�1 56 1.6 0.6 56 2.2 0.9 <0.001
aCDOM355 m�1 47 0.3 0.2 56 0.5 0.3 <0.05
a*CDOM280 m�2gC�1 48 1.2 0.6 55 1.2 0.4 ns
a*CDOM355 m�2gC�1 48 0.3 0.2 55 0.3 0.2 ns
SCDOM � 103 nm�1 31 20.4 5.9 34 20.7 5.2 ns
the nitrogen forms. Higher NH4
þ concentrations were found in 2003

(Table 1) which could be due to a more intense bacterial degrada-
tion, enhanced by the higher winter temperatures. A significant
negative relationship (p < 0.05) has been found between DIN
concentrations and salinity showing that the major amount of
nutrients was transported by riverine waters.

3.3. Dissolved organic carbon

The main fraction of total organic carbon in the waters was the
dissolved form both in 2003 (mean: 86%; range: 67e95%) and in
2004 (mean: 78%; range: 45e95%); the lowest values in 2004
were observed in February when the Po flow was low. Monthly
variations in DOC concentrations in 2003 and 2004 showed lower
concentrations in winter and higher in spring (Fig. 4c) following
a trend typical for the northern Adriatic Sea (Giani et al., 2005).
The gradual build up of DOC accumulation proceeds from spring
to summer when sub basin scale seasonal circulation structures
link the eutrophic western part with the oligotrophic central part
of the basin. The cyclonic re-circulation cause the transport of
DOC produced in the coastal areas to the offshore regions where
the system has low bacterial growth efficiency and long DOC
utilization time (Polimene et al., 2007). Significantly higher DOC
concentrations in 2004 with respect to those observed in 2003
(Table 1) could be a consequence of the major input of Po River as
well as of the exudation/release from the more intense phyto-
plankton blooms associated with a higher retention of FW in
the NA.

Mixing diagrams of concentrations along the salinity gradient
were used to infer the net effect of estuarine processes. Concen-
trations of DOCwere plotted as a function of salinity for the different
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Fig. 5. Plots of chlorophyll a (Chl a) vs salinity (2 m) in different months of sampling in 2003 and 2004.
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periods of sampling (February, March, April andMayeJune) in 2003
and 2004. The fairly linear plots corresponding to March 2003,
March 2004 and MayeJune 2004 indicate a conservative mixing of
the dissolved organic matter during these periods (Fig. 6).

A positive correlation between DOC and Chl a in February,
March and MayeJune 2004 (Table 2) highlights the contribution of
the intense phytoplankton biomass, following which extracellular
polysaccharides probably represent a relevant fraction of dissolved
organic carbon (Decho,1990). This is supported also by the increase
of dissolved carbohydrate concentrations which are observed
during diatom blooms in the NA (Ahel et al., 2005 and references
therein).
3.4. Chromophoric dissolved organic matter

Values of chromophoric dissolved organic matter in 2004 were
on average higher than those found in 2003 (Table 1), with the
highest values in MayeJune 2004. The absorption coefficients
showed a significant statistical difference between the two years
(Table 1). The mean aCDOM280 absorbance coefficients significantly
(p< 0.001) increased from 1.6 m�1 in 2003e2.2 m�1 in 2004; these
aCDOM280 values were similar to those found in coastal waters of
Tuscany by Seritti et al. (1998). Similarly the mean aCDOM355
absorbance coefficients also increased from 0.3 m�1 in 2003 to
0.5 m�1 in 2004 (Table 1). These values for aCDOM355 fall in the
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Table 2
Linear correlation coefficients between Ch a, DOC, salinity (S) and absorption coefficients (aCDOM) during winter-spring of 2003 and 2004. Significant correlation (p< 0.05) is
in bold.

