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Abstract. Richardson extrapolation (RE) is a commonly used tech-
nique in financial applications for accelerating the convergence of numer-
ical methods. Particularly in option pricing, it is possible to refine the
results of several approaches by applying RE, in order to avoid the diffi-
culties of employing slowly converging schemes. But the effectiveness of
such a technique is fully achieved when its repeated version (RRE) is ap-
plied. Nevertheless, repeated RE received little attention in the financial
literature; this is probably due to the necessity of paying special atten-
tion to the numerical aspects of its implementation, such as the choice of
both the sequence of the stepsizes and the order of the method. In this
contribution, we consider different numerical schemes for the valuation
of American options and investigate the possibility of an appropriate ap-
plication of RRE. As a result, we find that, in the analyzed approaches
in which the convergence is monotonic, RRE can be used as an effective
tool for improving the accuracy of the approximations.

Keywords. Richardson extrapolation, repeated Richardson extrapola-
tion, American options, randomization technique, flexible binomial me-
thod.
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1 Introduction

In finance one has frequently to deal with approximate results that are obtained
by iterative methods or computational procedures depending on some parameter
(e.g. the time-step). As well known, often the convergence of numerical schemes
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is slow and this may be a serious problem in many practical situations; conse-
quently convergence acceleration techniques, such as Richardson extrapolation,
have been studied and applied in the literature.

In this contribution, we focus on repeated Richardson extrapolation (hereafter
RRE), which has not been fully exploited in financial applications, probably due
to the fact that one has to pay special attention to the numerical aspects of its
implementation, such as the choice of both the sequence of the stepsizes and the
order of the method.

Although the RRE technique is generally applicable, in order to illustrate
how it works, we will focus on valuing a standard American put option. We
consider several numerical schemes for the valuation problem and investigate
the possibility of an appropriate application of RRE. As a result, when the
convergence of the method is monotonic, RRE can be used as an effective tool
for improving significantly the accuracy.

In particular, we apply RRE to the randomization approach proposed by Carr
[6], the binomial approach of Cox et al. [8], the Black-Scholes-binomial method
(BBS) of Broadie and Detemple [3], and the flexible binomial method proposed
by Tian [21].The accuracy of the randomization method is improved when RRE
is applied by choosing a particular sequence of stepsizes. As well known, it is not
convenient to use Richardson extrapolation (RE) in the binomial model: this is
due to the non-uniform convergence of the method1. Numerical results highlight
that RE and RRE cannot be recommended for the classical binomial approach.
RE has been successfully applied by [3] in their hybrid binomial-Black-Scholes
model, but according to our numerical experiments RRE cannot be efficiently
applied to the BBS method. When implemented within the flexible binomial
setting introduced by [21], RRE based on Romberg sequence of stepsizes gives
very accurate and fairly robust results, because of the smoother nature of the
convergence of the method.

An outline of the paper is the following. In section 2 we briefly review the
financial literature on the Richardson extrapolation technique applied to option
pricing problems. Subsection 2.1 explains the RE and RRE techniques and in-
troduces the choice of different stepsize sequences. A wide experimental analysis
is carried out in order to test the method; the main results are presented and
discussed in section 3. We will provide some insights on how RRE can effectively
be used in practice. Section 4 presents some concluding remarks.

2 Richardson extrapolation and its applications in finance

Richardson extrapolation has been applied to accelerate valuation schemes for
American options and exotic options. Geske and Johnson [12] first applied Richard-
son extrapolation in a financial context to speed up and simplify their compound
option valuation model. They obtain a more accurate computational formula for

1 We refer to [13] for a discussion on the rate of convergence of lattice methods. Here
non-uniform convergence is understood in the sense that the solution in the binomial
setting has not the same rate of convergence at all nodes of the tree.
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the price of an American put option using the values of Bermuda options. Geske
and Johnson’s approach was subsequently developed and improved by [4], and
[14]. More recently, Chang et al. [7] proposed a modified Geske-Johnson formula
based on the repeated Richardson extrapolation.

Richardson extrapolation techniques were also employed to enhance efficiency
of lattice methods (see [2]). It is common opinion that it is not convenient to
extrapolate on the number of time steps in the binomial model due to the oscilla-
tory nature of the convergence (see [19]). Broadie and Detemple [3] successfully
use Richardson extrapolation to accelerate a hybrid of the binomial and the
Black-Scholes models. Tian [21], Heston and Zhou [13] and Gaudenzi and Pres-
sacco [11], to mention a few, also apply Richardson extrapolation to binomial
and multinomial approaches.

Carr [6] proposes a randomization approach for the valuation of the American
put option and uses a repeated instance of Richardson extrapolation to obtain
accurate estimates of both the price and the exercise boundary of an American
put option. Leisen [18] shows that randomizing the length of the time steps in
the binomial model allows the successful use of extrapolation. Huang et al. [15]
and Ju [16] use extrapolation methods to accelerate the integral representation
of the early exercise premium.

