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Contaminant loadings to the Venice Lagoon peaked from 1950s–1980s and although they have since

declined, contaminant concentrations remain elevated in sediment and seafood. In order to identify the

relative importance of contaminant sources, inter-media exchange and removal pathways, a modified

10-segment fugacity/aquivalence-based model was developed for octachlorodibenzodioxin/furan

(OCDD/F), PCB-180, Pb and Cu in the Venice Lagoon. Results showed that in-place pollution nearby

the industrial area, current industrial discharges, and tributary loadings were the main sources of

contaminants to the lagoon, with negligible contributions from the atmosphere. The fate of these

contaminants was governed by sediment-water exchange with simultaneous advective transport by

water circulation. Contaminants circulated amongst the northern and central basins with a small

fraction reaching the far southern basin and the Chioggia inlet. As a consequence, we estimated limited

contaminant transfer to the Adriatic Sea, trapping the majority of contaminants in the sediment in this

‘‘average’’ circulation scenario which does not account for periodic flooding events.

& 2009 Elsevier Inc. All rights reserved.
1. Introduction

The Venice Lagoon (Fig. 1) is a complex aquatic environment
that is under pressure due to numerous competing current and
past stresses such as contaminant loadings from industry, human
habitation, fish and clam harvesting, and boat traffic. The Lagoon
is a 550 km2 transitional water body that receives inflows from
12 major tributaries and exchanges with the Adriatic Sea through
3 inlets that define the north, central and southern basins. Each
basin is a network of channels and mud flats with a few principal
deep channels (415 m) (Umgiesser et al., 2004). The average
depth of the lagoon is 1.1 m with a diurnal tidal variation of
41 m (Solidoro et al., 2004b). Riverine to marine gradients from
the mainland to the Adriatic Sea are found in water quality
(dissolved oxygen, organic matter) and physical parameters
(salinity and water residence time) (MAV, 2000; Solidoro et al.,
2004a, 2004b).

Contaminant loadings to the Venice Lagoon peaked between
the 1950s and 1980s during a time of rapid industrialisation
ll rights reserved.

.L. Diamond).
(Frignani et al., 2001, 2005). Although loadings have declined
since the 1980s, likely due to the introduction of legislative
controls and improved technologies (Frignani et al., 2001, 2004),
present contaminant levels in the lagoon are still of concern due
to the elevated concentrations within the industrial canals and
the potential health risk posed by consuming clams and fish
(Micheletti et al., 2007).

Current contaminant loadings are from direct atmospheric
deposition to the lagoon (Gambaro et al., 2004; Guerzoni et al.,
2004, 2007), export from watersheds via tributaries (Collavini
et al., 2005), and discharges from municipalities and the industrial
area of Porto Marghera (Bellucci et al., 2002; Carrer and Leardi,
2006). Porto Marghera, one of the largest industrial areas in Italy,
has a petrochemical industry (upon which 70% of the Italian
chemical industry depended), refinery stations, and non-ferrous
metal production. Over the last century, these industries have
released to the lagoon polychlorinated biphenyls (PCBs), poly-
chlorinated dibenzodioxins and furans (PCDD/Fs), and trace
metals (e.g. Pb, Cu) (Carrer and Leardi, 2006). Industries in Porto
Marghera discharge to a series of canals that communicate with
the central basin of the Lagoon. These discharges have resulted in
elevated contaminant concentrations in the sediment of industrial
canals and the central basin (Frignani et al., 2005).

www.elsevier.com/locate/ecoenv
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Fig. 1. Ten homogeneous segments of the Venice Lagoon and the direction of net water movement, indicated by large arrows (recreated from Solidoro et al., 2004a).

Tributaries are identified by small arrows. Net erosion occurs in segments 6–8. Segment 6 contains in-place pollution in the lower sediment layer (3–20 cm). The northern,

central and southern basins are represented by segments 1–5, segments 6–8 and segments 9 and 10, respectively.
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Since the 1990s, particle deposition and resuspension in the
Lagoon have increased by an order of magnitude resulting
in increased turbidity and an estimated net loss (erosion) of
1.2 million tons per year of sediment from the central basin (Sfriso
et al., 2005a). The transformation is largely due to the reduction of
macroalgal biomass coverage (Sfriso et al., 2003) and the spread of
the introduced Manila clams (Tapes philippinarum Adams and
Reeve) which loosen sediment. Manila clams were introduced in
1983 for economic exploitation (Orel et al., 2000). Before 1994,
clams were harvested by manual dredges or by divers. After-
wards, harvesting has been done using hydraulic and mechanical
dredges that cause sediment reworking down to 30 cm below the
surface. The sediment loss is exacerbated by the reduced supply of
sediment from the Lagoon watershed due to the diversion of
major rivers from the lagoon that occurred in the past few
centuries (Degetto and Cantaluppi, 2004).