February 2003 March 2003 April 2003 May 2003

n r p n r p n r p n r p

aCDOM355 vs S 12 0.101 n.s. 24 �0.042 n.s. 6 �0.153 n.s. 6 �0.382 n.s.
aCDOM280 vs S 12 �0.218 n.s. 24 �0.345 n.s. 6 �0.799 n.s. 6 L0.965 <0.005
DOC vs aCDOM355 12 0.017 n.s. 24 �0.317 n.s. 6 0.046 n.s. 6 �0.423 n.s.
DOC vs aCDOM280 12 0.174 n.s. 24 �0.116 n.s. 6 0.004 n.s. 6 0.013 n.s.
Chla vs aCDOM355 12 �0.292 n.s. 24 0.285 <0.05 6 0.084 n.s. 6 0.344 n.s.
Chla vs aCDOM280 12 �0.177 n.s. 24 0.410 <0.005 6 0.407 n.s. 6 0.598 <0.05
DOC vs Chla 17 �0.469 n.s. 24 0.202 n.s. 12 0.307 n.s. 6 0.357 n.s.
Chla vs PePO4

3� 16 �0.449 n.s. 25 0.442 <0.05 12 0.421 n.s. 5 0.612 n.s.
Chla vs SieSi(OH)4 16 0.495 n.s. 25 0.524 n.s. 12 0.416 n.s. 5 L0.800 <0.05
Chla vs NeNH4

þ 16 �0.373 n.s. 25 0.263 n.s. 12 0.159 n.s. 5 �0.043 n.s.
Chla vs NeNO2

� 16 �0.407 n.s. 25 0.354 n.s. 12 0.594 <0.05 5 0.06 n.s.
Chla vs NeNO3

� 16 L0.507 <0.05 25 0.507 <0.05 12 0.650 <0.05 5 0.011 n.s.
aCDOM355 vs DIN 11 �0.260 n.s. 25 0.212 n.s. 6 �0.143 n.s. 6 0.520 n.s.
aCDOM355 vs NeNH4þ 11 �0.353 n.s. 25 0.513 <0.01 6 �0.652 n.s. 6 0.180 n.s.

February 2004 March 2004 April 2004 MayeJune 2004

n r p n r p n r p n r p

aCDOM355 vs S 19 �0.307 n.s. 12 0.026 n.s. 10 1.608 n.s. 12 L0.853 <0.001
aCDOM280 vs S 19 �0.443 n.s. 12 �0.023 n.s. 10 �0.150 n.s. 12 L0.946 <0.001
DOC vs aCDOM355 19 2.975 n.s. 12 �0.275 n.s. 10 �0.365 n.s. 12 0.546 <0.005
DOC vs aCDOM280 19 0.346 <0.05 12 0.138 n.s. 10 0.185 n.s. 12 0.544 <0.005
Chla vs aCDOM355 19 0.355 <0.05 12 �0.370 n.s. 10 0.492 <0.05 12 0.564 <0.005
Chla vs aCDOM280 19 4.969 <0.001 12 �0.059 n.s. 10 0.141 n.s. 12 0.590 <0.001
DOC vs Chla 23 0.577 <0.05 12 0.886 <0.001 11 L0.638 <0.05 12 0.649 <0.05
Chla vs PePO4

3� 24 �0.025 n.s. 12 0.128 n.s. 11 �0.029 n.s. 11 �0.050 n.s.
Chla vs SieSi(OH)4 24 0.134 n.s. 12 0.705 <0.05 11 0.728 <0.05 11 0.858 <0.05
Chla vs NeNH4

þ 24 �0.251 n.s. 12 0.636 <0.05 11 �0.016 n.s. 11 0.822 <0.05
Chla vs NeNO2

� 24 0.649 <0.005 12 0.599 <0.05 11 0.604 <0.05 11 0.926 <0.05
Chla vs NeNO3

� 24 0.578 <0.005 12 0.140 n.s. 11 0.517 n.s. 11 0.241 n.s.
aCDOM355 vs DIN 22 �0.174 n.s. 12 0.364 n.s. 5 �0.013 n.s. 11 0.723 <0.05
aCDOM355 vs NeNH4þ 22 �0.188 n.s. 12 0.142 n.s. 5 �0.445 n.s. 11 0.888 <0.001

n.s. ¼ not significative.
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range (0.4e1.1 m�1) reported by Rochelle-Newall and Fisher
(2002b), for coastal areas in the Chesapeake Bay.

Sub-monthly variations in aCDOM355 in 2003 and 2004 (Fig. 4f)
could reflect the presence of considerable amount of chromophoric
dissolved organic matter of continental origin derived from fluvial
input. Nevertheless the contribution of bacterially transformed
algal exudates, especially in the April and MayeJune, during the
strong river flows (Fig. 2) and intense phytoplankton growth,
cannot be excluded.

