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Abstract. Richardson extrapolation (RE) is a commonly used technique in financial ap-
plications for accelerating the convergence of numerical methods. Particularly in option
pricing, it is possible to refine the results of several approaches by applying RE, in order to
avoid the difficulties of employing slowly converging schemes. But the effectiveness of such
a technique is fully achieved when its repeated version (RRE) is applied. Nevertheless, its
application in financial literature is pretty rare. This is probably due to the necessity to
pay special attention to the numerical aspects of its implementation, such as the choice of
both the sequence of the stepsizes and the order of the method. In this contribution, we
consider several numerical schemes for the valuation of American options and investigate
the possibility of an appropriate application of RRE. As a result, we find that, in the ana-
lyzed approaches in which the convergence is monotonic, RRE can be used as an effective
tool for improving significantly the accuracy.
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1 Introduction

In finance one has frequently to deal with approximate results that are obtained by iterative
methods or computational procedures depending on some parameter (e.g. the time-step).
Often the convergence of numerical schemes is slow and this may be a serious problem in
many practical situations. For this reason, convergence acceleration techniques, such as
Richardson extrapolation, have been studied and applied in the literature.

In this contribution, we focus on repeated Richardson extrapolation (hereafter RRE),
which has not been well exploited in financial applications, probably due to numerical
techniques required. In fact, one has to pay special attention to the numerical aspects of
its implementation, such as the choice of both the sequence of the stepsizes and the order
of the method.

Although the RRE technique is generally applicable, in order to illustrate how it works,
we will focus on valuing a standard American put option. We consider several numerical
schemes for the valuation problem and investigate the possibility of an appropriate appli-
cation of RRE. As a result, when the convergence of the method is monotonic, RRE can be
used as an effective tool for improving significantly the accuracy.

In particular, we apply RRE to the randomization approach proposed by Carr (1998),
the binomial approach of Cox et al. (1979), the Black-Scholes-binomial method (BBS) of
Broadie and Detemple (1996), and the flexible binomial method proposed by Tian (1999).
The accuracy of the randomization method is improved when RRE is applied by choosing
a particular sequence of stepsizes. As well known, it is not convenient to use Richardson
extrapolation (RE) in the binomial model: this is due to the non-uniform convergence of
the method1. Numerical results highlight that RE and RRE are not useful in the classical
binomial approach. RE has been successfully applied by Broadie and Detemple (1996) in
their hybrid binomial-Black-Scholes model, but in our numerical experiments carried out
RRE cannot be efficiently applied to the BBS method. When implemented within the
flexible binomial setting introduced by Tian (1999), RRE based on Romberg sequence of
stepsizes gives very accurate and fairly robust results, because of the smoother nature of
the convergence of the method.

An outline of the paper is the following. In section 2 we briefly review the financial
literature on the Richardson extrapolation technique applied to option pricing problems.
Subsection 2.1 explains the RE and RRE techniques and introduces the choice of different
stepsize sequences. A wide experimental analysis is carried out in order to test the method;
the main results are presented and discussed in section 3. We will provide some insights on
how RRE can effectively be used in practice. Section 4 presents some concluding remarks.

1We refer to Heston and Zhou (2000) for a discussion on the rate of convergence of lattice methods. Here
non-uniform convergence is understood in the sense that the solution in the binomial setting has not the
same rate of convergence at all nodes of the tree.

2



2 Richardson extrapolation and its applications in finance

Richardson extrapolation has been applied to accelerate valuation schemes for American
options and exotic options. Geske and Johnson (1984) first applied Richardson extrapolation
in a financial context to speed up and simplify their compound option valuation model. They
obtain a more accurate computational formula for the price of an American put option using
the values of Bermuda options. Geske and Johnson approach was subsequently developed
and improved by Bunch and Johnson (1992), and Ho et al. (1997). More recently, Chang et

al. (2002) proposed a modified Geske-Johnson formula based on the repeated Richardson
extrapolation.

