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Abstract. In this paper we conjugate the operative usability of the net present value
with the capability of the fuzzy and the interval approaches to manage uncertainty. Our
fuzzy interval net present value can be interpreted, besides the usual present value of an
investment project, as the present value of a contract in which the buyer lets the counterpart
the possibility to release goods/services for money amounts that can vary, at time instants
that can also vary. The buyer can reduce the widths of these variations by paying a cost.
So, it is “natural” to represent the good/service money amounts and the time instants
by means of triangular fuzzy numbers, and the cost of the buyer as a strictly-increasing
function of the level α ∈ [0, 1] associated to the generic cut of the fuzzy interval net present
value. As usual, the buyer is characterized by an utility function, depending on α and
on the cost, that he/she has to maximize. As far the interest rates regard, we assume
that the economic operators are only able to specify a variability range for each of the
considered period interest rate. So, we represent the interest rates by means of interval
numbers. Besides proposing our model, we formulate and solve the programming problems
which have to be coped with to determine the extremals of the cut of the fuzzy interval net
present value, and we deal with some questions related to the utility function of the buyer.
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1 Introduction

The correct evaluation of investment projects is an ever-present problem in everyday firm life

and in several economic research fields. In order to deal with this problem, many approaches

and tools have been developed, from the classical deterministic net present value (NPV)1

and internal interest rate (IIR) to the refined stochastic real options.

Of course, a central question concerns the capability of the considered approaches/tools

to manage the ignorance of the future. Whereas the classical models simply do not consider

this aspect (with conceivable consequences), on the other hand the majority of the stochastic

approaches face it in a too much technical way for real-life applications. Because of that,

several academic and professional researches presented and present intermediate tools.

In this paper we propose a model of this latter kind, in which we conjugate the operative

usability of the NPV with the capability of the fuzzy and the interval approaches to manage

uncertainty. It is important to notice that we have chosen to not deal with uncertainty by

means of probability and stochastic tools because, coherently with the real life, these tools

are usually beyond the knowledge and the computational ability of standard economic

operators.

The literature concerning this topic is rich enough. Some of the first models were

presented in [2], in which fuzzy cash amounts, a fuzzy interest rate, and a fuzzily defined

number of time periods are used. These models are mainly investigated from a theoretical

point of view. More operative approaches are proposed in [3] and [4]. In the former, a

triangular fuzzy NPV is used for fuzzifying the Myers-Cohn model of property-liability

insurance pricing. In the latter, an NPV based on triangular fuzzy cash amounts and

triangular fuzzy interest rates is used for specifying dynamic replacement model. In [5], a

fuzzy NPV-based procedure is considered as an effective tool for the selection of aviation

technologies. In [1], a triangular fuzzy NPV is introduced as intermediate step for the

determination of the related fuzzy IRR. In [7], trapezoidal fuzzy cash amounts, crisp interest

1A commonly used formulation of the NPV is
Pn

j=0 Sj

.Qj
k=0 (1 + ik) , where n is the number of (equal

length) time periods, Sj is the cash amount at time instant j, and ik is the interest rate during the time
period (k − 1, k].
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rates, and probabilistic methods are jointly used for developing a fuzzy-probabilistic NPV

algorithm for the evaluation of investment projects.

Of course, this review does not intend to be exhaustive but only exemplificative.

With respect to the cited contributions, and the referred ones therein, our model differs

from a technical standpoint, from the economic interpretability, and from its usability.

In short, the NPV we detail in section 2 can be interpreted, besides the usual present

value of a generic investment project, as the present value of a contract in which the buyer

lets the counterpart the possibility to release goods/services for money amounts that can

vary in prefixed intervals, at time instants that can also vary in prefixed intervals. In her/his

turn, the buyer can reduce the widths of both these kinds of intervals by paying a proper

cost. Given this interpretation of the NPV, also coherently with the cited contributions and

with several other fuzzy modelings, it is “natural” enough to represent the good/service

money amounts and the time instants by means of triangular fuzzy numbers, and the cost

of the buyer as a strictly-increasing function of the level α ∈ [0, 1] associated to the generic

cut of the fuzzy interval NPV.

Of course, the buyer – as any economic operator – is characterized by an utility function

that, in our case, depends on the features of the NPV of the contract and negatively depends

on the cost. So, recalling that all these quantities depend on α, the buyer has to determine

the optimal value of such an α which maximizes her/his utility.

