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While Multidisciplinay Design Optimization (MDO) literature focuses mainly on the
development of different formulations, through the manipulation of design variables, less
attention is generally devoted to the combination of specific MDO formulations with ex-
isting nonlinear optimization algorithms.

In this paper, the focus is on the application of a Global Optimization (GO) algorithm
to an MDO problem. We first introduce and describe some MDO approaches from the
literature. Then, we consider our MDO formulation where we deal with the GO box-
constrained problem

min
a≤x≤b

f(x), f : IRn → IR.

We assume that the solution of the latter problem requires the use of a derivative-free
methods since the derivatives of f(x) are unavailable and/or the function must be treated
as a ‘black-box’. Within this framework we study some globally convergent modifications of
the evolutionary Particle Swarm Optimization (PSO) algorithm, suitably adapted for box-
constrained optimization. Finally, we report our numerical experience. Preliminary results
are provided for a simple hydroelastic problem. Two different numerical tools are involved:
a fluid dynamic solver, to simulate the flow around hydrofoils traveling in proximity of the
air-water interface, and a simplified torsion-flexional wing model.

I. Introduction

Together with developments on numerical solvers and computer power, the recent years have seen some
progress in the development of Simulation Based Design examples for ships too, and in the formulation
and solution of some MDO problems. The ship design problem complexity, has however so far prevented
from assessing a satisfactory reformulation of the overall design problem into a unique mathematical pro-
gramming formulation. As a result, when several disciplines are involved in the design problem, different
heuristic methods have been sequentially used, one for each discipline, which address individual disciplinary
optimization. The growing complexity of modern engineering systems has spurred designers to provide more
efficient heuristics. Unfortunately, the latter are often based on designers personal skills on the specific
problem treated, instead of relying on self-adaptive techniques. Thus, the application of heuristics to new
instances of general real problems, may be unsatisfactory.

These reasons motivate our interest for the systematic numerical approach to MDO. In our case the
multidisciplinarity refers to the design of a ship, which encompasses interacting physical phenomena as
hydrodynamics, structural mechanics, and control, to name a few.

Recently a larger number of real industrial applications have included complex optimization approaches,
where efficient solutions were claimed. Aircraft and spacecraft engines design are among the latter appli-
cations, which intrinsically yield challenging MDO formulations (see e.g.1). One may observe that in most
of the cases, MDO methodologies substantially imply a process of parallelization and coupling of different
independent optimization schemes (disciplines). Moreover, a distinguishing feature of MDO formulations is
that the interaction among the standard optimization approaches, each related to a discipline, is non-trivial.
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Furthermore, the accurate coupling of disciplines might be essential to guarantee the convergence prop-
erties of the overall framework. Thus, a specific care should be paid to provide the correctness of the MDO
formulation, for the problem in hand. On the other hand, both the theoretical results and the methods
provided by nonlinear programming, for standard optimization problems, must be coupled accordingly. This
suggests that those MDO formulations, which strongly rely on the abilities of optimization methods, may
efficiently gain advantage from conventional optimization.2,3

On this guideline, observe that most of the typical issues considered for nonlinear programming formu-
lations (e.g. feasibility, optimality conditions, sensitivity analysis, duality theory, etc.), require a suitable
adaptation when considered in an MDO framework.

The first attempts to give a taxonomy of MDO formulations, simply relied on managing standard nonlin-
ear programming schemes in a sequential fashion. I.e., no real coupling among the disciplines was considered,
and the interaction among optimization codes was often non-significative. The latter scenario was essen-
tially the consequence of the early incapability to match several numerical codes, independently studied for
each discipline. In addition, large scale MDO problems were even tougher, so that coarse solutions had to
be allowed and the coupling among disciplines was possibly weakened. As a consequence, the early MDO
formulations often described quite poorly several non-convex real challenging problems.