2.1 Richardson extrapolation techniques

The basic idea of extrapolation can be summarized as follows (see [9]). Consider
the problem of calculating a quantity of interest for which an analytical formula
is not provided. In the following, we restrict our attention to the problem of
valuing e.g. an American put option. In place of the unknown solution P0, take
a discrete approximation P (h) depending on the stepsize2 h > 0, P (h) being a
calculable function yielded by some numerical scheme, such that

lim
h→0

P (h) = P (0) = P0 . (1)

All extrapolation schemes are based on the existence of an asymptotic ex-
pansion. Under the assumption that P (h) is a sufficiently smooth function, we
write

P (h) = α0 + α1h
p1 + α2h

p2 + · · · + αkhpk + O(hpk+1 ) , (2)

with 0 < p1 < p2 < . . . , and unknown parameters α0, α1, . . . , where h ∈ [0, H ]
for some basic step H > 0. In particular, we have α0 = P0.

Compute the function P (h) a number of times with successively smaller
stepsizes,

h1 > h2 > . . . > 0 .

In such a way, we obtain a sequence of approximations

P (h1), P (h2), . . .

2 h may be the period of time between two exercise dates of the American option.
Hence P (0) is the limit of the value of a Bermudan option as h goes to zero.
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for a given sequence of stepsizes hi.
We can construct extrapolation schemes of arbitrary order k by considering

the following procedure3:

1. define Ti,1 = P (hi), for i = 1, 2, . . . ;
2. for i ≥ 2 and j = 2, 3, . . . , i, compute

Ti,j = Ti,j−1 +
Ti,j−1 − Ti−1,j−1

hi−j+1

hi

− 1

. (3)

Recursion (3) is based on polynomial interpolation and an asymptotic h-expansion
(taking p1, p2, . . . integers). We can establish the following extrapolation tableau4

(stopped at k-th order):

T1,1

T2,1 T2,2

T3,1 T3,2 T3,3

.

.

.

.

.

.

.

.

.

.

.

.

Tk,1 Tk,2 Tk,3 . . . Tk,k

The sequence {P (hi)} is taken as the first column in the extrapolation
tableau. Each quantity Ti,j is computed in terms of two successive approxima-
tions. The two point Richardson extrapolation technique can be repeated, giving
rise to a numerical scheme which is extremely fast and can dramatically improve
accuracy5. The efficiency of the method relies on the fact that the amount of
computation required essentially corresponds to the number of function evalua-
tions.

The idea behind recursion (3) is to provide two mechanisms for enhancing
the accuracy: by increasing i one obtains a reduction in the stepsize parameter,
while taking j large implies more accurate approximations. Both mechanisms
work simultaneously, which indicates that the quantities Tk,k are those of most
interest. This provides us with the possibility of order control.

3 Such a procedure is also known as Aitken-Neville algorithm and it is one of the
extrapolation schemes which are commonly used.

4 See [10].
5 Each repetition requires one additional point. Each entry of the tableau is an ap-

proximation to P0; obviously, more precision is achieved on the diagonal.
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The accuracy and efficiency of the method is strictly connected with the
choice of the sequence of stepsizes. Define hi in terms of the basic stepsize H ,
such that hi = H/ni (i = 1, 2, . . .); any stepsize sequence is characterized by the
associated sequence of integers. In our numerical experiments, we considered the
following sequences of the stepsize:

– harmonic sequence: {1, 2, 3, 4, 5, 6, 7, 8, . . . , n , . . . };
– double harmonic (Deuflhard) sequence: {2, 4, 6, 8, 10, 12, 14, 16, . . . , 2n , . . .};
– Burlisch sequence6: {2, 4, 6, 8, 12, 16, 24, 32, . . . , 2nk−2 , . . . } (for k ≥ 4);
– Romberg sequence: {2, 4, 8, 16, 32, 64, 128, . . . , 2nk−1 , . . . }.

All these sequences allow for convergence of the method; this is not always the
case (see [5]). The first and the fourth sequence are of common use in the financial
literature related to extrapolation combined with option pricing models7; though
the other sequences are well known in numerical analysis, it seems that their use
has not been thoroughly investigated in the financial literature.

3 Efficient implementation of RRE to option pricing:

analysis of some numerical experiments

Richardson extrapolation is a well understood technique, which is often applied
in finance to enhance precision of results provided by discrete models. Never-
theless, repeated Richardson extrapolation has received little attention in the
financial literature. In this section, we investigate how to implement efficiently
the RRE to option pricing. In order to explain how such a technique applies, we
focus on the problem of valuating an American put option.

