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Abstract. We introduce the class of Church algebras, which is general
enough to compass all Boolean algebras, Heyting algebras and rings with
unit. Using a new equational characterization of central elements, we
prove that Church algebras satisfy a Stone representation theorem. We
show that every lattice of equational theories is isomorphic to the con-
gruence lattice of a suitable Church algebra, and we use this property
to prove a meta-Stone representation theorem which is applicable to all
varieties of algebras.

We say Σ is an equational theory iff Σ is a set of identities closed under the
rules of the equational calculus. The set L(Σ) = {T : Σ ⊆ T, T is an equational
theory} forms a lattice under inclusion. L is a lattice of equational theories (et-
lattice, for short) iff L is isomorphic to the lattice L(Σ) for some equational
theory Σ (or dually isomorphic to the lattice of all subvarieties of some variety
of algebras). In 1966 A.I. Malcev [3] posed the following question: which lattices
can be represented as et-lattices?

L(Σ) is an algebraic and coatomic lattice, possessing a compact top element;
but no stronger property was known before Lampe’s discovery [2] that any et-
lattice satisfies the Zipper condition: if ∨{ai : i ∈ I} = 1 and a ∧ c = z then
c = z. The proof uses the following representation of the et-lattices, which is due
to R. McKenzie [5]: if L is an et-lattice, then L is isomorphic to some congruence
lattice of groupoids with right unit and right zero. The problem of whether any
congruence lattice of groupoids with right unit and right zero is isomorphic
to an et-lattice, is still open (see [2]). The representation of the et-lattices by
congruence lattices of monoids with one additional unary operation was found
by N. Newrly [6]. A.M. Nurakunov [7] has recently shown that a lattice L is an
et-lattice iff L is isomorphic to the congruence lattice of some et-monoid.

In this paper we introduce the class of Church algebras, which are algebras
modelling the “if-then-else” instruction of programming. We note that every et-
lattice is isomorphic to the congruence lattice of a suitable Church algebra. Using
central elements, which play here the role of idempotent elements in rings, we
show that Church algebras satisfy a Stone representation theorem stating that
every Church algebra can be decomposed as a weak Boolean product of directly
indecomposable algebras. Finally, we prove that every variety of algebras can
de decomposed as a weak Boolean product of indecomposable subvarieties. This
can be seen as a meta-Stone representation theorem since it can be applied to
all varieties and not just to a suitable class of algebras of a certain kind.
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In [4] we have applied these results in the context of theoretical computer
science to study the properties of the lattice of equational theories of λ-calculus.

Let X = {xi : i ∈ N} be a countable set of variables and τ be an algebraic
similarity type. We ambiguously denote the set of operation symbols of type τ by
the same letter τ . TX is the set of all terms over X with operations symbols from
τ and (TX, τ) is the term algebra. We denote by End the set of endomorphisms
of the term algebra.

The lattice L(τ) of all equational theories of the given type τ can be described
as Con(TX, τ ∪ End). Newrly [6] has shown that

Con(TX, τ ∪ End) = Con(TX,+, 0, φ),

where (TX,+, 0) is a monoid and φ is unary. The operations are defined as
follows: 0 ≡ x0, s+t ≡ t[s/x0] (where t[s/x0] is the term obtained by substituting
s for the variable x0 within t), φ(xi) ≡ xi−1 and φ(x0) ≡ x0.

We modify Newrly’s algebra (TX,+, 0, φ) (without changing its congruence
lattice). We consider the algebra C(τ) = (TX, if, φ, 0, 1), where 0 ≡ x0, 1 ≡ x1,
φ is defined as in Newrly’s algebra and the ternary operation “if” is defined as
follows: if(t, s, u) ≡ t[u/x0, s/x1], where t[u/x0, s/x1] is the term obtained by
substituting the term u for variable x0 and the term s for variable x1 within t.
Newrly’s algebra is a reduct of C(τ) because s+ t = if(t, 1, s). In conclusion, we
have for the lattice L(τ) of all equational theories of type τ :

L(τ) = Con(C(τ)).

The algebra C(τ) satisfies the identities

if(1, s, u) = s; if(0, s, u) = u. (1)

The above identities formalize the “if-then-else”, which is a basic construct of
programming languages; perhaps surprisingly, the variety of algebras axioma-
tized by these two identities has never been studied in the literature.

Our key observation is that many other algebraic structures, such as combi-
natory algebras, Boolean algebras, rings with unit etc., have a term operation
satisfying identities (1). These identities imply strong algebraic properties, that
we will apply to the study of et-lattices.
Definition 1. [4, Def. 4] An algebra A is called a Church algebra if there are
two constants 0, 1 ∈ A and a ternary term if(e, x, y) such that if(1, x, y) = x and
if(0, x, y) = y. A variety V is called a Church variety if every algebra in V is a
Church algebra with respect to the same term if(e, x, y) and constants 0, 1.