Richardson extrapolation techniques were also employed to enhance efficiency of lattice
methods (Breen, 1991). It is common opinion that it is not convenient to extrapolate on the
number of time steps in the binomial model due to the oscillatory nature of the convergence
(Omberg, 1987). Broadie and Detemple (1996) successfully use Richardson extrapolation
to accelerate a hybrid of the binomial and the Black-Scholes models. Tian (1999) and
Heston and Zhou (2000) also apply Richardson extrapolation to binomial and multinomial
approaches.

Carr (1998) proposes a randomization approach for the valuation of the American put
option and uses Richardson extrapolation to obtain accurate estimates of both the price and
the exercise boundary of an American put option. Leisen (1999) shows that randomizing the
length of the time steps in the binomial model allows the successful use of extrapolation.
Huang et al. (1996) and Ju (1998) use extrapolation methods to accelerate the integral
representation of the early exercise premium.

2.1 Richardson extrapolation techniques

The very natural idea of extrapolation can be summarized as follows (see Deuflhard, 1983).
Consider the problem of calculating a quantity of interest for which an analytical formula
is not provided. In the following, we restrict our attention to the problem of valuing an
American put option. Instead of the unknown solution P0, take a discrete approximation
P (h) depending on the stepsize2 h > 0, P (h) being a calculable function yielded by some
numerical scheme, such that

lim
h→0

P (h) = P (0) = P0 . (1)

All extrapolation schemes are based on the existence of an asymptotic expansion. Under
the assumption that P (h) is a sufficiently smooth function, we write

P (h) = α0 + α1h
p1 + α2h

p2 + · · · + αkh
pk + O(hpk+1) , (2)

with 0 < p1 < p2 < . . . , and unknown parameters α0, α1, . . . , where h ∈ [0, H] for some
H > 0. In particular, we have α0 = P0.

2h may be the period of time between two exercise dates of the American option. Hence P (0) is the limit
of the value of a Bermudan option as h goes to zero.
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Compute the function P (h) over a certain basic step H > 0 a number of times with
successively smaller stepsize hi, with

h1 > h2 > . . . > 0 .

In such a way, we obtain a sequence of approximations

P (h1), P (h2), . . .

for a given sequence of stepsizes.
We can construct extrapolation schemes of arbitrary order k by considering the following

procedure3:

1. define Ti,1 = P (hi), for i = 1, 2, . . . ;

2. for i ≥ 2 and j = 2, 3, . . . , i, compute

Ti,j = Ti,j−1 +
Ti,j−1 − Ti−1,j−1

hi−j+1

hi

− 1

. (3)

Recursion (3) is based on polynomial interpolation and an asymptotic h-expansion. We can
establish the following extrapolation tableau (stopped at k-th order):

T1,1

T2,1 T2,2

T3,1 T3,2 T3,3

.

.

.

.

.

.

.

.

.

.

.

.

Tk,1 Tk,2 Tk,3 . . . Tk,k

The sequence {P (hi)} is taken as a first column in the extrapolation tableau. Each quan-
tity Ti,j is computed in terms of two successive approximations. The two point Richardson
extrapolation technique can be repeated, giving rise to a numerical scheme which is ex-
tremely fast and can dramatically improve accuracy4. The efficiency of the method relies
on the fact that the amount of computation required essentially corresponds to the number
of function evaluations.

3Such a procedure is also known as Aitken-Neville algorithm and it is one of the extrapolation schemes
which are commonly used.

4Each entry of the tableau is an approximation for P0; obviously, more precision is achieved on the
diagonal.
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The idea behind (3) is to provide two mechanisms for enhancing the accuracy: by
increasing i one obtains a reduction in the stepsize parameter, while taking j large implies
more accurate approximations. Both mechanisms work simultaneously, which indicates that
the quantities Tk,k are those of most interest. This provides us with the possibility of order
control.