In particular, we apply the method to valuation models based on different
approaches: the randomization technique, the classical lattice method and some
extensions of such an approach. The following subsections report the main re-
sults of the numerical experiments carried out and provide some insights about
the convenient choice of the stepsize sequence when applying RRE within the
different valuation frameworks taken into consideration.

3.1 Carr’s randomization approach

The model proposed by [6] for the valuation of American put options is based
on a particular technique, called randomization. This technique, also known as
Canadization, has been recently applied and generalized by [17] and [1].

According to Carr’s definition, randomization is a three-step procedure for
solving a valuation problem, which can be summarized as follows: let the value
of one of the model parameters be “randomized” by assuming a plausible prob-
ability distribution for it; calculate the expected value of the dependent variable

6 See [5]. Note that some authors report the following sequence: {2, 3, 4, 6, 8, 12, . . .}.
7 Usually two or three point Richardson extrapolation is applied.
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(which is unknown in the fixed parameter model) in this random parameter set-
ting; let the variance of the distribution governing the parameter approach zero,
holding the mean of the distribution constant at the fixed parameter value. For
example, if we consider standard options, we could randomize the initial stock
price, the strike price, the initial time, or the maturity date. Carr randomizes
the maturity date of an American put option and determines the solution for its
value and the optimal exercise boundary.

Let the maturity of the randomized American put be determined by the
waiting time to a certain number of jumps of a standard Poisson process, which
is assumed to be independent of the underlying stock price process and uncor-
related with any market factor. The value of the random maturity American
option approximates the value of its fixed maturity version.

When the randomized American option is supposed to mature at the first
arrival of a Poisson process with intensity 1/T , the maturity T̃ is exponentially
distributed with expectation T . Due to the memoryless property of the expo-
nential distribution, it turns out that the early exercise boundary is independent
of time and the option value suffers no time decay. As a result, the search for a
time-dependent boundary is reduced to the search for a single critical stock price.
The fair value of a randomized American put with an exponential distributed
maturity is the then solution of the following problem

P0 = sup
H

ES [e−rtH (X − StH
)+] , (4)

for an initial underlying price S > H∗, where H∗ is the unknown optimal exercise
boundary, and tH is the first passage time of the underlying price process (St)t≥0

through H , r is the risk-free continuous interest rate and X is the option strike
price. The expectation in equation (4) can be evaluated in closed form, and the
result can be maximized over constant barriers (for more details see [6]).

The assumption of an exponentially distributed maturity leads to simple ap-
proximations, which entail too much errors to be used for practical purposes.
To obtain more accurate approximations, assume that the time to maturity is
subdivided into n independent exponential subperiods. Therefore the random-
ized American option matures at the n-th jump of a standard Poisson process
(with intensity n/T ). As a result, the maturity T̃ is gamma distributed, with
expectation T and variance T 2/n.

In Carr’s n-step setting the randomized American put value and the initial
critical stock price are determined by a dynamic programming algorithm. The
resulting expression for the randomized option value is a triple sum, which does
not require the evaluation of special functions. As the number of subperiods be-
comes large, the variance of the random maturity approaches zero. So increasing
the number of periods improves the accuracy of the solution (of course at the
expense of a greater computational cost).

Richardson extrapolation can be used to improve the method. Let P
(n)
0 de-

note the randomized option price at time t = 0 determined assuming n random
subperiods. The N -point Richardson extrapolation is the following weighted av-
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erage of N approximate values

P̂N
0 =

N
∑

n=1

(−1)N−nnN

n!(N − n)!
P

(n)
0 . (5)

By using Richardson extrapolation, accurate option values can be obtained
just with a few random time steps. The method proved robust and quite accurate,
moreover the convergence of the results is monotonic, allowing us to consider
extrapolations of higher order.

Carr applies extrapolation as defined by (5), which is based on the harmonic
sequence8. We compared numerical results obtained with different sequences of
the steps, and assessed the method on a large set of option valuation problems,
considering different values of moneyness, maturity, volatility and risk-free in-
terest rate.

In order to test the goodness of the employment of the RRE within Carr’s
randomization framework, we make a comparison between the price obtained
for an American put option in the 25 000-steps binomial model and the extrap-
olated prices in the random maturity model. The simulation analysis takes into
consideration 3 500 randomly generated option valuation problems. The param-
eter ranges are: r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], X/S0 ∈ [0.7, 1.3] (r, σ and X/S0

are sampled from a uniform distribution on a given interval), with S0 = 100
and T = 1. The moneyness interval has been partitioned into seven subsets:
X ∈ [70, 80], [80, 90], [90, 100], {100}, [100, 110], [110, 120], [120, 130], and we
have randomly generated 500 instances from each subset.

We have considered different sequences of the stepsize hi when applying
repeated Richardson extrapolation. The results of the simulation experiments
carried out for the option price can be summarized by computing the mean ab-
solute error (MAE) and the root mean square error (RMSE)9 of the simulation
results with respect to the binomial price as moneyness varies.