As far the interest rates regard, recalling that the economic operators involved in the

investment project/contract are ignorant of the future, we reasonably assume that they are

only able to specify a suitable variability range for each of the considered period interest

rate. This is why we represent the interest rates by means of interval numbers. Moreover,

it is to notice that, to the best of our knowledge, ours is the first model in which the

time instants in which one releases the cash amounts/goods/services are fuzzified, and the

interest rates are represented in terms of interval numbers.

The remainder of the paper is organized as follows. In the next session we propose our

Fuzzy Interval Net Present Value (FINe) model and some of its main features. In section 3
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we formulate and solve the nonlinear optimization programming problems which have to be

coped with in order to determine the extremals of the generic cut of the FINe. In section

4 we briefly deal with some questions related to the utility function of the buyer. Finally,

in section 5 we list some open items.

2 The FINe model

Let we start by specifying the discrete-time frame associated to the considered investment

project/contract:

t0, t̃1, . . . , t̃j , . . . , t̃n,

where

t0 is the current time instant, which we represent by a crisp number;

t̃1, . . ., t̃j , . . ., t̃n are the future time instants in which the cash amounts/goods/services

are released, that we represent by triangular fuzzy numbers;2 as known, the membership

functions of this typology of numbers are

µetj (t) =





0 if t < tj,1
(t− tj,1) /(tj,2 − tj,1) if tj,1 ≤ t < tj,2
(tj,3 − t) /(tj,3 − tj,2) if tj,2 ≤ t < tj,3
0 if t ≥ tj,3

, with j = 1, . . . , n,

in which tj,1, tj,2 and tj,3 are real numbers such that tj,1 ≤ tj,2 ≤ tj,3 (a commonly used

notation for this kind of numbers is t̃j = (tj,1, tj,2 , tj,3));

n is the number of time periods, which we represent by a crisp number.

In particular, we assume that, as in standard NPV models, the time instants in which

the cash amounts/goods/services are released constitute a non decreasing sequence with

respect to the deponent, that is we assume that

t0 ≤ t1,1 and tj,3 ≤ tj+1,1, with j = 1, . . . , n− 1. (1)

2Throughout the paper, we use the overwriting e· for indicating fuzzy numbers. Moreover, for notational
convenience, thereafter we represent the crisp number t0 in terms of the (degenerate) triangular fuzzy number
et0 = (t0, t0, t0).
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Let we continue by specifying the fuzzy investment project/contract:

Ã =
{(−S0, t̃0

)
,
(
S̃1, t̃1

)
, . . . ,

(
S̃j , t̃j

)
, . . . ,

(
S̃n, t̃n

)}
,

where

S0 > 0 is the current cash amount/good/service value, which we represent by a crisp

number;

S̃1, . . . S̃j , . . . , S̃n are the future positive cash amount/good/service values, which we repre-

sent by positive triangular fuzzy number.3

Finally, let we assume the following time period frame associated to the interest rate

structure:

(τ1, τ2] , (τ2, τ3] , . . . , (τj−1, τj ] , . . . , (τn, τn+1] , (2)

where

τ1 = t0, τ2 ∈ (t1,3, t2,1], . . ., τj ∈ (tj−1,3, tj,1],. . ., τn ∈ (tn−1,3, tn,1], τn+1 > tn,3 are the crisp

time instants in which the interest rates can change.4

It is important to notice that, by construction, such time instants constitute a strictly-

increasing sequence with respect to the deponent, that is that

τ1 < τ2 < . . . < τj < . . . < τn. (3)

Of course, it is possible to choose more articulated time period frames than the one

specified by (2) and (3). In case of such a choice, one should obtain a model which should

be more difficult to algebraically treat than ours, but that at the while should not give

significant improvements from the economic meaning standpoint. This is why we opt for

the proposed time period frame.