The accuracy and efficiency of the method is strictly connected with the choice of the
sequence of stepsizes. Define hi in terms of the basic stepsize H, such that hi = H/ni

(i = 1, 2, . . .). Any stepsize sequence is characterized by the associated sequence of integers
{ni}. In numerical experiments, we considered several sequences of the stepsize:

• harmonic sequence: {1, 2, 3, 4, 5, 6, 7, 8, . . . , n , . . . };

• double harmonic (Deuflhard) sequence: {2, 4, 6, 8, 10, 12, 14, 16, . . . , 2n , . . . };

• Burlisch sequence5: {2, 4, 6, 8, 12, 16, 24, 32, . . . , 2nk−2 , . . . };

• Romberg sequence: {2, 4, 8, 16, 32, 64, 128, . . . , 2nk−1 , . . . }.

All these sequences allow for convergence of the method; this is not always the case
(see Burlisch, 1964). The first and the fourth sequence are of common use in the financial
literature related to extrapolation combined with option pricing models6; though the other
sequences are well known in numerical analysis, it seems their use has not been investigated
in finance.

3 Efficient implementation of RRE to option pricing:

analysis of some numerical experiments

Richardson extrapolation is a well understood technique, which is often applied in finance to
enhance precision of results provided by discrete models. Nevertheless, repeated Richardson
extrapolation has received little attention in the financial literature. In this section, we
investigate how to implement efficiently the RRE to option pricing. In order to explain how
such a technique applies, we focus on the problem of valuating an American put option.

In particular, we apply the method to valuation models based on different approaches:
the randomization technique, the classical lattice method and some extensions of such an
approach. The following subsections report the main results of the numerical experiments
carried out and provide some insights about the convenient choice of the stepsize sequence
when applying RRE within the different valuation frameworks taken into consideration.

3.1 Carr’s randomization approach

The model proposed by Carr (1998) for the valuation of American put options is based on
a particular technique, called randomization. This technique, also known as Canadization,

5See Burlisch (1964). Note that some authors report the following sequence: {2, 3, 4, 6, 8, 12, . . .}.
6Usually two or three point Richardson extrapolation is applied.
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has been recently applied and generalized by Kyprianou and Pistorius (2003) and Bouchard
et al. (2005).

According to Carr’s definition, randomization is a three-step procedure for solving a
valuation problem, which can be summarized as follows: let the value of one of the model
parameters be “randomized” by assuming a plausible probability distribution for it; calcu-
late the expected value of the dependent variable (which is unknown in the fixed parameter
model) in this random parameter setting; let the variance of the distribution governing the
parameter approach zero, holding the mean of the distribution constant at the fixed para-
meter value. For example, if we consider standard options, we could randomize the initial
stock price, the strike price, the initial time, or the maturity date. Carr randomizes the
maturity date of an American put option and determines the solution for its value and the
optimal exercise boundary.

Let the maturity of the randomized American put de determined by the waiting time to a
certain number of jumps of a standard Poisson process, which is assumed to be independent
of the underlying stock price process and uncorrelated with any market factor. The value of
the random maturity American option approximates the value of its fixed maturity version.

When the randomized American option is supposed to mature at the first arrival of a
Poisson process with intensity λ = 1/T , the maturity T̃ is exponentially distributed with
expectation T .

Due to the memoryless property of the exponential distribution, it turns out that the
early exercise boundary is independent of time and the option value suffers no time decay.
As a result, the search for a time-dependent boundary is reduced to the search for a single
critical stock price. The fair value of a randomized American put with an exponential
distributed maturity is the solution of the following problem

P0 = sup
H

ES [e−rtH (X − StH )+] , (4)

for S > H∗, where H∗ is the unknown optimal exercise boundary, and tH is the first passage
time through H. The expectation in equation (4) can be evaluated in closed form, and the
result can be maximized over constant barriers.

The assumption of an exponentially distributed maturity leads to simple approxima-
tions, which entail too much errors to be used for practical purposes. To obtain more
accurate approximations, let assume that the time to maturity is subdivided into n inde-
pendent exponential subperiods. Therefore the randomized American option matures at
the n-th jump of a standard Poisson process (with intensity λ = n/T ). As a result, the
maturity T̃ is gamma distributed, with expectation T and variance T 2/n.