8 When we consider the harmonic sequence and recurrence (3), we can directly com-
pute the quantities Tk,k in the extrapolation tableau using the formula

Tk,k =

k
X

i=1

(−1)k−i ik

(k − i)! i !
P (hi) ,

which corresponds to a k-point Richardson extrapolation as in formula (5).
9 The MAE and the RMSE are computed as follows:

MAE =
1

N

N
X

n=1

| en | , RMSE =

v

u

u

t

1

N

N
X

n=1

e2
n ,

where en = P̂n−Pn

Pn
are the relative errors, being Pn and P̂n the “true” and the

estimated option values, respectively. We do not consider option prices lower than
0.05 when calculating errors.
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The outcomes of the simulation experiments are synthesized in tables 1–8.
Both the MAE and the RMSE have been computed10, but only the RMSEs are
reported here in detail (as they give the same information of MAEs). In tables 1–
3 and 5–8 we show the pricing errors on the diagonal of the extrapolation tableau,
which have been computed considering the harmonic, Deuflhard, Burlisch and
Romberg sequences, respectively.

Of course, one has not to compare the errors line by line in the tables. Such
errors are obtained by applying RRE based on different sequences of the number
of random steps. Each sequence is characterized in the implementation by a
specific computational amount (see [5]).

The harmonic sequence has been stopped at n = 10 (in practice we can
apply RRE based on the harmonic sequence up to step 15, and in some cases
also up to step 20). Deuflhard sequence has been stopped at n = 20. We stopped
Romberg sequence at n = 64 (in some cases RRE has been stopped at n = 128,
in some other cases only at n = 48), because for higher values of the number of
steps the method does not achieve higher accuracy, or round-off errors arise (or,
simply, the method is too slow)11. Hence, one has to make comparisons in terms
of accuracy for a given value of computational effort required.

For example, in tables 1–3 and 5–8 we can compare RRE based on Deuflhard
sequence with n = 16 and n = 18 with RRE based on Burlisch sequence with
n = 24 and n = 32. The resulting errors are of the same order, and it appears
that one method does not overperform the other one, but both are preferable
to the extrapolation based on the harmonic sequence. Moreover, with Burlisch
sequence we can achieve higher accuracy if RE is repeated once or twice more.
Note also that RMSEs of order 10−4 or lower are not obtainable with the other
sequences (when considering the case X ∈ [70, 80]).

In order to compare the errors relative to Burlisch sequence with those yielded
by applying Romberg sequence, we have to consider the case n = 48 for the first
one and n = 64 for the latter. Burlisch sequence seems preferable in terms
of accuracy and speed with respect to the other sequences, and this finding is
supported by the results obtained for every level of moneyness (not only, but
the method performs better the higher the moneyness). For instance, in the case
X ∈ [120, 130] (see table 8), the RMSE is of order 1.6 · 10−5 for the Burlisch
sequence with n = 48, while it is 2.5 · 10−5 for the Romberg sequence with
n = 64.

It is also interesting to analyze the error reduction on the diagonal of the
extrapolation tableau12. Table 4 shows the percent variations of the MAE for
all the four sequences. As we expected, the advantage in repeating RE is more
evident when we apply Romberg and Burlisch sequences.

10 In option pricing, the importance of deriving indications by both error measures is
documented e.g. in [20].

11 In table 8 all the sequences have been stopped at earlier iterations since there was
no longer error reduction.

12 Based on the error reduction along the diagonal, a stopping rule for the RRE may
be defined, hence allowing for order control.
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3.2 Richardson extrapolation applied in a binomial framework

As an interesting exercise, we investigate the possibility of applying RRE both
to the CRR binomial and the BBS approaches. It is well known and well doc-
umented in the literature (see e.g. [21], and [11]) that the oscillatory nature of
the convergence in the CRR model makes infeasible RE, a fortiori RRE should
not be used. We will see that the technique is useful only in the at-the-money
case.

We have carried out a wide simulation analysis, which takes into considera-
tion 3 500 randomly generated option valuation problems, comparing the price
obtained for an American put option in the 25 000-steps binomial model and the
extrapolated prices. The parameter ranges are: r ∈ [0.01, 0.12], δ ∈ [0.0, 0.12]
(where δ is the continuous dividend yield), volatility σ ∈ [0.1, 0.5], X/S0 ∈
[0.7, 1.3], with S0 = 100 and T = 1. The moneyness interval has been parti-
tioned into 7 subsets: X ∈ [70, 80], [80, 90], [90, 100], {100}, [100, 110], [110, 120],
[120, 130], and we have randomly generated 500 instances from each subset. We
have considered different sequences of the stepsize and the basic step: in partic-
ular, H = T/100 and H = T/200 are used.

