448 J. CHEM. RESEARCH (S), 1997

Dimethyl Carbonate as a Methylating Agent. The Selective Mono-C-methylation of Alkyl Aryl Sulfones

Andrea Bomben, Maurizio Selva* and Pietro Tundo*

Dipartimento di Scienze Ambientali del'Università di Venezia, Calle Larga S. Marta 2137, 30123, Venezia, Italy

At 180–210 °C, α -methylene sulfones (both benzyl aryl and alkyl aryl sulfones, RCH₂SO₂AR: R = Ph, *p*-ClC₆H₄, Ar = Ph, *p*-ClC₆H₄, *p*-MeC₆H₄, *p*-MeC₆H

 α -Sulfonyl carbanions, *e.g.* 1, may react with a number of different electrophiles yielding, for example, condensation with esters, aldehydes and isocyanates, though their most widely used reaction is by far nucleophilic displacement with alkyl halides [eqn. (1)].

$$\operatorname{RCH}_{2}\operatorname{SO}_{2}\operatorname{Ar} \xrightarrow{\mathbb{R}^{\prime\prime}X} \operatorname{RCH}(\mathbb{R}^{\prime\prime})\operatorname{SO}_{2}\operatorname{Ar}$$
(1)
$$\operatorname{Base}(-78 \text{ to } -33^{\circ}\mathrm{C})$$

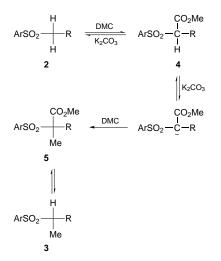
 $R = aryl, alkyl; base = BuLi; MNH_2 (M = Li, Na, K)$

However, the generation of carbanions 1 necessitates very strong bases.^{1,3-5} Only in the case of triflones $(RCH_2SO_2CF_3)^7$ may mild bases act efficiently to promote alkylations; however, triflones themselves are not always accessible.¹

An alternative route for alkylation processes can be conceived with the use of dialkyl carbonates (DAICs) as alkylating agents. In particular, dimethyl carbonate (DMC) is an excellent methylating agent which allows unprecedented high mono-C- and mono-N-methyl selectivities: derivatives of both aryl- and aryloxy-acetic acid derivatives and primary aromatic amines [XCH(CH₃)W: X = Ar and ArO, W = CN and CO₂Me, and ArNHCH₃, respectively] have been obtained in 90–99% selectivity at substantially quantitative conversions (up to 99%).^{12–16,17}

This paper reports that also sulfones bearing α -methylene groups (benzyl aryl and alkyl aryl sulfones: ArCH₂SO₂Ar' and RCH₂SO₂Ar') can be effectively mono-C-methylated (selectivity >99%) by DMC, even when a mild base (K₂CO₃) is used.

Batchwise reactions are performed in an autoclave by loading a mixture of the substrate, K_2CO_3 and DMC in a 1:2:130–210 molar ratio, respectively, DMC acting both as the methylating agent and the solvent.


At 180–210 °C, mono-C-methylations of benzyl aryl and alkyl aryl sulfones [ArCH₂SO₂Ar', **2a–c** and **2g–h**: Ar = Ph, p-ClC₆H₄; Ar' = Ph, p-ClC₆H₄, p-MeC₆H₄, and RCH₂SO₂Ar', **2d–f**: R = Me; Ar' = Ph, p-ClC₆H₄, p-MeC₆H₄, and RCH₂SO₂Ar', **2d–f**: R = Me; Ar' = Ph, p-ClC₆H₄, p-MeC₆H₄) proceed with a selectivity >99% (at conversions of 95–99%), and afford good to high yields (77–92%) of isolated products [**3a–h**; eqn. (4)].

$$RCH_{2}SO_{2}Ar + MeOCO_{2}Me \xrightarrow{K_{2}CO_{3}} RCH(Me)SO_{2}Ar$$
$$+ MeOH + CO_{2}$$
(4)

	R	Ar	T/°C	Yield (%)
3a	Ph	Ph	180	78
3b	$p-ClC_6H_4$	Ph	180	76
3c	$p-MeC_6H_4$	Ph	180	92
3g	Ph	$p-ClC_6H_4$	180	80
3h	$p-ClC_6H_4$	$p-ClC_6H_4$	180	81
3d	Ph	Me	200	85
3e	$p-ClC_6H_4$	Me	200	77
3f	$p-MeC_6H_4$	Me	210	76

A major influence on reactivity arises from the different aryl and alkyl groups directly bound to the methylene reacting group: thus benzyl aryl sulfones (ArCH₂SO₂Ar': **2a-c**,**g-h**) are efficiently mono-methylated at 180 °C while alkyl aryl sulfones (MeCH₂SO₂Ar: **2d-f**) do not, and actually require a more elevated reaction temperature of 200–210 °C for the reaction to go to completion. Such a behaviour seems to be clearly related to the stabilization of aryl sulfonyl carbanions [ArSO₂CHAr' formed during the reactions] induced by the resonance with the adjacent Ar' group.