Given this notation, we formulate as follows our FINe model:
3A triangular fuzzy number ex = (x1, x2, x3) is defined positive if x1 > 0.
4It is to notice that, in general, this (crisp) discrete-time frame differs from the (fuzzy) one associated to

the investment project/contract.
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FINe
(
Ã

)
= −S0 +

n∑

j=1

S̃j

(
1 + îj

)−(etj−τj) j−1∏

k=1

(
1 + îk

)−(τk+1−τk)
, (4)

where

î1, . . ., îj , . . ., în are the current and the future positive interest rates, which we represent by

positive interval numbers;5 as known, the membership functions of this typology of numbers

are

µbij (i) =





0 if i < ij,1
1 if ij,1 ≤ i ≤ ij,2
0 if i > ij,2

, with j = 1, . . . , n,

in which ij,1 and ij,2 are real numbers such that ij,1 ≤ ij,2 (a commonly used notation for

this kind of numbers is îj = (ij,1, ij,2)).6

3 Determination of the α–cuts for the FINe model

Once the NPV of Ã is formulated in terms of fuzzy and interval numbers, we go on to the

determination of the shape of this number. In order to carry out that, we have to determine

the extremals of the α–cuts, with α ∈ [0, 1], of (4), that is the minimum and the maximum

of the sets:

X
FINe(eA),α

=
{

x : µ
FINe(eA)(x) ≥ α

}
,

that we respectively indicate by FINe
(
Ã

)
(α)L and FINe

(
Ã

)
(α)R.

In their turn, FINe
(
Ã

)
(α)L and FINe

(
Ã

)
(α)R depend on the values the arguments

of (4) take in their corresponding α–cuts. Therefore, in order to determine the extremals

of X
FINe(eA),α

we have to cope with the following nonlinear optimization programming

problems:
5Throughout the paper, we use the overwriting b· for indicating interval numbers.
6An interval number bx = (x1, x2) is defined positive if x1 > 0.
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min /max −S0 +
n∑

j=1

Sj (1 + ij)
−(tj−τj)

j−1∏

k=1

(1 + ik)
−(τk+1−τk)

S1,...,Sn,i1,...,in,t1,...,tn

s.t.





Sj,L(α) ≤ Sj ≤ Sj,R(α), with j = 1, . . . , n,
ij,L(α) ≤ ij ≤ ij,R(α), with j = 1, . . . , n,
tj,L(α) ≤ tj ≤ tj,R(α), with j = 1, . . . , n,

, (5)

where

Sj,L = Sj,1 +(Sj,2 − Sj,1) α is the minimum of the α–cut of the triangular fuzzy number S̃j ;

Sj,R = Sj,3 + (Sj,3 − Sj,2) α is the maximum of the α–cut of the triangular fuzzy number

S̃j ;

ij,L = ij,1 is the minimum of the α–cut of the interval number îj ;

ij,R = ij,2 is the maximum of the α–cut of the interval number îj ;

tj,L = tj,1 + (tj,2 − tj,1) α is the minimum of the α–cut of the triangular fuzzy number t̃j ;

tj,R = tj,3 + (tj,3 − tj,2) α is the maximum of the α–cut of the triangular fuzzy number t̃j .

It is important to notice that the minimum programming problem is related to the

determination of FINe
(
Ã

)
(α)L, and that the maximum programming problem is related

to the determination of FINe
(
Ã

)
(α)R.

After some calculations and some arrangements, the following partial derivatives of the

target function (TF) of (5) with respect to Sj , ij , and tj are obtained:

∂

∂Sj
TF = (1 + ij)

−(tj−τj)
j−1∏

k=1

(1 + ik)
−(τk+1−τk) , with j = 1, . . . , n;

∂

∂ij
TF = − (tj − τj) (1 + ij)−(tj−τj−1)Sj

j−1∏

k=1

(1 + ik)
−(τk+1−τk)−

− (τj+1 − τj) (1 + ij)
−(τj+1−τj−1)

n∑

k=j+1

Sk (1 + ik)
−(tk−τk) ·

·
k−1∏

l=1,l 6=j

(1 + il)
−(τl+1−τl), with j = 1, . . . , n;

∂

∂tj
TF = − (1 + ij)

−(tj−τj) ln (1 + ij) Sj

j−1∏

k=1

(1 + ik)
−(τk+1−τk), with j = 1, . . . , n.
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Given the positions (1), the results (3), and the positivity of the cash amount/good/ser-

vice values and of the interest rates, it is easy to verify that ∂
∂Sj

TF > 0 for all j, that
∂

∂ij
TF < 0 for all j, and that ∂

∂tj
TF < 0 for all j.