Let τ be a similarity type. We call C(τ) the Church algebra of type τ . Given
an equational theory Σ of type τ we define the Σ-Church algebra of type τ as
CΣ(τ) = C(τ)/Σ.

The following, besides the algebras C(τ) and CΣ(τ), are easily checked to
be Church algebras:
1. Combinatory algebras: if(e, x, y) ≡ (e · x) · y; 1 ≡ k; 0 ≡ sk, where k and s

are the basic combinators of combinatory logic.



2. Boolean algebras: if(e, x, y) ≡ (e ∨ y) ∧ (e− ∨ x).
3. Heyting algebras: if(e, x, y) ≡ (e ∨ y) ∧ ((e→ 0) ∨ x).
4. Rings with unit: if(e, x, y) ≡ (y + e− ey)(1− e+ ex).

Every idempotent element e of a commutative ring with unit induces a pair
of complementary factor congruences (cfc-pair, for short) (θ(1, e), θ(e, 0)), where
θ(1, e) is the least congruence including the pair (1, e) and similarly for θ(e, 0). In
other words, a ring A can be decomposed as A ∼= A/θ(1, e)×A/θ(e, 0). A is di-
rectly indecomposable iff 0 and 1 are the unique idempotent elements. Vaggione
[9] generalized the notion of idempotent to any universal algebra whose top con-
gruence ∇ is compact, and called them central elements. Central elements were
used to investigate the closure of varieties of algebras under Boolean products.
Here we give a new equational characterization. Hereafter, we set θe ≡ θ(1, e)
and θe ≡ θ(e, 0).
Definition 2. An element e of a Church algebra A is central, written e ∈
Ce(A), if (θe, θe) is a cfc-pair. A central element e is non-trivial if e 6= 0, 1.

We now show that, in a Church algebra, factor congruences can be internally
represented by central elements.
Proposition 1. Let A be a Church algebra of type τ and e ∈ A. Then the
following conditions are equivalent:
(i) e is central;

(ii) θe ∩ θe = ∆;
(iii) For all x and y, if(e, x, y) is the unique element such that xθe if(e, x, y) θey;
(iv) e satisfies the following identities:

1. if(e, x, x) = x.
2. if(e, if(e, x, y), z) = if(e, x, z) = if(e, x, if(e, y, z)).
3. if(e, f(x), f(y)) = f(if(e, x1, y1), . . . , if(e, xn, yn)), for every f ∈ τ .
4. e = if(e, 1, 0).

(v) e is the unique element such that 0θeθ1 for a suitable cfc-pair (θ, θ).
(vi) The function fe defined by fe(x, y) = if(e, x, y) is a decomposition operator

such that fe(1, 0) = e.

In the following proposition we characterize the central elements of CΣ(τ).
Proposition 2. Let Σ be an equational theory and V be the variety of τ -algebras
axiomatized by Σ. Then the following conditions are equivalent, for every e ∈
CΣ(τ) and term t(x1, x0) ∈ e:
(i) e is a central element.

(ii) Σ contains the identities t(x, x) = x; t(x, t(y, z)) = t(x, z) = t(t(x, y), z)
and t(f(x), f(y)) = f(t(x1, y1), . . . , t(xn, yn)), for f ∈ τ .

(iii) For every A ∈ V, the function tA : A×A→ A is a decomposition operator.
(iv) Σ = Σ1 ∩Σ0, where Σi is the theory axiomatized (over Σ) by t(x1, x0) = xi

(i = 0, 1).

Definition 3. Let V be a variety and V0,V1 be two subvarieties of V. V is de-
composable as a product of V0,V1 if for every algebra A ∈ V there are two
non-trivial algebras Ai ∈ Vi (i = 0, 1) such that A = A0 ×A1. V is indecom-
posable if it is not decomposable as a product of any of its subvarieties.



Notice that, if e and t satisfy the conditions of Prop. 2 and e is nontrivial
as central element, then by Prop. 2(iii)-(iv) every algebra A ∈ V can be de-
composed as A ∼= A/φ ×A/φ, where (φ, φ) is the cfc-pair associated with the
decomposition operator tA; moreover, the algebras A/φ and A/φ satisfy respec-
tively the equational theories Σ1 and Σ0. Thus, the variety V is decomposable
as the product of the two subvarieties axiomatized respectively by Σ1 and Σ0.

The partial ordering on Ce(A) defined by e ≤ d iff θe ⊆ θd is a Boolean
ordering. 0 and 1 are respectively the bottom and top element of this ordering.
Theorem 1. Let A be a Church algebra. The algebra (Ce(A),∧,∨,− , 0, 1), with
operations defined by e ∧ d = if(e, d, 0), e ∨ d = if(e, 1, d), e− = if(e, 0, 1), is a
BA, which is isomorphic to the BA of factor congruences of A.