As already observed, RE and RRE work only for at-the-money options, hence
we discuss this special issue. Nevertheless, also in this case, the choice of the
stepsize sequence is crucial. In table 9, we show the pricing errors relative to
at-the-money American put options: each entry in the second, fourth, sixth and
eight column of table 9 are the error measures of the price estimates obtained by
applying repeatedly RE. Only the errors along the diagonal of the extrapolation
tableau are reported. The results refer to a basic step T/200; we applied the
harmonic, Deuflhard, Burlisch and Romberg sequence. Observe that only RRE
based on Romberg sequence yields very accurate and robust results (the method
continues to gain precision along the diagonal), while with all other sequences
just two-point RE can be applied.

It is interesting to investigate what happens when we consider out-of-the-
money American put options. It turns out that RE and RRE no longer work,
even when considering Romberg stepsize sequence. Table 10 shows the MAEs
and RMSEs in the extrapolation tableau for the case H = T/200. Note that the
pricing errors of the extrapolation are higher than those of the non-extrapolated
values (compare the first column of the tableau with the errors reported on the
diagonal). It is clear from this discussion that RE should not be applied within
the CRR model, except in just one case which is of limited interest.

We briefly discuss also the feasibility of RRE within the hybrid binomial-
Black-Scholes model proposed by [3]. The convergence of the BBS method is
smoother compared to the binomial method, so that one may wonder if RRE
could be used. Two-point RE has been applied successfully to the BBS method,
but still RRE does not perform well. In our numerical experiments (based on the
same set of 3 500 randomly generated options pricing problems considered in the
previous experiments), we find that the extrapolated values along the diagonal of
the tableau entail higher errors than the approximate values below the diagonal
and even with respect to the non-extrapolated values. Hence, RRE should not
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be applied within the BBS model. Our results (which are not reported here for
the sake of brevity) are in accordance with the findings in [7].

3.3 Tian’s flexible binomial model

Tian [21] introduces in the CRR binomial model a so called “tilt factor” λ, with
the effect of modifying the shape and span of the binomial lattice. In this flexible

binomial (FB) model, the up- and down- factors are defined as follows:

u = eσ
√

∆t+λσ2∆t d = e−σ
√

∆t+λσ2∆t , (6)

where λ is an arbitrary constant that can be positive, zero, or negative. The
parameter σ > 0 is the volatility, ∆t = T/n (with n number of steps) is the
timestep, and T is the option maturity.

λ = 0 λ > 0 λ < 0

Fig. 1. The flexible binomial lattice for different values of the tilt parameter λ.

Of course, when λ = 0 one recovers the CRR model with u0 = eσ
√

∆t and
d0 = u−1

0 . Tian shows that for every choice of the tilt parameter (provided that
λ is finite and bounded) the flexible binomial model converges to the continuous-
time counterpart.

Figure 1 shows the flexible binomial lattice for λ = 0, λ > 0 and λ < 0. A
positive tilt parameter causes an upward transformation of the tree, while the
effect of a negative λ is a downward shift.

The introduction of the tilt parameter in the binomial model allows for con-
venient adjustment to the tree in order to position nodes relative to the strike
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price (or the barrier) of the option. For the particular choice

λ =
2 (η − j0)

√
∆t

σT
, (7)

where

η =
log(X/S0) − n log(d0)

log(u0/d0)
, j0 =

[

log(X/S0) − n log(d0)

log(u0/d0)

]

, (8)

u0 = eσ
√

∆t, d0 = u−1
0 , and [ · ] denotes the closest integer to its argument,

the strike is always located on node (n, j0) at the option maturity. As a result,
convergence of the FB model is smoother than in the CRR model, thus allowing
the use of Richardson extrapolation.

Tian applies a two-point RE which considers prices obtained with a FB model
with n/2 and n steps. We will see that RRE can be successfully applied. It is
worth noting that not all the stepsize sequences perform equally well; in the
numerical trials Romberg sequence overperformed all the other sequences (some
results of the simulation are omitted here), yielding very accurate and robust
results.

In the numerical experiments, we compare the American put prices obtained
in the n-steps FB model when RRE based on Romberg sequence is applied,
and those in the 50 000-steps FB model. We randomly generated 3 500 option
valuation problems. The parameter ranges are: r ∈ [0.01, 0.12], δ ∈ [0.0, 0.12]
(where δ is the continuous dividend yield13), σ ∈ [0.1, 0.5], X/S0 ∈ [0.7, 1.3],
with S0 = 100 and T = 1. As in the previous trials, the moneyness interval
has been partitioned into seven subsets: X ∈ [70, 80], [80, 90], [90, 100], {100},
[100, 110], [110, 120], [120, 130], and we have generated 500 instances from each
subset. We have considered a basic step H = T/100 and Romberg sequence.