The analysis of monthly data revealed significant correlations in
MayeJune 2004 among salinity, DOC, aCDOM280, aCDOM355 and
Chl a samples collected after the Po freshets (Table 2). The samewas
not observed in the previous months (FebruaryeApril, Table 2). The
trend of aCDOM355 is related to land proximity as the highest
aCDOM355 is usually observed in freshwaters and estuaries and
decreases in coastal and offshore waters (Blough et al., 1993).
aCDOM280 and aCDOM355 were inversely correlated with salinity in
MayeJune 2004 (Table 2). The linear dependence between aCDOM
and salinity (Fig. 6) could be interpreted as the result of the
conservative mixing of terrestrial CDOM. A similar behaviour is
usually observed in periods of higher river input, lower solar irra-
diance and stratification breakdown (Blough and Del Vecchio,
2002).

Despite the fact that a significant fraction of the DOC is not
associatedwith CDOM, a positive correlationwas observed between
DOC values and aCDOM in MayeJune 2004 (Table 2). This observa-
tionwas also reported by several authors (Vodacek et al., 1995,1997;
Chen, 1999). The amount of non-absorbing DOC in MayeJune 2004,
extrapolated by the intercept on the DOC axis from the positive
correlation between aCDOM355 and DOC at aCDOM355¼ 0, contrib-
uted to 86%, of the average DOC concentration of this period.
Therefore the incidence of the absorbing fractionwas assumed to be
14%. The estimation from aCDOM280 gave a 23% of incidence of the
chromophoric fraction on total dissolved organic carbon in the same
period of 2004.

Considering all of the monthly cruises, there was no significant
relationship between CDOM concentration and Chl a concentration
in almost all periods of 2003 and 2004, except for MayeJune 2004
when both aCDOM280 and aCDOM355 were correlated with Chl
a (Table 2) and salinity (r¼�0.932, p < 0.001). These strong rela-
tionships were probably a consequence of the mixing process, both
due to the input of fluvial-terrestrial chromophoric organic matter
and possibly to bacterial reprocessing of the algal organic matter
produced by the phytoplankton. Recent research pointed toward
a microbial source of CDOM in the aquatic environment and led to
the hypothesis that phytoplankton is not a direct source of CDOM
but that bacterial reprocessing of DOM of algal origin is an impor-
tant source of CDOM (Rochelle-Newall and Fisher, 2002a). The lack
of observed relationships between aCDOM and Chl a concentration
has been reported in other works (Nelson et al., 1998; Rochelle-
Newall and Fisher, 2002b) and this supports the hypothesis that
CDOM is not directly released by phytoplankton.

Whereas in both years a seasonal increase of DOC fromwinter to
spring is evident (t test, p < 0.05), the same is not true for aCDOM
which has a stronger variability on the ten days and monthly time
scale (one way ANOVA, p < 0.05). This suggests that there is
probably no seasonal accumulation of CDOM in the surface waters
as this fraction is more labile than most of bulk DOM.

The specific UV absorption at 280 nm can be used as an index of
the proportion of humic compounds as a strong linear relationship
exists between the molar absorptivity at 280 nm and the aromatic
content of water-soluble fulvic and humic acids (Chin et al., 1994).
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Fig. 6. DOC (L-left) and aCDOM355 (R-right) plotted as a function of salinity in the different period of sampling (February, March, April and MayeJune) in 2003 and 2004.
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On this basis, the riverine transport of terrestrially derived CDOM
from Po River was probably the dominant delivery mechanism by
which CDOM entered in estuarine and coastal waters of northern
Adriatic Sea. Also in other marine environments, the contribution
of chromophoric matter could derive from a large fraction of humic
compounds of fluvial or terrestrial origin (Blough et al., 1993), even
if the role of bacteria in reprocessing DOM of algal origin and
producing CDOM is not excluded. According to Twardowski et al.,
(2004) in situ production of CDOM in terrestrially dominated
waters may be evident only under a relatively stable water mass
containing a high level of phytoplankton but a relatively low
background of terrestrial CDOM.