The effects of sediment erosion on contaminant distribution
and loadings in the Venice Lagoon are unclear. In-place pollution
of contaminated sediment (herein referred to as in-place pollu-
tion) in the central basin is likely remobilized due to the erosion
and resuspension of sediment. Previous models used to evaluate
contaminant fate in the Lagoon neglected these effects. For
example, Dalla Valle et al. (2003) developed a single-segment
fugacity model to evaluate contaminant fate and transport in the
central basin of the lagoon while Carrer et al. (2005) developed a
hybrid (mechanistic and statistical) model to estimate contami-
nant concentrations in the water column from measured
sediment concentrations. Modelling results of Dalla Valle et al.
(2003) consistently underestimated sediment concentrations.

To examine the relative contribution of sources (including in-
place pollution of sediment) and to evaluate contaminant fate in
light of current particle dynamics, we modified and applied a
fugacity/aquivalence-based model (Diamond et al., 1992; Mackay,
2001). We segmented the Lagoon according to modelled hydro-
dynamic circulation patterns (Solidoro et al., 2004a) and explicitly
considered sediment erosion. In addition, for metals we incorpo-
rated the loosely coupled TRANsport and SPECiation model
(TRANSPEC) (Bhavsar et al., 2004) to account for metal chemistry.
Below, we describe the model and its parameterization for the
Venice Lagoon. Then we discuss the application of the model to
octachlorodibenzodioxin/furan (OCDD/F), PCB-180, Pb and Cu to
evaluate their sources and fate. These contaminants were selected
due to their elevated concentrations in the Lagoon, their toxicity
and the availability of loading data.
2. Materials and methods

2.1. Fugacity-aquivalence fate and transport model

The fugacity-aquivalence approach used in our model has been used to

quantify the fate of a variety of contaminants in numerous aquatic system

(Diamond, 1995, 1999; Dalla Valle et al., 2003). Details of the model are described

elsewhere (Diamond et al., 1992; Mackay, 2001). Fugacity and ‘‘aquivalence’’ (from

equivalent aqueous concentration, Mackay and Diamond, 1989) are equilibrium

criteria for volatile and non-volatile chemicals (e.g., persistent organic pollutants

or POPs and metals), respectively. We used the Level III Quantitative Water Air

Sediment Interaction or QWASI model of Mackay et al. (1983) as modified by

Diamond (1999), which represents an aquatic environment with three well-mixed

homogeneous bulk compartments (water, upper sediment layer and lower

sediment layer). Dissolved and particulate phases (e.g., suspended sediment in

the water compartment and pore water in the sediment compartment) are in

equilibrium within each bulk compartment. The atmosphere is considered to be an

infinite source to the system with a constant concentration.
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A mass balance equation is written for each compartment to represent the

change in chemical mass with time. All input and removal pathways are assumed

to occur simultaneously and instantaneously once a contaminant enters the

system. The general mass balance equation for compartment b and chemical j is:

VbZb

dfbj

dt
¼ Ebjþ

X
ðDabjfajÞ�fbj

X
Dbj ð1Þ

where Vb (m3) is the volume of compartment b, faj is the fugacity (Pa) of chemical j

in compartment a, Z is the fugacity capacity for organics (mol m�3 Pa�1), Ebj

(mol m�3) is the direct emission, Dabj (mol Pa�1 m�3) is the transport rate moving

chemical j from compartment a to b, and Dbj is the transport rate removing

chemical j from compartment b. For metals, fugacity is replaced with aquivalence

(Mackay and Diamond, 1989) in Eq. (1). Table S1 in the supplementary

information lists the D-values included in the model.

Compartment specific versions of Eq. (1) are solved assuming steady-state or

pseudo-steady state conditions. The steady-state approximation is used to

represent average long-term conditions. The pseudo-steady-state approach,

whereby the fugacity of the chemical is specified in a compartment, is used for

in-place pollution where sediment concentrations are not at steady state with

respect to current loadings, as discussed below (Diamond, 1995).

2.2. Metals: Speciation-Complexation Module (TRANSPEC)

Metal distribution between dissolved and particulate phases is sensitive to

ambient chemistry, which is system specific. In order to account for metal

chemistry and phase, Bhavsar et al. (2004) introduced the TRANsport-SPECiation

model or TRANSPEC, where a speciation-complexation model is loosely coupled

with the multi-species aquivalence fate and transport model (Diamond et al.,

1992). The speciation-complexation model calculates two system- and species-

specific values of Kds (distribution coefficients): KdCD (colloidal-to-dissolved

phases) and KdPD (particulate-to-dissolved phases) for total metal and metal

species based on ambient aqueous phase chemistry. Kds are used to calculate

constituent species’ Z values required for the weighted averaged bulk Z-values

used in the fate and transport model (Diamond et al., 1992).