The results of the simulation experiments carried out are summarized in ta-
bles 11 and 12. Both the MAE and the RMSE have been computed but are not
reported here in detail. Only the errors along the diagonal of the extrapolation
tableau are presented. In table 11 the percent variations of the MAE are shown.
Unlike the case of the CRR model, RRE performs well for all option moneyness,
and not only in the at-the-money case. The pricing errors decrease monotonically
as we consider a larger number of steps and higher order of extrapolation.

4 Concluding remarks

Richardson extrapolation and repeated RE are useful techniques in order to en-
hance accuracy of approximate solutions yielded by numerical schemes in prob-
lems that arise in finance. Nevertheless, such techniques should no longer be
applied when convergence is non-uniform. Provided smooth convergence, RRE
can improve accuracy and efficiency of the results. We have also found that the
choices of the basic step and the stepsize sequence are critical.

13 Note that Tian considers only the case δ = 0.
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In particular, we implemented the RRE within Carr’s randomization ap-
proach with a different choice of the stepsizes sequence, obtaining more efficient
results. Numerical experiments carried out suggest that it is not convenient to
apply RRE to the CRR and the BBS methods, due to the non-monotonic behav-
ior of the pricing errors, while in the flexible binomial approach, where a simple
two-point RE has been used sofar, we employed successfully the RRE.

Finally, it seems interesting to investigate the possibility of applying repeated
Richardson extrapolation to other models, and in particular to Monte Carlo sim-
ulation methods for valuing American options. It is worth noting that one should
be careful when employing extrapolation techniques combined with these latter
approaches, because of the difficulty of determining the accuracy of the approx-
imations, which sometimes are also biased. To this regard, ad hoc smoothing
procedures and discrete monitoring corrections may be required. This interest-
ing task is left for future research.
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Table 1. RMS relative errors of randomized American put option prices when Richard-
son extrapolation is applied repeatedly in Carr’s randomization approach (S = 100,
X ∈ [70, 80], r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni RMSE ni RMSE ni RMSE ni RMSE

1 0.14220576 2 0.08976625 2 0.08976625 2 0.08976625
2 0.03762973 4 0.01773814 4 0.01773814 4 0.01773814
3 0.01391092 6 0.00549127 6 0.00549127 8 0.00466951
4 0.00590460 8 0.00222155 8 0.00222155 16 0.00147634
5 0.00285097 10 0.00121348 12 0.00114269 32 0.00060459
6 0.00170553 12 0.00078884 16 0.00069349 64 0.00026906
7 0.00118567 14 0.00055291 24 0.00043189
8 0.00087775 16 0.00040649 32 0.00028092
9 0.00067173 18 0.00031016 48 0.00018259
10 0.00052799 20 0.00024374 64 0.00012264

Table 2. RMS relative errors of randomized American put option prices when Richard-
son extrapolation is applied repeatedly in Carr’s randomization approach (S = 100,
X ∈ [80, 90], r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni RMSE ni RMSE ni RMSE ni RMSE

1 0.17828577 2 0.10833117 2 0.10833117 2 0.10833117
2 0.03911643 4 0.01644720 4 0.01644720 4 0.01644720
3 0.01093506 6 0.00394575 6 0.00394575 8 0.00335649
4 0.00395702 8 0.00160132 8 0.00160132 16 0.00108761
5 0.00200959 10 0.00091801 12 0.00086479 32 0.00045836
6 0.00129208 12 0.00059881 16 0.00052616 64 0.00020470
7 0.00090593 14 0.00041895 24 0.00032749
8 0.00066608 16 0.00030823 32 0.00021353
9 0.00050842 18 0.00023556 48 0.00013943
10 0.00039982 20 0.00018548 64 0.00009427
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Table 3. RMS relative errors of randomized American put option prices when Richard-
son extrapolation is applied repeatedly in Carr’s randomization approach (S = 100,
X ∈ [90, 100], r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni RMSE ni RMSE ni RMSE ni RMSE

1 0.17707630 2 0.10112571 2 0.10112571 2 0.10112571
2 0.02601866 4 0.00979537 4 0.00979537 4 0.00979537
3 0.00525559 6 0.00217374 6 0.00217374 8 0.00188378
4 0.00223239 8 0.00101962 8 0.00101962 16 0.00069572
5 0.00130805 10 0.00059122 12 0.00055669 32 0.00029425
6 0.00083735 12 0.00038419 16 0.00033753 64 0.00013142
7 0.00058107 14 0.00026869 24 0.00021001
8 0.00042712 16 0.00019764 32 0.00013698
9 0.00032618 18 0.00015104 48 0.00008966
10 0.00025645 20 0.00011900 64 0.00006093

Table 4. Percent variation of mean absolute relative errors along the diagonal of the
extrapolation tableau in Carr’s randomization approach (S = 100, X ∈ [90, 100],
r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni ∆%MAE ni ∆%MAE ni ∆%MAE ni ∆%MAE