In Carr’s n-step setting the randomized American put value and the initial critical stock
price are determined by a dynamic programming algorithm. The resulting expression for
the randomized option value is a triple sum, which does not require the evaluation of special
functions. As the number of subperiods becomes large, the variance of the random maturity
approaches zero. So increasing the number of periods improves the accuracy of the solution
(of course at the expense of a greater computational cost).

Richardson extrapolation can be used to improve the method. Let P
(n)
0 denote the

randomized option price at time t = 0 determined assuming n random subperiods. The
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N -point Richardson extrapolation7 is the following weighted average of N approximate
values

P̂N
0 =

N
∑

n=1

(−1)N−nnN

n!(N − n)!
P

(n)
0 . (5)

By using Richardson extrapolation, accurate option values can be obtained just with
a few random time steps. The method proved robust and quite accurate, moreover the
convergence of the results is monotonic, allowing us to consider extrapolations of higher
order.

Carr applies extrapolation as defined by (5), which is based on the harmonic sequence.
We compared numerical results obtained with different sequences of the steps, and assessed
the method on a large set of option valuation problems, considering different values of
moneyness, maturity, volatility and risk-free interest rate.

In order to test the goodness of the employment of the RRE within Carr’s randomization
framework, we make a comparison between the price obtained for an American put option in
the 25 000-steps binomial model and the extrapolated prices in the random maturity model.
The simulation analysis takes into consideration 3 500 randomly generated option valuation
problems. The parameter ranges are: r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], X/S0 ∈ [0.7, 1.3] (r, σ
and X/S0 are sampled from a uniform distribution on a given interval), with S0 = 100 and
T = 1. More in details, the moneyness interval has been partitioned into seven subsets:
X ∈ [70, 80], [80, 90], [90, 100], {100}, [100, 110], [110, 120], [120, 130], and we have randomly
generated 500 instances from each subset.

We have considered different sequences of the stepsize hi when applying repeated Richard-
son extrapolation. The results of the simulation experiments carried out for the option price
can be summarized by computing the mean absolute error (MAE) and the root mean square
error (RMSE)8 of the simulation results with respect to the binomial price as moneyness
varies.

The outcomes of the simulation experiments are synthesized in tables from 1 to 4; we
discuss only the out-of-the-money cases, being the results for in-the-money instances almost
the same. Both the MAE and the RMSE have been computed, but only the RMSE’s
are reported here in detail (as they give the same information of MAE’s). In the second,
fourth and sixth column of tables 1, 2 and 3 we show the pricing errors on the diagonal of

7When we consider the harmonic sequence and recurrence (3), we can directly compute the quantities
Tk,k using the formula

Tk,k =
kX

i=1

(−1)k−i ik

(k − i)! i !
P (hi) ,

which corresponds to a k-point Richardson extrapolation.
8The MAE and the RMSE are computed as follows:

MAE =
1

N

NX
n=1

| en | , RMSE =

vuut 1

N

NX
n=1

e2
n ,

where en = P̂n−Pn

Pn

are the relative errors, being Pn and P̂n the “true” and the estimated option values,
respectively. We do not considers option prices lower than 0.05 when calculating errors.
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the extrapolation tableau, which have been computed considering the harmonic, Deuflhard,
Burlisch and Romberg sequences, respectively.

Of course, one has not to compare the errors line by line in the tables. Such errors are
obtained by applying RRE based on different sequences of the number of random steps.
Each sequence is characterized in the implementation by a specific computational amount
(see Burlisch, 1964).

The harmonic sequence has been stopped at n = 10 (in practice we can apply RRE
based on the harmonic sequence up to step 15, and in some cases also up to step 20). We
stopped Romberg sequence at n = 64 (in same cases at n = 128), because for higher values
of the number of steps, the method does not achieve higher accuracy or round-off errors
arise (or, simply, the method is to slow). Hence, one has to make comparisons in terms of
accuracy the same remaining the computational effort required.

For example, in tables 1–3 we can compare RRE based on Deuflhard sequence with
n = 16 and n = 18 with RRE based on Burlisch sequence with n = 24 and n = 32. The
resulting errors are of the same order, and it appears that one method does not overperform
the other one, but both are preferable to the extrapolation based on the harmonic sequence.
Moreover, with Burlisch sequence we can achieve higher accuracy if RE is repeated once
or twice more. Note also that RMSE’s of order 10−4 or lower are not obtainable with the
other sequences (we are still considering the case X ∈ [70, 80]).