2.3. Model application

The lagoon was segmented into 10 areas according to the analysis of Solidoro

et al. (2004a) who used a 2-dimensional finite element hydrodynamic model of

the lagoon based on the spatial distribution of physical properties (salinity and

water residence time) and other water quality parameters. We chose the

circulation patterns and net flow estimates from the reference scenario of ‘‘no

wind’’, assuming mean annual tributary flows and an idealised sinusoidal M2 tide

levels at inlets that force water circulation. Here, we assume that this scenario

reflects the steady-state hydrologic circulation pattern in the lagoon (Fig. 1),

although two typical wind regimes, the scirocco from SE and the bora from NE,

prevail during fall and winter-spring, respectively. Umgiesser et al. (2004) have

evaluated and described the circulation model in detail.

To account for sediment loss in the central basin, two additional transport

pathways were included in the QWASI model: (1) a sediment introduction term

defined as the addition of sediment from below the lower sediment compartment

into the lower sediment layer; and (2) an upward transfer term that moves

sediment from the lower to upper sediment layer. Effectively, these parameters

are the opposite of the burial pathway. Erosion occurs in segments 6, 7, and 8

(Sfriso et al., 2005a).

2.4. Model parameterization

2.4.1. Fate and transport model

Physical–chemical properties of contaminants and physical properties of the

system are summarised in Tables 1 and 2, respectively. In this reference scenario

we assumed average annual meteorological conditions: air and water

temperatures of 10 and 13 1C, respectively, and an average rain rate of 2 mm/

day (Frignani and Bellucci, 1999). Dimensions of the water compartments and

water circulation flows were taken from Solidoro et al. (2004a). The upper and

lower sediment depths were defined as 3 and 20 cm, respectively. The

upper sediment layer represents the well-mixed active sediment layer that

exchanges with the water column (Gerino et al., 2007).

Fractions of organic carbon in sediment solids for the upper and lower

sediment layer were obtained from cores taken by Frignani and Bellucci (1999)

and Secco et al. (2005). Values of sediment organic carbon for segments 2, 8 and 9

for which measurements were not available, and hence were estimated using

organic carbon distribution maps (MAV, 2000).

Total suspended sediment (TSS) concentrations, the organic carbon fraction of

TSS, and DOC in the water column were obtained from bimonthly measurements

taken from September 2000 to October 2003 at 27 stations that cover the entire

lagoon (MAV, 2006) with the exception of segment 4. We used the geometric

means of all measurements to represent the steady-state conditions of the lagoon.
Mass transfer coefficients (MTC, Table 3) were obtained from Mackay (2001).

Diffusion between the water column and upper sediment was enhanced by a

factor of two to account for bio-irrigation (Wang and Matisoff, 1997; Wijsman

et al., 2002). Diffusion of colloidally bound metals was calculated according to the

DOC concentration gradient (Bhavsar et al., 2004) with the MTC obtained from

Valsaraj et al. (1993, 1996). Pore water DOC measurements were obtained from

four sediment cores representing segments 2, 6 and 7. The DOC values for the

upper and lower sediment layers were taken as weighted average values of

measurements of core sections 0–3, and 3–5, 5–10, 10–20 cm, respectively (Giani,

Personal communication). We assumed the equivalent pore water DOC of segment

6 for segments 3 and 10. The pore water concentration of DOC in segment 2 was

assumed for the remaining segments due to their similar locations on the river-

marine gradient of the Lagoon (Table 3).

Sediment deposition, resuspension and burial fluxes (g m�2 d�1) were

calculated from: (1) sedimentation rates derived from data from 16 sediment

traps deployed from 1997–1999 and 2001–2002, representing all segments except

2, 8 and 9 (Sfriso et al., 2005b); (2) burial rates based on the geometric mean

obtained from 210Pb estimates in all non-erosive segments (Frignani and Bellucci,

1999; Frignani et al., 2001, 2005), and (3) an erosion rate estimated using the

sediment loss estimate of 1.43 cm y�1 (Sfriso et al., 2005a).

A particle mass balance was constructed for the upper and lower sediment

compartment for each segment. Particle mass was assumed to be at steady state.

In non-erosive or net depositional segments (1–5, 9, 10), the upper sediment

particles deposit from the water column and mix with the lower sediment.

Sediment is lost by resupension to the water column, and mixing and burial to the

lower sediment. There is no net exchange of sediment between layers as a result of

mixing, but there is net movement downwards as a result of burial. Resuspension

was then calculated as the difference between sediment trap flux and burial.

Erosive segments were parameterized similarly however burial was replaced by a

net upward movement of sediment particles (sediment introduction) and

deposition was calculated as the difference between the sediment trap flux and

sediment introduction due to erosion. Note that the particle balance neglects

particle degradation, which we justified based on the low organic content of

sediment particles. Calculated resuspension rates were consistent with the

average of the estimated resuspension rates from two stations in the erosive

central basin (Bellucci et al., 2007).

2.4.2. Speciation-complexation model

The Windermere Humic-Aqueous Model (Tipping, 1998) was selected to

estimate water column speciation, due to its ability to represent the binding of

metals to organic matter (Bhavsar et al., 2008). However, because WHAM does not

adequately treat redox conditions and the requisite sediment pore water

chemistry data were not available, literature Kd values (both log KdCD and log KdPD

equal to 5.1 L kg�1 for Pb; log KdCD equal to 5.5 L kg�1 and log KdPD equal to

4.2 L kg�1 for Cu) were used for the upper and lower sediment layers (USEPA,

2005).