1 2 2 2
2 -86.14 4 -90.92 4 -90.92 4 -90.92
3 -80.84 6 -77.51 6 -77.51 8 -80.44
4 -54.72 8 -51.94 8 -51.94 16 -62.24
5 -40.36 10 -41.88 12 -45.28 32 -57.71
6 -35.92 12 -35.04 16 -39.41 64 -55.49
7 -30.57 14 -30.14 24 -37.89
8 -26.49 16 -26.55 32 -34.92
9 -23.69 18 -23.69 48 -34.75
10 -21.45 20 -21.33 64 -32.34
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Table 5. RMS relative errors of randomized American put option prices when Richard-
son extrapolation is applied repeatedly in Carr’s randomization approach (S = 100,
X = 100, r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni RMSE ni RMSE ni RMSE ni RMSE

1 0.14751803 2 0.08140506 2 0.08140506 2 0.08140506
2 0.01542737 4 0.00603751 4 0.00603751 4 0.00603751
3 0.00340090 6 0.00152150 6 0.00152150 8 0.00131711
4 0.00162969 8 0.00070668 8 0.00070668 16 0.00047732
5 0.00090427 10 0.00040283 12 0.00037868 32 0.00019480
6 0.00057281 12 0.00025808 16 0.00022526 64 0.00009117
7 0.00039687 14 0.00017683 24 0.00013570
8 0.00028852 16 0.00012697 32 0.00008467
9 0.00021720 18 0.00009441 48 0.00005179
10 0.00016813 20 0.00007212

Table 6. RMS relative errors of randomized American put option prices when Richard-
son extrapolation is applied repeatedly in Carr’s randomization approach (S = 100,
X = [100, 110], r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni RMSE ni RMSE ni RMSE ni RMSE

1 0.10966076 2 0.06214959 2 0.06214959 2 0.06214959
2 0.01498229 4 0.00555543 4 0.00555543 4 0.00555543
3 0.00289336 6 0.00121969 6 0.00121969 8 0.00105500
4 0.00127029 8 0.00056339 8 0.00056339 16 0.00038286
5 0.00072132 10 0.00032447 12 0.00030535 32 0.00016018
6 0.00046018 12 0.00020985 16 0.00018401 64 0.00008952
7 0.00031927 14 0.00014587 24 0.00011357
8 0.00023370 16 0.00010670 32 0.00007358
9 0.00017761 18 0.00008118 48 0.00004795
10 0.00013900 20 0.00006374
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Table 7. RMS relative errors of randomized American put option prices when Richard-
son extrapolation is applied repeatedly in Carr’s randomization approach (S = 100,
X = [110, 120], r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni RMSE ni RMSE ni RMSE ni RMSE

1 0.05546058 2 0.03363912 2 0.03363912 2 0.03363912
2 0.01203470 4 0.00450030 4 0.00450030 4 0.00450030
3 0.00244982 6 0.00081508 6 0.00081508 8 0.00069602
4 0.00075614 8 0.00034123 8 0.00034123 16 0.00023173
5 0.00043381 10 0.00019718 12 0.00018526 32 0.00009561
6 0.00028519 12 0.00012585 16 0.00010994 64 0.00004159
7 0.00019673 14 0.00008656 24 0.00006695
8 0.00014787 16 0.00006279 32 0.00004294
9 0.00011957 18 0.00004744 48 0.00002772
10 0.00008840 20 0.00004952

Table 8. RMS relative errors of randomized American put option prices when Richard-
son extrapolation is applied repeatedly in Carr’s randomization approach (S = 100,
X = [120, 130], r ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1).

ni RMSE ni RMSE ni RMSE ni RMSE

1 0.02814233 2 0.01816596 2 0.01816596 2 0.01816596
2 0.00828701 4 0.00330275 4 0.00330275 4 0.00330275
3 0.00204261 6 0.00059310 6 0.00059310 8 0.00049622
4 0.00053175 8 0.00020764 8 0.00020764 16 0.00014088
5 0.00025272 10 0.00011997 12 0.00011276 32 0.00005794
6 0.00017203 12 0.00007678 16 0.00006691 64 0.00002507
7 0.00012127 14 0.00005236 24 0.00004033
8 0.00008863 16 0.00003791 32 0.00002563

18 0.00003152 48 0.00001643
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Table 9. Mean absolute and RMS relative errors of put option prices in the CRR
framework when Richardson extrapolation is applied repeatedly (S = 100, X = 100,
r ∈ [0.01, 0.12], δ ∈ [0.01, 0.04], σ ∈ [0.1, 0.5], T = 1). The results refer to an initial
number of steps 200, and the harmonic (second column), Deuflhard (fourth column),
Burlisch (sixth column) and Romberg (eighth column) sequences.