This work briefly reviews the main results of MDO literature, including some more recent MDO for-
mulations based on multilevel programming. Starting for this literature review, we are stressing how some
particular global optimization algorithms can be efficiently applied in this context.

Then, we study and solve the MDO formulation of a vertical surface-piercing fin design problem, where the
derivatives of the objective functions are unavailable. The latter problem is a hydroelastic design optimization
problem, where the performances of the fin are depending from both the hydrodynamic and elastic features.
We highlight that for several MDO problems the real functionals to be minimized are described by expensive
simulations and the derivatives are unavailable. This strongly motivates the interest for effective derivative-
free techniques.

We apply a modified Particle Swarm Optimization (PSO,11) method, which belongs to the family of evo-
lutionary algorithms. PSO16 owes its popularity to the reasonable balance between its overall computational
cost and the quality of the final solution it provides. More specifically, the PSO algorithm is an iterative
method, which is tailored to detect a global minimum for the unconstrained optimization problem

min
x∈IRn

f(x), (1)

i.e., a point x∗ ∈ IRn such that f(x∗) ≤ f(x), for any x ∈ IRn. For a computationally costly function
f(x), exact iterative methods are possibly too expensive or they may not provide a current satisfactory
approximation of the solution, after a finite number of iterations. In these scenarios heuristics may be
fruitfully used, whenever the computational resources and/or the time allowed for the computation are
severely bounded. On this guideline, PSO proved to be both effective and efficient on several practical
applications from real life.22

In-house solvers for the flow and elastic computations are here adopted: they are intentionally simple in
order to reduce the computational cost, shifting the main effort on the algorithmic side. The great advantage
of the self-developed solvers is reflected on the easiness in producing the interfaces between the codes and/or
between the single code and the optimizer, guaranteing in the same time the complete control on the quality
of the obtained results, being absolutely clear the kind of assumptions/approximations introduced in the
solvers.

II. Summary of MDO formulations

To clarify the details of the integration strategy between the MDO formulations and the GO algorithm,
some MDO formulations will be re-formulated according to a line suggested by13 and further by.2,3

The general formulation of an MDO problem is partially rewritten as:

min
(x,s,t)∈B̂

f̂(x, s, t), B̂ = Γ1 ∩ Γ2 ∩ Γ3, (2)

where the sets Γ1, Γ2, Γ3 are respectively given by
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Design Constraints:

Γ1 =


g0(x, s) ≥ 0
g1(x0, x1, s) ≥ 0

...
gp(x0, xp, s) ≥ 0

Disciplinary Analysis Constraints (MDA):

Γ2 =


A1(x0, x1, s1, t2, . . . , tp) = 0

...
Ap(x0, xp, sp, t1, . . . , tp−1) = 0

Interdisciplinary Consistency Constraints:

Γ3 =


t1 = C1(s1)

...
tp = Cp(sp).

being xi the design variables, xT = (xT0 , x
T
1 , . . . , x

T
p ), si the state variables, gi the design constraints, Ai the

set of PDEs governing each discipline and ti the interdisciplinary consistency constraints.

(R1) MultiDisciplinary Feasible (MDF). It is an MDO reformulation of (2) also known as FIO or AIO,13

which represents the most trivial approach to the solution. It consists of using the implicit func-
tion theorem to explicit the vectors s = s(x) and t = t(x) from the Disciplinary Analysis and the
Interdisciplinary Constraints. Then, the resulting MDO reformulation reduces to

min
x

f̂(x, s(x), t(x))

g0(x, s(x)) ≥ 0
g1(x0, x1, s(x)) ≥ 0

...
gp(x0, xp, s(x)) ≥ 0,

(3)

which may be treated as a nonlinear program depending on the vector of unknowns x ∈ IRn. As we said,
the equality constraints in (2) can be hardly inverted to provide s = s(x), so that the reformulation
(3) turns to be quite unusual. The MDF scheme is an OD/CDA/CIC reformulation.2,3

(R2) Simultaneous Analysis and Design (SAD). Also known with the acronyms AAO or SAND,15 is the
counterpart of MDF. Indeed, now x, s and t must be treated as independent unknowns, so that the
overall reformulation to be solved is

min
x,s,t

f̂(x, s, t)

g0(x, s) ≥ 0
g1(x0, x1, s) ≥ 0

...
gp(x0, xp, s) ≥ 0
A1(x0, x1, s1, t2, . . . , tp) = 0

...
Ap(x0, xp, sp, t1, . . . , tp−1) = 0
t1 = C1(s1)

...
tp = Cp(sp).