The major soluble forms considered in the WHAM module were: Me2+,

MeOH+, Me(OH)2, Me(OH)3
� , MeSO4, MeCl+, MeCl2, MeCO3, Me(CO3)2

�2. In the

absence of measured values, the major ionic component (Na+, Mg2+, Ca2 +, Cu2+,

Cl� , SO4
2� and F�) molar concentrations were calculated from salinity measure-

ments taken in 1992 at 12 stations from segments 2, 3 and 6 representing fresh,

marine and mixed water, respectively (Giani, Personal communication). For three

stations, salinity measurements were made during a complete tidal cycle.

Geometric means of measured salinity were assigned to the remaining segments

identified as fresh or marine water. We considered particulate-phase metal

complexation with organic matter and Al and Fe oxides fractions. Complexation

with manganese oxides was not considered due to the lack of data. Since the

concentrations of suspended particulate-phase Al and Fe oxides were not

available, values from the upper sediment fractions were used (Frignani et al.,

1999). Particulate-phase and dissolved organic matter (POM and DOM, respec-

tively) were assumed to consist of 15% humic and 85% fulvic acids in all segments.

Default WHAM binding constants were used for POM and DOM complexation.

2.4.3. Contaminant loading estimates

Below we discuss each source of contaminant loadings (Fig. 3, Table S2) with

the exception of emissions from the City of Venice and boat and shipping for

which estimates were not available. We were not able to assess the uncertainty of

loading estimates.
�
 Tributary loadings of total (dissolved and particulate-phase) Pb, Cu, PCB-180

and OCDD/F were estimated by Collavini et al. (2005) from measured

concentrations of dissolved and particulate phases of these contaminants at

major outlets in 1999. The 11 tributaries analysed for Pb, Cu and PCB-180

represent 90% of the lagoon catchment surface area with a mean total

discharge of 34.5 m3 s�1. The four tributaries measured for OCDD/F represent

42% of the drainage basin. We assumed the equivalent concentration for the

remaining unmeasured tributaries.
�
 Industrial inputs were calculated using the Water Authority of Venice (MAV)

and Pollution Prevention Service (SAMA) data (MAV-SAMA, 2004; Ferrari,



ARTICLE IN PRESS

Table 3
Mass transfer coefficients (MTC) used in the model.

MTC Organic Dissolveda (m h�1) Metal Dissolvedb (m h�1) Metal Colloidalc (m h�1)

Water side (kww) 3�10�2 NA NA

Air side over water (kaw) 3 NA NA

Water side over sediment (kws) 10�2 10�5 7�10�7

Sediment side (kss) 10�4 10�6 10�8

a Mackay (2001).
b Bhavsar et al. (2004).
c Valsaraj et al. (1991, 1996).

Table 2
Segment dimensions defined by Solidoro et al. (2004a) and parameter values used for the Venice Lagoon model.

Segment Locationa NBnE NBnW NBcW NBcC NBcE CBW CBE SBW SBC SBE
Segment #a 1 2 3 4 5 6 7 8 9 10

Water Depth (m)a 1.3 0.8 3.4 0.5 1.0 1.6 2.4 0.9 0.7 1.7

Area (km2)a 43.5 35.3 31.3 11.5 22.2 54.3 89.4 31.7 29.5 40.6

Organic Carbon (g/g) Suspended Sedimentb 0.02 0.02 0.01 0.01 0.01 0.03 0.02 0.03 0.02 0.01

Organic Carbon (g/g) Upper Sediment 0.02e 0.02c 0.01d 0.01c 0.01d 0.01c 0.02c 0.03e 0.02e 0.01c

Organic Carbon (g/g) Lower Sediment 0.01e 0.01c 0.01d 0.01c 0.01d 0.01c 0.02c 0.03e 0.02e 0.01c

Total Suspended Solids (g/m3)b 15.9 15.4 14.1 22.5 22.5 22.2 11.3 17.0 16.2 10.4

Dissolved Organic Carbon (mg/L)b 2.6 2.4 2.4 2.3 2.3 2.1 2.0 3.3 3.2 2.1

Upper Sediment Pore Water - Dissolved Organic Carbon (mg/L)l 11.8 11.8 14.0 11.8 11.8 14.0 4.9 11.8 11.8 14.0

Lower Sediment Pore Water - Dissolved Organic Carbon (mg/L)l 1.4 1.4 1.8 1.4 1.4 1.8 1.9 1.4 1.4 1.8

Solid Volume Fraction Upper Sediment 0.5f 0.5c 0.6f 0.5c 0.6f 0.6c 0.6c 0.6f 0.6f 0.7c

Solid Volume Fraction Lower Sediment 0.6f 0.6c 0.7f 0.6c 0.6f 0.6c 0.6c 0.6f 0.7f 0.7c