Next we turn to the Stone representation theorem for Church algebras. It is
a corollary of Thm. 1 and of theorems by Comer [1] and by Vaggione [9].

Let A be a Church algebra. If I is an ideal of the Boolean algebra Ce(A),
then φI = ∪e∈Iθe is a congruence. In the next theorem S is the Boolean space
of maximal ideals of Ce(A).
Theorem 2. (The Stone Representation Theorem) Let A be a Church algebra.
Then, for all I ∈ S the quotient algebra A/φI is directly indecomposable and
the map f : A → ΠI∈S(A/φI), defined by f(x) = ([x]φI

: I ∈ S), gives a weak
Boolean product representation of A.

Note that, in general, Thm. 2 does not give a (non-weak) Boolean product
representation (see [4] for more details).

The set of all factor congruences of an algebra A does not constitute in
general a sublattice of the congruence lattice of A. We now show that in every
algebra there is a subset of factor congruences which always constitutes a Boolean
sublattice of the congruence lattice.

We denote by tAe the decomposition operator associated with the central
element e by Prop. 2(iii).

Lemma 1. Let Σ be an equational theory and V be the variety of τ -algebras
axiomatized by Σ. For every algebra A ∈ V, the function h : Ce(CΣ(τ)) →
Con(A), defined by h(e) = {(x, y) : tAe (x, y) = x}, is a lattice homomorphism
from the BA of central elements of CΣ(τ) into the set of factor congruences of
A such that (h(e), h(e−)) is a cfc-pair for all e ∈ Ce(CΣ(τ)). The range of h
constitutes a Boolean sublattice of Con(A).

Proof. (Outline) We only show that h is a homomorphism with respect to the
join operator. Recall from Thm. 1 that e ∨ d = q(e, 1, d) and that in CΣ(τ) the
term q is the substitution operator. Then we obtain te∨d(x, y) = te(x, td(x, y)) =
td(x, te(x, y)). We have (x, y) ∈ h(e∨d)⇔ te∨d(x, y) = x⇔ te(x, td(x, y)) = x⇔
(x, td(x, y)) ∈ h(e)⇔ (x, y) ∈ h(d)◦h(e), because (td(x, y), y) ∈ h(d) holds from
property td(td(x, y), y) = td(x, y) of decomposition operators. We get h(e∨ d) ⊆
h(e) ∨ h(d). For the opposite it is sufficient to check h(e), h(d) ⊆ h(e ∨ d). Let
(x, y) ∈ h(e), i.e., te(x, y) = x. Then td(x, te(x, y)) = x, so that te∨d(x, y) = x.
A similar reasoning works for h(d).



We say that a variety V is decomposable as a weak Boolean product of directly
indecomposable subvarieties if there exists a family 〈Vi : i ∈ X〉 of indecompos-
able subvarieties Vi of V such that every algebra A ∈ V is isomorphic to a weak
Boolean product Πi∈XBi of algebras Bi ∈ Vi.
Theorem 3. (Meta-Representation Theorem) Every variety V of τ -algebras is
decomposable as a weak Boolean product of directly indecomposable subvarieties.

Proof. (Outline) Let Σ be the equational theory of V. By Thm. 2 we can repre-
sent CΣ(τ) as a weak Boolean product f : CΣ(τ) → ΠI∈X(CΣ(τ)/φI), where
X is the Stone space of the Boolean algebra Ce(CΣ(τ)) of central elements of
CΣ(τ), I ∈ X ranges over the maximal ideals of Ce(CΣ(τ)), φI = ∪e∈Iθe, and
θe is the factor congruence associated with the central element e ∈ I. Since the
lattice L(Σ) of the equational theories extending Σ is isomorphic to the congru-
ence lattice of CΣ(τ), the congruence φI corresponds to an equational theory,
say ΣI . The ΣI -Church algebra of type τ is isomorphic to CΣ(τ)/φI , so that it
is directly indecomposable. Then by Prop. 2 the variety VI axiomatized by ΣI
is directly indecomposable.

Let A ∈ V and h : Ce(CΣ(τ)) → Con(A) be the lattice homomorphism
defined in Lemma 1. For every maximal ideal I of Ce(CΣ(τ)), consider the
congruence φA

I = ∪e∈Ih(e). The map f : A→ ΠI∈X(A/φA
I ) defined by f(x) =

([x]φA
I

: I ∈ X), determines a weak Boolean representation of A, where A/φA
I ∈

VI . The algebra A/φA
I may be directly decomposable also if it belongs to the

directly indecomposable variety VI .
We remark that, if an algebra A ∈ V has Boolean factor congruences, then

A can be represented as a weak Boolean product in two different way, by using
either the Comer representation theorem [1] or the meta-representation theorem.
The meta representation is in general weaker than Comer’s representation.
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