A significant positive relationship between aCDOM355 and DIN
(Table 2) found in MayeJune 2004, could derive from DOM
photoproducts (Moran and Zepp, 1997) or by intense microbial
degradation (Coble et al., 1998 and references therein). CDOM,
when photolytically degraded, can be a source of dissolved organic
and inorganic compounds such as NH4

þand PO4
3� (Bushaw et al.,
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1996): actually a strong relationship between aCDOM and NH4
þ

(Table 2) was observed in MayeJune 2004. The absence of linear
relationship between CDOM and phosphate in all the investigated
periods of 2003 and 2004 could be due to the low concentrations of
phosphate in both years. Though the riverine inflow was higher in
2004, the orthophosphate concentrations did not increase as they
were probably immediately taken up by phytoplankton. In 2004
the DIN/PO4 ratio (Fig. 4) was much higher than in 2003 probably
because the phosphate consumption limited the assimilation of the
DIN. The reduction of the phosphorus load in the Po River water
(Pagnotta et al., 1995) and a significant increase in the DIN/PO4 ratio
in the NA surface waters was observed by different authors (Rinaldi
et al., 1998; Degobbis et al., 2000). Earlier research indicated that
phosphorus was also the primary limiting element in the NA prior
to the reduction of its load (Chiaudani and Vighi, 1982; Degobbis
and Gilmartin, 1990). The lack of PO4

3� could play a role in the
CDOM accumulation by limiting its microbial degradation, as it was
shown that phosphorous exerts a limiting role on bacterial DOC
degradation in the NA (Zoppini et al., 2005 and references therein)
or, by favouring, its transformation due to the enhanced alkaline
phosphatase (Ivan�ci�c et al., 2009).

Probably a concerted action of phytoplankton and bacteria
concur to form CDOM as phytoplankton provides substrates that
heterotrophic bacteria process into coloured compounds (Rochelle-
Newall and Fisher, 2002a,b). Moreover, the presence of biological
by-products (e.g. nutrients) could stimulate primary production
(Bricaud et al., 1981) and secondary productivity (Nelson et al.,
2004).

The spectral slope (SCDOM) was determined to improve the
information about the nature of DOM chromophores and quite
similar values in 2003 and 2004 were observed (Table 1). The
values in the study area are similar to those reported by Babin et al.
(2003) for the Adriatic Sea. The high variability of SCDOM values in
the two years and the absence of linear relationship between SCDOM
and salinity suggest a non conservative behaviour of SCDOM. This
type of wide variability in S at low CDOM concentrations has also
been reported in earlier studies (Blough et al., 1993; Stedmon et al.,
2000). Possible reasons for the increase in standard deviation in the
slope coefficients S are photodegradation and bacterial utilization
of CDOM, as both these processes have been reported to have
a flattening effect on the slope (Stedmon at al., 2000 and references
therein).

The low values of specific absorption coefficients (a*CDOM), at
280 and 355 nm, obtained by normalizing the absorbance at the
specific l per unit of DOC (Table 1), could be due to the occurrence
of low molecular weight compounds and low aromatic carbon
content as found by several authors (Chin et al., 1994). Similar
values of a*CDOM at 280 and 355 nm have been reported by Seritti
et al. (1998) for the estuarine and coastal waters of the Tyrrhenian
Sea. Changes in the optical properties become evident only in May
2004 when the low salinity of waters determined a 30% increase in
specific absorbtion coefficient of DOM (1.5 � 0.1 m�2gC�1 for
a*CDOM280 and 0.4 � 0.1 m�2gC�1 for a*CDOM355, respectively).

4. Conclusions

The Northern Adriatic waters in front of Po River are charac-
terized by variations in hydrological and physical processes which
strongly influence the dissolved organic matter dynamics on
a monthly and sub-monthly time scale. A seasonal increase from
winter to spring of DOC was evident in both years of study, whereas
the chromophoric fractions did not showa seasonal trend similar to
that of DOC, possibly because of its lability.

The relatively scarce riverine input in 2003 may account for the
less significant relationship found between DOC and nutrients
concentrations, whereas the high values of DOC were probably
a consequence of the increased freshwaters inputs. The marked
depletion of inorganic phosphorus probably limits the microbial
degradation of DOC, favouring its accumulation. CDOM values were
much higher in 2004 than in 2003 and the spectroscopic features
showed that the average qualitative nature of CDOM was quite
similar in both years. Only after relevant freshets can an increase of
the specific absorption coefficient take place.

The contribution of UVeVIS absorbing DOC in MayeJune 2004,
after the Po freshet, was estimated to be 14e23% of DOC. The lack of
relationships between CDOM and Chl a concentrations in both
years, with the exception of MayeJune 2004, could imply that the
phytoplankton is not a direct source of CDOM, whereas bacteria
could play a relevant role in the CDOM production.
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