Aluminium oxide % - upper sedimentc 10.2 10.2 10.4 10.2 10.2 10.4 10.0 10.2 10.2 10.4

Iron oxide % - upper sedimentc 3.4 3.4 3.5 3.4 3.4 3.5 3.5 3.4 3.4 3.5

Deposition (g/m2d) 73h 73i 469h 251h 609h 354h 45h 45i 375i 375h

Resuspension (g/m2d)g 69 69 465 247 605 364 56 56 371 371

Sediment Mixing (g/m2d)j 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22

Burial (g/m2d)c 3.7 3.7 3.7 3.7 3.7 NA NA NA 3.7 3.7

Sediment Introduction (g/m2d)k NA NA NA NA NA NA 10.7 10.7 NA NA

Upward Transfer (g/m2d)k NA NA NA NA NA 10.7 10.7 10.7 NA NA

NA—Not Applicable

NB—North Basin, CB—Central Basin, SB—South Basin, C—central, N—northern, W—west, E—east

a Solidoro et al. (2004a)
b MAV (2006) - segment 5 values were assigned to segment 4
c Frignani et al., 1999.
d Secco et al. (2005)
e MAV (1999) as qualitative guide
f Amos et al. (2004)
g same as deposition data
h Sfriso et al. (2005a)
i Degetto and Cantaluppi (2004) as a guide for similarities to assign values
j Sfriso et al. (2005b)
k Assumed same rate as Bhavsar et al. (2004)
l Unpublished data, M. Giani (personal communication).

Table 1
Physical–chemical properties of organic contaminants, determined at 25 1C; half-lives in sediment and water are referred to an annual average temperature of 7 1C.

Chemical Name Molecular Weight Melting Point Log Koa HLC Log Kow Half-life Watera Half-life Sedimenta

(g mol�1) (1C) (Pa m3 mol�1) (h) (h)

OCDD 460b,c 322b,c 13d 0.68b,c 8.2b,c 79,000 1300,000

OCDF 443.8b 258b,c 12.84d 0.19b,c 8b,c 192,000 250,000

PCB 180 395.3b 113.9b 10.17e 7.77e 7.66e 240,000 330,000

Koa and Kow are the octanol-air and octanol-water partition coefficients, respectively; HLC is the Henry Law constant.

a Sinkkonen and Paasivirta (2000).
b Mackay et al. (1992).
c Shiu and Ma (2000).
d Harner et al. (2000).
e Schenker et al. (2005).
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Personal communication), which account for effluents from the Porto

Marghera petrochemical plant, the oil refinery, thermal power stations,

chemical plants and the main water treatment plant in the lagoon. These

are based on in situ measurements of the difference between water

concentrations entering and exiting each facility during 2001, with the
exception of OCDF for which we used values from 2002. The emissions enter a

series of canals that eventually discharge into segment 6. An unknown fraction

of the industrial discharges is retained in the sediment of the canals. To

add to the uncertainty, the canal sediments also contain contaminants as a

legacy of past emissions. As a first estimate, we assumed 100% of current
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industrial loadings enter segment 6. This assumption is evaluated

below.
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Bulk atmospheric deposition of PCB-180 and OCDD/F (wet and dry deposition of

gas and particulate phases) was estimated as the geometric mean of gas-phase

concentrations measured at two locations in segments 3 and 6 every 15 days

from March 2002 to June 2003 when winds exceeded 1 m s�1 (Gambaro et al.,

2004; Manodori, 2006). We assumed a dry deposition velocity of 0.003 m s�1,

an aerosol density of 1500 kg m�3, and total suspended particle concentration

(TSP) of 20 mg m�3 (Mackay et al., 2001). A scavenging ratio of 200,000

(Mackay et al., 2001) was considered to account for wet deposition. Wet and

dry particle deposition of Pb and Cu was calculated from measured PM10

concentrations and thus may have underestimated total deposition

(G. Capodaglio, personal communication). Atmospheric stack emissions were

not explicitly included.

Pb SolubleL
�
0.00001

0.0001

Log Measured Concentration

Cu Pore Water (Segment 6)
Pb Pore Water (Segment 6)

1E-05 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Fig. 2. A comparison of modelled and measured concentrations (where available)

for upper sediments (all contaminants; ng kg�1 or g m�3), soluble water

concentrations (dissolved and colloidal fractions of Cu and Pb; g m�3) and pore

water concentration (segment 6; Pb and Cu; g m�3). The solid line represents

modelled = measured, the hatched lines represent 7 an order of magnitude.
Reintroduction of in-place pollution from segment 6 was evaluated as follows.