In order to compare the errors relative to Burlisch sequence with those yielded by apply-
ing Romberg sequence, we have to consider the case n = 48 for the first one and n = 64 for
the latter. Burlisch sequence seems preferable in terms of accuracy and speed with respect
to the other sequences, and this finding is supported by the results obtained for every level
of moneyness (not only, but the method perform better the higher the moneyness). For
instance, in the case X ∈ [120, 130] (which is not reported in tables), the RMSE is of
order 1.6 · 10−5 for the Burlisch sequence with n = 48, while it is 2.5 · 10−5 for the Romberg
sequence with n = 64.

It is also interesting to analyze the error reduction on the diagonal of the extrapolation
tableau9. Table 4 shows the percent variations of the MAE for all the four sequences. As
we expected, the advantage in repeating RE is more evident when we apply Romberg and
Burlisch sequences.

3.2 Richardson extrapolation applied in a binomial framework

As an interesting exercise, we investigate the possibility of applying RRE both to the CRR
binomial and the BBS approaches. It is well known that the oscillatory nature of the
convergence in the CRR model makes infeasible RE, a fortiori RRE should not be used.
We will see that, the technique is useful only in the at-the-money case.

We have carried out a wide simulation analysis, which takes into consideration 3 500 ran-
domly generated option valuation problems, comparing the price obtained for an American
put option in the 25 000-steps binomial model and the extrapolated prices. The parameter

9Based on the error reduction along the diagonal, a stopping rule for the RRE may be defined, hence
allowing for order control.
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ranges are: r ∈ [0.01, 0.12], δ ∈ [0.0, 0.12] (where δ is the continuous dividend yield), volatil-
ity σ ∈ [0.1, 0.5], X/S0 ∈ [0.7, 1.3], with S0 = 100 and T = 1. The moneyness interval has
been partitioned into 7 subsets: X ∈ [70, 80], [80, 90], [90, 100], {100}, [100, 110], [110, 120],
[120, 130], and we have randomly generated 500 instances from each subset. We have con-
sidered different sequences of the stepsize hi and the basic step: in particular, H = T/100
and H = T/200.

As already observed, RE and RRE work only for at-the-money options, hence we discuss
this special issue. Nevertheless, also in this case, the choice of the stepsize sequence is crucial.
In table 5, we show the pricing errors relative to at-the-money American put options: each
entry in the second, fourth, sixth and eight column of table 5 is the MAE of the price
estimates obtained by applying repeatedly RE. Only the errors along the diagonal of the
extrapolation tableau are reported. The results refer to a basic step T/200; we applied the
harmonic, Deuflhard, Burlisch and Romberg sequence. Observe that only RRE based on
Romberg sequence yields very accurate and fairly robust results (the method continues to
gain precision along the diagonal), while with all other sequences just two-point RE can be
applied.

It is interesting to investigate what happens when we consider out-of-the-money Amer-
ican put options. It turns out the RE and RRE no longer work, even when consider-
ing Romberg stepsize sequence. Table 6 shows the extrapolation tableau for the case
H = T/200. Note that the pricing errors of the extrapolation are higher than those of
the non-extrapolated values (compare the first column of the tableau with the errors re-
ported on the diagonal). It is clear from this discussion that RE should not be applied
within the CRR model, except in just one case which is of limited interest.

We briefly discuss also the feasibility of RRE within the hybrid binomial-Black-Scholes
model proposed by Broadie and Detemple (1996). The convergence of the BBS method is
smoother compared to the binomial method, so that one may wonder if RRE could be used.
Two-point RE has been applied successfully to the BBS method, but still RRE does not
perform well. In our numerical experiments, we find that the extrapolated values along the
diagonal of the tableau entail higher errors than the approximate values below the diagonal
and even with respect to the non-extrapolated values. Hence, RRE should not be applied
within the BBS model. Our results are in accordance with the findings of Chang et al.