The methylation of the sulfones **2a–h** follows, in all likelihood, the mechanistic pattern reported for aryl- and aryloxyacetic acid derivatives.^{14–16} Accordingly, the monomethyl selectivity is explicable through the occurrence of two consecutive nucleophilic displacements (Scheme 1): (*i*) a methoxycarbonylation of the initially formed sulfonyl carbanion [ArSO₂CHR] (B_{Ac}^2 mechanism) followed by (*ii*) a methylation of the resulting intermediate [ArSO₂CH(CO₂Me)R (4)] yielding the methyl derivative [ArSO₂C(Me)(CO₂Me)R, (5); B_{Al}^2 mechanism]. Finally, compound **5** undergoes a de-methoxycarbonylation reaction to the final product [ArSO₂CH(Me)R].

Scheme 1 Suggested mechanism for the mono-C-methylation of alkyl aryl sulfones with dimethyl carbonate

J. Chem. Research (S), 1997, 448–449 J. Chem. Research (M), 1997, 2688–2696

^{*}To receive any correspondence (e-mail: selva@unive.it).

Both intermediates 4 and 5 are detected during the reaction of DMC with sulfones 3a-h (maximum amount of 10-30%, by GC; structures assigned by GC–MS).

Also, methyl aryl sulfones (ArSO₂CH₃) react with DMC as in Scheme 1: the formation of methoxycarbonylated compounds (ArSO₂CH₂CO₂Me) as intermediates, allows the homologation of the methyl group to a isopropyl one. Thus, PhSO₂Me yields PhSO₂CHMe₂ and PhSO₂C(CO₂Me)Me₂ (**6**) (12 and 81%, respectively; 14 h at 180 °C; conversion 93%). Likewise, PhCH₂SO₂Me affords PhCH(Me)SO₂-CHMe₂ and PhCH(Me)SO₂C(CO₂Me)(Me)₂ (**7**) (14 and 50%, respectively; 21.5 h at 180 °C; conversion 98%). Compounds **6** and **7** have been isolated in 63 and 34% yields, respectively (characterized by ¹H and ¹³C NMR spectra).

¹H NMR and GC–MS spectra are given in the full text for all products.

The synthesis here discussed has both synthetic advantages and remarkable environmental benefits: (*i*) it affords selectively only mono-methyl derivatives; (*ii*) it uses an intrinsically safe methylating agent (DMC) in place of the toxic methyl chloride (or dimethyl sulfate); (*iii*) it gives neither organic nor inorganic by-products (alkylation procedures using alkyl halides cannot avoid the formation of stoichiometric amounts of inorganic salts to be disposed of); (*iv*) it does not require additional solvents. Moreover, the procedure discloses intriguing perspectives of the chemistry of sulfonyl carbanions since it shows that these anionic moieties can actually be generated also in the presence of very mild bases. Techniques used: 1H and 13C NMR, GC and GC-MS

References: 24

Table 1: Yields, reaction temperature and times, purification for products 3a-h

Received, 21st May 1997; Accepted, 1st September 1997 Paper E/7/03510A

References cited in this synopsis

- 1 P. D. Magnus, Tetrahedron, 1977, 33, 2019.
- 3 K. Kondo and D. Tunemoto, Tetrahedron Lett., 1975, 1007.
- 4 C. R. Hauser and T. M. Harris, J. Am. Chem. Soc., 1957, 79, 6342.
- E. M. Kaiser and C. R. Hauser, *Tetrahedron Lett.*, 1967, 3341.
 J. B. Hendrikson, A. Giga and J. Wareing, *J. Am. Chem. Soc.*, 1974, 96, 2275.
- 12 F. Trotta, P. Tundo and G. Moraglio, J. Org. Chem., 1987, 52, 1300.
- 13 P. Tundo, F. Trotta and G. Moraglio, *J. Chem. Soc.*, *Perkin Trans. 1*, 1989, 1070.
- 14 M. Selva, C. A. Marques and P. Tundo, J. Chem. Soc., Perkin Trans. 1, 1994, 1323.
- 15 P. Tundo and M. Selva, Chemtech, 1995, 25, 31.
- 16 A. Bomben, C. A. Marques, M. Selva and P. Tundo, *Tetrahedron*, 1995, **51**, 11573.
- 18 M. Selva, A. Bomben and P. Tundo, *J. Chem. Soc.*, *Perkin Trans. 1*, 1997, 1041.