The lower sediment layer of segment 6 has elevated contaminant concentra-

tions from historic inputs. Due to sediment erosion, contaminants are

reintroduced into the system. This process is modelled as sediment introduc-

tion from the lower to upper sediment. To estimate this loading, a pseudo-

steady-state formulation (Diamond, 1995) was used whereby the fugacity/

aquivalence of the lower sediment layer of segment 6 was specified for each

contaminant based on measured concentrations, rather than solved for in the

mass balance equations. Thus, contaminant in the lower sediment layer is

considered as an infinite source, similarly to emissions from air. Those

concentrations were calculated from geometric means of the measured lower

sediment concentrations determined in three sediment cores (cores E, E1 and

E14), segmented by depth at every 2 cm to a maximum depth of 20 cm,

(Frignani and Bellucci, 1999; Frignani et al., 2001, 2004). The two ‘‘hot’’ spots

(highest chemical concentrations that were located close to the industrial area

and the city of Venice) (Frignani et al., 2001, 2004) were excluded from the

calculation because they biased high the mean for the entire segment.

A steady-state version of the model was used to estimate ‘‘long term average’’

conditions in the Lagoon assuming constant external and in-place loadings. Eq. (1)

was solved simultaneously for the fugacity-aquivalence of each compartment

(except for the lower sediment layer of segment 6) in each segment (29

equations). Parameter values were not calibrated to maximise the correspondence

between measured and modelled concentrations, but their associated uncertainty

is discussed by Sommerfreund et al. (2009). The model was written in Visual Basic

and runs on a PC in a Windows& environment.
3. Model outcomes

3.1. Comparison with measured data

We evaluated the model by comparing measured and
modelled concentrations for soluble (dissolved and colloidal
phases) Pb and Cu in the water column and all contaminant
concentrations in the upper sediment. Measured water concen-
trations were not available for PCB-180 and OCDD/F. The
measured soluble Pb and Cu concentrations were 3 y averages
of monthly samples at 27 stations representing all segments
except segment 4 (MAV, 2006). For Pb, Cu, OCDD/F and PCB-180,
sediment concentrations were obtained from one vertically
segmented core in each of segments 2, 4, and 10 (Frignani et al.,
1999; Lucchini et al., 2001/2002). For segment 6, sediment
concentrations from five cores were obtained for OCDD/F and
PCB-180 (Frignani et al., 1999, 2001, 2004, 2005) and 21 cores for
Pb and Cu (Frignani et al., 1999; Lucchini et al., 2001/2002). In
addition, concentrations of Pb, Cu and PCB-180 were available
from one core that was sampled in segment 7 (Frignani et al.,
1999; Lucchini et al., 2001/2002). The measured sediment
concentrations do not necessarily capture the spatial variability
nor necessarily reflect the average concentration in all segments.

Measured and modelled concentrations of all contaminants in
water and sediment were within an order-of-magnitude of each
other. The largest discrepancies were for sediment concentrations
of segments 7 and 10 where modelled exceeded measured
concentrations by 2–6 times. Soluble phase Pb concentrations
were consistently overestimated by the model. In addition,
modelled exceeded measured sediment concentrations of PCB-
180 by 1.3–9 times with the greatest overestimate in segment 6
(Fig. 2).

The overestimated sediment concentrations of segments 7 and
10 are consistent with exclusion from the model parameterization
of contaminant removal during episodic flooding events in the
lagoon. The discrepancy of Pb in the soluble phase is likely driven
by the overestimate of colloidal-bound Pb within the soluble
phase as calculated by WHAM (Bhavsar et al., 2008).

Atmospheric deposition fluxes calculated from atmospheric
loading for OCDD, OCDF and PCB-180 (0.274, 0.018 and 180 pg
m�2 d�1, respectively) were about an order of magnitude lower
than those available for total PCDD/F and total PCB (Rossini et al.,
2005; Guerzoni et al., 2007) and those calculated for PCB-180 by
Manodori et al., 2007). PCB-180 concentrations may be over-
estimated due to overestimated loadings and our neglect of
flooding events. Of all contributions, industrial loadings of PCB-
180 and other contaminants are probably most uncertain given
the uncertainty in our understanding of whether the industrial
canals act as a source or sink. Maximum PCB sediment
concentrations are 80–1583 times higher in the industrial canals
than in the lagoon (Frignani et al., 2004). Furthermore, the major
industrial source of PCBs is located in the oldest part of the
industrial area, suggesting that significant chemical is deposited
in the canal before reaching the lagoon (Carrer and Leardi, 2006).

To evaluate the reliability of the loadings of PCB-180, several
industrial loading scenarios were analysed. The fraction of
industrial emissions retained by the sediment of the industrial
canals was estimated by running the model with export fractions
varying from 0 to 1, while keeping all other loadings constant. The
best fit with measured values corresponded to 10–20% industrial
emissions (in particular for segments 6 and 10, whereas for
segment 7 the best fit corresponded to 90% industrial emission)
suggesting that the transfer of PCB-180 as well as other
contaminants from the canals to the lagoon might be over-
estimated in the model (Fig. 3a).