(2002).

3.3 Tian’s flexible binomial model

Tian (1999) introduces in the CRR binomial model a so called “tilt factor” λ, with the
effect of modifying the shape and span of the binomial lattice. In this flexible binomial
(FB) model, the up- and down- factors are defined as follows:

u = eσ
√

∆t+λσ2∆t d = e−σ
√

∆t+λσ2∆t , (6)

where λ is an arbitrary constant that can be positive, zero, or negative. The parameter
σ > 0 is the volatility, ∆t = T/n (with n number of steps) is the timestep, and T is the
option maturity.
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λ = 0 λ > 0 λ < 0

Figure 1: The flexible binomial lattice for different values of the tilt parameter λ.

Of course, when λ = 0 one recovers the CRR model with u0 = eσ
√

∆t and d0 = u−1
0 . Tian

shows that for every choice of the tilt parameter (provided that λ is finite and bounded)
the flexible binomial model converges to the continuous-time counterpart.

Figure 1 shows the flexible binomial lattice for λ = 0, λ > 0 and λ < 0. A positive tilt
parameter causes an upward transformation of the tree, while the effect of a negative λ is
a downward shift.

The introduction of the tilt parameter in the binomial model allows for convenient
adjustment to the tree in order to position nodes relative to the strike price (or the barrier)
of the option. For the particular choice

λ =
2 (η − j0)

√
∆t

σT
, (7)

where

j0 =

[

log(X/S0) − n log(d0)

log(u0/d0)

]

, (8)

u0 = eσ
√

∆t, d0 = u−1
0 , and [ · ] denotes the closest integer to its argument, the strike is always

located on node (n, j0) at the option maturity. As a result, convergence of the FB model
is smoother than in the CRR model, thus allowing the use of Richardson extrapolation.

Tian applies a two-point RE which considers prices obtained with a FB model with n/2
and n steps. We will see that RRE can be successfully applied. To this aim, it is worth
noting that, not all the stepsize sequences perform well in the same manner, but Romberg
sequence yielded very accurate and robust results.

In the numerical experiments, we compare the American put prices obtained in the
n-steps FB model when RRE based on Romberg sequence is applied, and those in the
50 000-steps FB model. We randomly generated 3 500 option valuation problems. The
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parameter ranges are: r ∈ [0.01, 0.12], δ ∈ [0.0, 0.12] (where δ is the continuous dividend
yield10), σ ∈ [0.1, 0.5], X/S0 ∈ [0.7, 1.3], with S0 = 100 and T = 1. As in the previous
trials, the moneyness interval has been partitioned into 7 subsets: X ∈ [70, 80], [80, 90],
[90, 100], {100}, [100, 110], [110, 120], [120, 130], and we have generated 500 instances from
each subset. We have considered different sequences of the stepsize hi, and basic step
H = T/100, but we reported only the results for the Romberg sequence (which in the
numerical trials overperformed all the other sequences).

The results of the simulation experiments carried out are synthesized in tables 7 and 8.
Both the MAE and the RMSE have been computed but are not reported here in detail.
Only the errors along the diagonal of the extrapolation tableau are shown (in the second,
fourth and sixth column), while in columns three, five and seven the percent variations
of the MAE are shown. The results refer to a basic step T/100. Differently than in the
CRR model, RRE performs well for all option moneyness, and not only in the at-the-money
case. The pricing errors decrease monotonically as we consider a larger number of steps
and higher order of extrapolation.

4 Concluding remarks

Richardson extrapolation and repeated RE are useful techniques in order to enhance ac-
curacy of approximate solutions yielded by numerical schemes in problems that arise in
finance. Nevertheless, such techniques should no longer be applied when convergence is
non-uniform. Provided smooth convergence, RRE can improve accuracy and efficiency of
the results. We have also found that the choices of the basic step and the stepsize sequence
are critical.