At this point, given the strict monotony of the TF of (5) with respect to Sj , ij and tj ,

and given the latter results, for each α ∈ [0, 1] we can determine as follows the respective

points of optimum of the programming problems (5):

Minimum programming problem Maximum programming problem
S∗j,min = Sj,L(α) =

= Sj,1 + (Sj,2 − Sj,1) α,
with j = 1, . . . , n;

S∗j,max = Sj,R(α) =
= Sj,3 + (Sj,3 − Sj,2)α,

with j = 1, . . . , n;
i∗j,min = ij,R(α) = ij,2,

with j = 1, . . . , n;
i∗j,max = ij,L(α) = ij,1,

with j = 1, . . . , n;
t∗j,min = tj,R(α) =

= tj,3 + (tj,3 − tj,2) α,
with j = 1, . . . , n;

t∗j,max = tj,L(α) =
= tj,1 + (tj,2 − tj,1) α,

with j = 1, . . . , n;

Of course, exploiting the usual extension principle (for details see [6]):

FINe
(
Ã

)
(α)L = −S0 +

n∑

j=1

S∗j,min

(
1 + i∗j,min

)−(t∗j,min−τj) ·

·
j−1∏

k=1

(
1 + i∗k,min

)−(τk+1−τk)

and

FINe
(
Ã

)
(α)L = −S0 +

n∑

j=1

S∗j,max

(
1 + i∗j,max

)−(t∗j,max−τj) ·

·
j−1∏

k=1

(
1 + i∗k,max

)−(τk+1−τk)
.

It is to notice that, if α = 1, then S∗j,min = S∗j,max = Sj,2, i∗j,min = ij,1 < i∗j,max = ij,2

and t∗j,min = t∗j,max = tj,2. So, the width of the 1–cut of FINe
(
Ã

)
depends only on the

extremals of the 1–cut of îj .
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4 About the buyer’s utility function

As premised, in case (4) is the FINe of a contract like the one described in the introduction,

the utility function of the buyer depends on the features of this FINe and negatively depends

on the cost the buyer has to pay for reducing the widths of the α–cuts related to S̃j and t̃j ,

that is for reducing the width of the α–cut related to FINe
(
Ã

)
. Recalling that all these

quantities depend on α, in order to determine the optimal value of α itself which maximizes

the buyer’s utility, at first we have to detail such a function.

Coherently with the rationality of the generic economic operator, for each α we assume

that the buyer’s utility function positively depends on some return measure of the considered

α–cut (that we indicated by r(α)), negatively depends on some variability measure of the

considered α–cut (that we indicated by v(α)), and negatively depends on the cost c(α). In

particular, for these quantities we propose the following specifications:

r(α) =
FINe

(
Ã

)
(α)L + FINe

(
Ã

)
(α)R

2
,

v(α) = FINe
(
Ã

)
(α)R − FINe

(
Ã

)
(α)L

and

c(α) = bα ∈ [0, b], with b > 0.

So, we can indicate the buyer’s utility function as U (r(α), v(α), c(α)).

It is important to notice that v(α) and c(α) are, respectively, a strictly-decreasing

function and a strictly-increasing function of the level α, whereas the monotony of r(α)

depends of the shape of FINe
(
Ã

)
. In fact, it is easy to verify that r(α) is a strictly-

decreasing/constant/strictly-increasing function of α according to the occurrence that

FINe
(
Ã

)
is a right-skewed/symmetric/left-skewed fuzzy interval number with respect

to r(1) (see figure 1).7

7A fuzzy interval number ebx is defined right-skewed/symmetric/left-skewed with respect to r(1) if r(α) <
/ = / > r(1) for all α ∈ [0, 1).
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Figure 1: From up to down: a right-skewed/symmetric/left-skewed fuzzy interval number
with respect to r(1). In all the figures, the continuous line, the dashed line, and the dotted
line represent, respectively, the shape of the considered fuzzy interval number, of its r(α),
and of its r(1).

At this point, in order to determine the optimal value of α which maximizes the buyer’s

utility we have to deal with the following nonlinear programming problem:

max U (r(α), v(α), c(α))
α {

c(α) < FINe
(
Ã

)
(α)L

0 ≤ α ≤ 1

. (6)

It is to notice that, due to the first constraint, the non emptiness of the feasible region

of (6) is not ensured.

5 Some open items

Given to its youth, our approach leaves open interesting items that we intend to investigate

in future researches. Among the ones we consider the most significant, we list the following:
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– specifying some analytical/numerical procedure by which to determine the optimal

value of the level α which maximizes the buyer’s utility;

– extending our approach in order to be able to apply it, besides to investment projects/

contracts, to whatever financial operation;

– given two, or more, fuzzy financial operations/contracts, specifying some methodology

by which to order them on the basis of suitable comparisons of their respective FINe.
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