Using the 100% industrial loading scenario (i.e. no retention in
the industrial canals), in-place pollution mobilised by anthro-
pogenically induced sediment erosion contributed significantly to
all contaminant burdens, (i.e. 29–52% of total OCDD/F, Cu and Pb
loadings) with the exception of PCB-180 (5%) (Fig. 3b). Present
industrial sources accounted for 20–64% of loadings for OCDD/F,
PCB-180 and Pb and only 9% of Cu loadings. Non-industrial
sources contribute significantly to the loadings of OCDD, Cu and,
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Pb. For example, tributaries contributed most Cu and OCDD
loadings (Fig. 3b). However, if the fraction retained by the
industrial canal sediments is higher, as suggested by the PCB-
180 scenarios and sediment studies (Frignani et al., 2004), then
the relative importance of current industrial sources would
decrease. For example, when we optimised loadings for PCB-180
(as discussed above), the tributaries became its dominant source,
followed by industry, atmospheric deposition and in-place
pollution. We acknowledge that this analysis neglects non-
quantified sources (e.g. city of Venice, boating and shipping) that
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could be significant. The large contribution of in-place pollution is
likely driven by the large size of segment 6. In our approach the
same concentration and magnitude of erosion was used through-
out segment 6 although variability in both terms is probable.
3.2. Source apportionment

To evaluate the contribution of each of the above described
sources to each segment we used a source apportionment
analysis. Model scenarios were run with one source at a time to
elucidate the contribution of contaminant sources to the geo-
graphic segments. This approach employs the linear additivity
principle whereby contaminant concentrations (and mass) from
individual sources linearly add to the total because of the linearity
of the model (Stiver and Mackay, 1989; Diamond, 1995). Although
the absolute contributions from each source are uncertain, the
qualitative results are instructive.

The source apportionment analysis reflected the location of
loading sources and the dominant hydrologic circulation pattern
of the Lagoon. Fifty to 94% of total OCDD/F, PCB180, Cu and Pb
loadings enter the Lagoon through segment 6 in the central basin
from industry and in-place pollution, followed by a significant
contribution from tributaries (Collavini et al., 2005). These loads
circulate to the northern lagoon (within segments 5, 4, 2, 1 and 3),
with limited transport to the far southern lagoon (segments 8
and 9). For example, 60% of total OCDD loadings to segment 1 in
the far northern lagoon were from in-place pollution and present
industrial sources originating from segment 6 whereas nearly
100% of loadings in segment 9 in the far southern lagoon
were from tributaries (Fig. 3c). The relative importance of
Fig. 4. Estimated fluxes of OCDD and Cu (g d�1) (as an example of an organic and an ino

3–20 cm depth) for segments 4 (northern Lagoon), 6 (central basin) and 9 (southern L

physical and biological mixing and burial). Hatched arrows represent diffusive transport

the dominant removal pathway is highlighted.
non-industrial sources of OCDD, notably tributaries, was 40–80%
greater far from the central lagoon (25%) which is consistent with
the results of Micheletti et al. (2007). Thus, the dominant sources
of OCDD/F, Pb and Cu in the northern lagoon, with the exception
of areas adjacent to tributaries (segment 2), were estimated to be
in-place pollution and current industrial loadings. For PCB-180,
industrial emissions were the main source for nearby segments 5
and 6 only.

Contaminant circulation follows the pattern of water circula-
tion. Extensive water exchange occurs amongst the northern and
central basins (netflows range from 5 to 70 m3 s�1). Approxi-
mately 70% of water leaving segment 6 reaches the northern basin
while only 30% flows southward (Solidoro et al., 2004a). Once the
water reaches the southern lagoon (segment 10), 94% is exported
to the Adriatic Sea through the Chioggia inlet while the remaining
6% is transferred to the far southern lagoon (segment 9). Thus, it is
not surprising that the contaminant loadings in the southern
lagoon are dominated by local tributaries and not sources
originating in the central and northern basins. Segment-to-
segment transfer of contaminants is mediated by in-segment
processes, as discussed below.
3.3. Contaminant fate

Despite �75% of Pb and Cu being in the soluble form
(dissolved+colloidal phases), their fate, similar to that of OCDD/
F and PCB-180, was mediated by particle dynamics of sediment
deposition and resuspension with minimal importance of sedi-
ment–water diffusion (Fig. 4). This was expected in a shallow
energetic system such as the Venice Lagoon (Diamond, 1995). As
rganic contaminant) between water and upper and lower sediment layers (0–3 cm,

agoon). Solid arrows represent non-diffusive transport (deposition, resuspension,

and angled arrows represent first order degradation (OCDD only). In each segment
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noted above, sediment resuspension has been increased due to
the introduction of Manila Clams and clam harvesting (Sfriso
et al., 2005b). The magnitude of gross contaminant flux between
water and upper sediment was 10–1000 times greater than the
net contaminant deposition (i.e bulk deposition minus
resuspension) (1.9�10�4 to 0.35 g d�1 of PCB-180 and OCDD/F;
0.81–7.12�103 g d�1 of Pb and Cu), with the exception of the
area of in-place pollution (segment 6). Consistent with the
modelling results of Dalla Valle et al. (2003), net contaminant
loss from the upper sediment via resuspension occurred in
segment 6, allowing for the export of contaminants from this
area. Ultimately, contaminant was lost through lower sediment
burial in non-erosive segments, varying from 1.12�10�4 to
4.26�10�2 g d�1 for PCB-180 and OCDD/F, and 1.21�103 to
7.1�103 g d�1 for Pb and Cu (Fig. 4).