In particular, we implemented the RRE within Carr’s randomization approach with a
different choice of the stepsizes sequence, obtaining more accurate results with the same
computational amount. Numerical experiments carried out have shown that it is not conve-
nient to apply RRE to the CRR and the BBS methods, due to the non-monotonic behavior
of the pricing errors, while in the flexible binomial approach, where a simple two-point RE
has been used sofar, we employed successfully the RRE.

Finally, it seems interesting to investigate the possibility of applying repeated Richardson
extrapolation to other models, and in particular to Monte Carlo simulation methods for
valuing American options. It is worth noting that one should be careful when employing
extrapolation techniques combined with these latter approaches, because of the difficulty of
determining the accuracy of the approximations, which sometimes are also biased. To this
regard, ad hoc smoothing procedures and discrete monitoring corrections may be required.
This interesting task is left for future research.

10Note that Tian consider only the case δ = 0.
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Table 1: RMS relative errors of randomized American put option prices when Richardson ex-
trapolation is applied repeatedly in Carr’s randomization approach (S = 100, X ∈ [70, 80],
r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni RMSE ni RMSE ni RMSE ni RMSE

1 0.14220576 2 0.08976625 2 0.08976625 2 0.08976625
2 0.03762973 4 0.01773814 4 0.01773814 4 0.01773814
3 0.01391092 6 0.00549127 6 0.00549127 8 0.00466951
4 0.00590460 8 0.00222155 8 0.00222155 16 0.00147634
5 0.00285097 10 0.00121348 12 0.00114269 32 0.00060459
6 0.00170553 12 0.00078884 16 0.00069349 64 0.00026906
7 0.00118567 14 0.00055291 24 0.00043189
8 0.00087775 16 0.00040649 32 0.00028092
9 0.00067173 18 0.00031016 48 0.00018259
10 0.00052799 20 0.00024374 64 0.00012264

Table 2: RMS relative errors of randomized American put option prices when Richardson ex-
trapolation is applied repeatedly in Carr’s randomization approach (S = 100, X ∈ [80, 90],
r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni RMSE ni RMSE ni RMSE ni RMSE

1 0.17828577 2 0.10833117 2 0.10833117 2 0.10833117
2 0.03911643 4 0.01644720 4 0.01644720 4 0.01644720
3 0.01093506 6 0.00394575 6 0.00394575 8 0.00335649
4 0.00395702 8 0.00160132 8 0.00160132 16 0.00108761
5 0.00200959 10 0.00091801 12 0.00086479 32 0.00045836
6 0.00129208 12 0.00059881 16 0.00052616 64 0.00020470
7 0.00090593 14 0.00041895 24 0.00032749
8 0.00066608 16 0.00030823 32 0.00021353
9 0.00050842 18 0.00023556 48 0.00013943
10 0.00039982 20 0.00018548 64 0.00009427
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Table 3: RMS relative errors of randomized American put option prices when Richardson ex-
trapolation is applied repeatedly in Carr’s randomization approach (S = 100, X ∈ [90, 100],
r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni RMSE ni RMSE ni RMSE ni RMSE

1 0.17707630 2 0.10112571 2 0.10112571 2 0.10112571
2 0.02601866 4 0.00979537 4 0.00979537 4 0.00979537
3 0.00525559 6 0.00217374 6 0.00217374 8 0.00188378
4 0.00223239 8 0.00101962 8 0.00101962 16 0.00069572
5 0.00130805 10 0.00059122 12 0.00055669 32 0.00029425
6 0.00083735 12 0.00038419 16 0.00033753 64 0.00013142
7 0.00058107 14 0.00026869 24 0.00021001
8 0.00042712 16 0.00019764 32 0.00013698
9 0.00032618 18 0.00015104 48 0.00008966
10 0.00025645 20 0.00011900 64 0.00006093

Table 4: Percent variation of mean absolute relative errors along the diagonal of the extrap-
olation tableau in Carr’s randomization approach (S = 100, X ∈ [90, 100], r ∈ [0.01, 0.12],
σ ∈ [0.1, 0.5], T = 1).