n MAE n MAE n MAE n MAE

200 0.00085132 400 0.00042292 400 0.00042292 400 0.00042292
400 0.00002516 800 0.00001387 800 0.00001387 800 0.00001387
600 0.00002678 1200 0.00001477 1200 0.00001477 1600 0.00000984
800 0.00004084 1600 0.00002087 1600 0.00002087 3200 0.00000769

2400 0.00002000 6400 0.00000691

n RMSE n RMSE n RMSE n RMSE

200 0.00087489 400 0.00044335 400 0.00044335 400 0.00044335
400 0.00011797 800 0.00005646 800 0.00005646 800 0.00005646
600 0.00012403 1200 0.00006737 1200 0.00006737 1600 0.00002316
800 0.00017122 1600 0.00011880 1600 0.00011880 3200 0.00001083

2400 0.00012342 6400 0.00000744

Table 10. Mean absolute (first tableau) and RMS (second tableau) relative errors of
put option prices in the CRR framework when Richardson extrapolation is applied
repeatedly (S = 100, X ∈ [90, 100], r ∈ [0.01, 0.12], δ ∈ [0.01, 0.12], σ ∈ [0.1, 0.5],
T = 1). Extrapolation tableau with Romberg stepsize sequence and initial number of
steps 200.

MAE
n Ti1 Ti2 Ti3 Ti4 Ti5

400 0.00044412
800 0.00022241 0.00045825

1600 0.00011121 0.00022538 0.00041994
3200 0.00005540 0.00011510 0.00021350 0.00029184
6400 0.00002493 0.00005376 0.00010115 0.00014021 0.00016512

RMSE
n Ti1 Ti2 Ti3 Ti4 Ti5

400 0.00051264
800 0.00025997 0.00058794

1600 0.00012898 0.00029641 0.00054829
3200 0.00006323 0.00015029 0.00027497 0.00037815
6400 0.00003006 0.00006984 0.00013080 0.00018203 0.00021558
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Table 11. Mean absolute relative errors of put option prices in the flexible binomial
model when Richardson extrapolation is applied repeatedly (S = 100, X ∈ [70, 130],
r ∈ [0.01, 0.12], δ ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1). ∆% MAE is the percentage of
variation of the mean absolute errors along the diagonal of the extrapolation tableau.
Extrapolation is based on Romberg stepsize sequence and initial number of steps 100.

n X ∈ [70, 80] ∆%MAE X ∈ [80, 90] ∆%MAE X ∈ [90, 100] ∆%MAE

200 0.00392174 0.00256274 0.00126017
400 0.00019418 -95.05 0.00010093 -96.06 0.00003225 -97.44
800 0.00012275 -36.79 0.00006944 -31.20 0.00001982 -38.53

1600 0.00006096 -50.34 0.00003443 -50.41 0.00001027 -48.19
3200 0.00002719 -55.40 0.00001634 -52.54 0.00000587 -42.83
6400 0.00001640 -39.68 0.00001080 -33.92 0.00000508 -13.50

n X ∈ [100, 110] ∆%MAE X ∈ [110, 120] ∆%MAE X ∈ [120, 130] ∆%MAE

200 0.00070133 0.00043071 0.00027674
400 0.00001673 -97.61 0.00001241 -97.12 0.00001194 -95.68
800 0.00000930 -44.42 0.00000799 -35.58 0.00000784 -34.33

1600 0.00000554 -40.42 0.00000500 -37.43 0.00000410 -47.76
3200 0.00000391 -29.45 0.00000294 -41.30 0.00000192 -53.05
6400 0.00000345 -11.68 0.00000221 -24.77 0.00000137 -28.59

Table 12. RMS relative errors of put option prices in the flexible binomial model
when Richardson extrapolation is applied repeatedly (S = 100, X ∈ [70, 130], r ∈
[0.01, 0.12], δ ∈ [0.01, 0.12], σ ∈ [0.1, 0.5], T = 1). Extrapolation is based on Romberg
stepsize sequence and initial number of steps 100.

n X ∈ [70, 80] X ∈ [80, 90] X ∈ [90, 100]

200 0.00439491 0.00302903 0.00131513
400 0.00027668 0.00015759 0.00004912
800 0.00017227 0.00010980 0.00003038

1600 0.00008599 0.00005182 0.00001514
3200 0.00003762 0.00002714 0.00000743
6400 0.00002193 0.00001496 0.00000580

n X ∈ [100, 110] X ∈ [110, 120] X ∈ [120, 130]

200 0.00073406 0.00047608 0.00033208
400 0.00007285 0.00003379 0.00002647
800 0.00003227 0.00002059 0.00001760

1600 0.00001859 0.00001434 0.00000931
3200 0.00000985 0.00000896 0.00000389
6400 0.00000841 0.00000413 0.00000213