Water circulation (outflow) is the dominant contaminant
removal pathway from segments 1 to 7 in the northern and
central basin (22–79% for OCDD/F and PCB-180; 56–98% for Cu
and Pb, respectively). In contrast, removal from the southern
basin segments (9, 10) was dominated by burial (12–70% removal
for all contaminants) further limiting transfer from the central
lagoon to the far southern lagoon through segment 10 and to the
Adriatic Sea (Fig. 4) under this ‘‘no wind’’ scenario.

Model results suggest that the fate of PCB-180 and OCDD/F in
the northern and central basins could be influenced by in-
segment loss via degradation and volatilisation (the latter was
only appreciable for PCB-180) (Fig. 4). Since the degradation half
lives used (suggested for Baltic Sea by Sinkkonen and Paasivirta,
2000) were lengthy and highly uncertain, we conducted a
sensitivity analysis. In response to doubling sediment half lives
of OCDD/F and PCB-180, the contribution to total removal by
degradation decreased by 11–92%, depending on the contami-
nant, indicating that the proportion of total loss due to these
processes can be very sensitive to degradation rates, which are
probably overestimated. In particular, OCDF was the most
sensitive to half life adjustments, so we should use caution when
assessing this loss process. Alternatively, volatilisation is tem-
perature sensitive and so we ran the model at different
temperatures. Volatilisation of PCB-180 increased from 3 to 9%
of total removal for average and summer conditions of 13 and
22 1C, respectively.

Despite the dominance of export as a sediment removal
pathway within the northern and central lagoon, total export of
contaminants to the Adriatic Sea through the Lido (segment 3),
Malamocco (segment 7) and Chioggia (segment 10) inlets was
minimal under the ‘‘no wind’’ scenario. Less than 19% of total Pb
and Cu loadings and less than 2% of total PCB-180 and OCDD/F
loadings were exported from the Venice Lagoon to the Adriatic
Sea (Fig. 4). Minimal export was expected given that Chioggia
inlet, which has the largest net export of water, is farthest from
the large contaminant loadings in the central basin. OCDD/F, PCB-
180 export estimates were 0.3, 0.2 and 4.7 g y�1, respectively,
while Cu and Pb were estimated at 2.2 and 2.1 t y�1, respectively.

Our estimates of annual export rates to the Adriatic Sea,
however, likely underestimated actual losses because episodic
flooding events in the lagoon were not included in our model
parameterization. In addition, circulation patterns of Solidoro
et al. (2004a) used in this study, identified net outflow of water in
the Lido and Chioggia inlets while net inflow occurred through the
Malamocco inlet. However, recent measurements in 2002 and
2003, suggest that net outflow also occurs in the Malamocco inlet
(Gacic et al., 2005).

Ultimately, we found that although substantial sediment-
water exchange occurs, net contaminant loss from the Venice
Lagoon for Pb and Cu was through burial, while for PCB-180 and
OCDD/F removal was dominated by degradation within the 20 cm
lower sediment layer followed by burial, resulting in a high
persistence of contaminants in the Lagoon. Pb and Cu could
remain in the water and sediment (0–20 cm) of the Lagoon for
approximately 300 and 270 y, respectively. OCDD/F and PCB-180
residence times were 388, 61 and 123 y, respectively. These long
residence times are attributable to the storage within the lower
sediment layer (3–20 cm) which ranged from 44 to 168 y.
4. Conclusions

Results from a multi-segment fugacity/aquivalence-based
model of the Venice Lagoon indicated that the fate of OCDD/F,
PCB-180, Pb and Cu in the lagoon is governed by extensive
sediment-water exchange of particulate chemical. Simulta-
neously, contaminants in the water column, most of which are
in the particulate phase, circulate throughout the lagoon by
advective transport in the water column.

In-place pollution from contaminated sediments located near
the industrial area, current industrial discharges, and tributary
loadings were identified as the main sources of contaminants to
the Lagoon, with negligible contribution from the atmosphere.
However, these results are confounded by uncertainty in the
fraction of industrial loadings sequestered in the industrial canals
and unmeasured loadings from, for example, the City of Venice,
boating and shipping.

Source apportionment and contaminant fate analyses sug-
gested that contaminant loadings originating in the central basin
circulate amongst all the segments in the northern and central
basins but do not reach the far southern basin where, as a
consequence, loadings mostly originate from local tributaries.
Only a small fraction of contaminant from the dominant loading
sources in the central basin reach the Chioggia inlet, through
which most water export to the Adriatic Sea occurs, limiting
seaward transfer and trapping most of the contaminants in the
sediment of the Lagoon under a ‘‘no wind’’ scenario.
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