ni ∆%MAE ni ∆%MAE ni ∆%MAE ni ∆%MAE

1 2 2 2
2 -86.14 4 -90.92 4 -90.92 4 -90.92
3 -80.84 6 -77.51 6 -77.51 8 -80.44
4 -54.72 8 -51.94 8 -51.94 16 -62.24
5 -40.36 10 -41.88 12 -45.28 32 -57.71
6 -35.92 12 -35.04 16 -39.41 64 -55.49
7 -30.57 14 -30.14 24 -37.89
8 -26.49 16 -26.55 32 -34.92
9 -23.69 18 -23.69 48 -34.75
10 -21.45 20 -21.33 64 -32.34
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Table 5: Mean absolute relative errors of put option prices in the CCR framework when
Richardson extrapolation is applied repeatedly (S = 100, X = 100, r ∈ [0.01, 0.12], δ ∈
[0.01, 0.12], σ ∈ [0.1, 0.5], T = 1). The results refer to a basic step T/200 and the harmonic
(second column), Deuflhard (fourth column), Burlisch (sixth column) and Romberg (eighth
column) sequences.

ni MAE ni MAE ni MAE ni MAE

200 0.00085132 400 0.00042292 400 0.00042292 400 0.00042292
400 0.00002516 800 0.00001387 800 0.00001387 800 0.00001387
600 0.00002678 1200 0.00001477 1200 0.00001477 1600 0.00000984
800 0.00004084 1600 0.00002087 1600 0.00002087 3200 0.00000769

2400 0.00002000 6400 0.00000691

Table 6: Mean absolute relative errors of put option prices in the CCR framework when
Richardson extrapolation is applied repeatedly (S = 100, X ∈ [90, 100], r ∈ [0.01, 0.12],
δ ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1). Extrapolation tableau with Romberg stepsize
sequence and basic number of steps 200.

ni Ti1 Ti2 Ti3 Ti4 Ti5

400 0.00044412
800 0.00022241 0.00045825

1600 0.00011121 0.00022538 0.00041994
3200 0.00005540 0.00011510 0.00021350 0.00029184
6400 0.00002493 0.00005376 0.00010115 0.00014021 0.00016512
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Table 7: Mean absolute relative errors of put option prices in the flexible binomial
model when Richardson extrapolation is applied repeatedly (S = 100, X ∈ [70, 100],
r ∈ [0.01, 0.12], δ ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1). ∆% MAE is the percentage
of variation of the mean absolute errors along the diagonal of the extrapolation tableau.
Extrapolation is based on Romberg stepsize sequence and basic step T/100.

ni X ∈ [70, 80] ∆%MAE X ∈ [80, 90] ∆%MAE X ∈ [90, 100] ∆%MAE

200 0.00392174 0.00256274 0.00126017
400 0.00019418 -95.05 0.00010093 -96.06 0.00003225 -97.44
800 0.00012275 -36.79 0.00006944 -31.20 0.00001982 -38.53

1600 0.00006096 -50.34 0.00003443 -50.41 0.00001027 -48.19
3200 0.00002719 -55.40 0.00001634 -52.54 0.00000587 -42.83
6400 0.00001640 -39.68 0.00001080 -33.92 0.00000508 -13.50

Table 8: Mean absolute relative errors of put option prices in the flexible binomial
model when Richardson extrapolation is applied repeatedly (S = 100, X ∈ [100, 130],
r ∈ [0.01, 0.12], δ ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1). ∆% MAE is the percentage
of variation of the mean absolute errors along the diagonal of the extrapolation tableau.
Extrapolation is based on Romberg stepsize sequence and basic step T/100.

ni X ∈ [100, 110] ∆%MAE X ∈ [110, 120] ∆%MAE X ∈ [120, 130] ∆%MAE

200 0.00070133 0.00043071 0.00027674
400 0.00001673 -97.61 0.00001241 -97.12 0.00001194 -95.68
800 0.00000930 -44.42 0.00000799 -35.58 0.00000784 -34.33

1600 0.00000554 -40.42 0.00000500 -37.43 0.00000410 -47.76
3200 0.00000391 -29.45 0.00000294 -41.30 0.00000192 -53.05
6400 0.00000345 -11.68 0.00000221 -24.77 0.00000137 -28.59
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