(4)
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Observe that the number of unknowns for SAD is relatively larger with respect to MDF. The SAD
scheme is an OD/ODA/OIC reformulation.

(R3) Distribute Analysis Optimization (DAO). This is an intermediate approach (see Section VI) between
the previous two; that is why it is often addressed as the In Between13,18 reformulation, or alternatively
it is the IDF approach.13 Here, a subset of the equality constraints is used to explicit a sub-vector of
the unknowns in terms of the remaining variables (i.e., the implicit function theorem may be partially
applied). Considering the following partition of vectors sT = (s̃T ŝT ) and tT = (t̃T t̂T ), the resulting
optimization problem becomes (for simplicity we have compounded the Disciplinary Analysis and the
Interdisciplinary Consistency constraints)

min
x,s̃,t̃

f̂
[
x, (s̃T ŝT (x, s̃))T , (t̃T t̂T (x, s̃))T

]
g0
[
x, (s̃T ŝT (x, s̃))T

]
≥ 0

g1
[
x0, x1, (s̃T ŝT (x, s̃))T

]
≥ 0

...
gp
[
x0, xp, (s̃T ŝT (x, s̃))T

]
≥ 0

A
[
x, (s̃T ŝT (x, s̃))T , (t̃T t̂T (x, s̃))T

]
= 0

t̃ = C̃(s̃).

(5)

Finally observe that the DAO scheme is an OD/CDA/OIC reformulation.

(R4) Optimization by Linear Decomposition (OLD). This is a true bilevel reformulation of (2).14 Indeed,
the first (upper) level of minimization (the master level) has the role of coordinating the results coming
from the second (lower) level of minimization, which is the disciplines level. The resulting overall
nonlinear program is

min
x0,t

f̂ [x0, x1, .., xp, s1(x0, x1, t), .., sp(x0, xp, t)]

g0 [x0, x1, .., xp, s1(x0, x1, t), .., sp(x0, xp, t)] ≥ 0

mi(x0, xi, t) ≤ 0, i ≤ p

min
xi

mi(x0, xi, t)

ti = Ci [si(x0, xi, t)] , i ≤ p

(6)

where
mi(x0, xi, t) =

∥∥g+
i [x0, xi, si(x0, xi, t)]

∥∥2
(7)

and

g+
i [x0, xi, si(x0, xi, t)] =

min {0, gi [x0, xi, si(x0, xi, t)]} ,

and the last equality is intended componentwise. Observe that here the sub-vector si(x0, xi, t) is sup-
posed to be computed by the implicit function theorem, applied to the i-th block of MDA constraints
(i.e., Ai(x0, xi, si, t1, . . . , ti−1, ti+1, . . . , tp) = 0). The function mi() (the so called discrepancy func-
tion3) in both the upper and lower level of (6) substantially measures a penalization for infeasible
solutions. Note that the exponent 2 in (7) is introduced in order to yield a continuously differentiable
objective function, for the lower level.
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(R5) Collaborative Optimization (CO). Similarly to OLD, CO is a multilevel optimization reformulation.7

Here, the different role played by the system level and the disciplines level is strongly remarked. In
particular, we allow the dependency of the Interdisciplinary Constraints from both the design variables
and the state variables. The overall nonlinear program is described by introducing the so called
surrogates y1, . . . , yp of vector x0. Observe that for each discipline, the latter unknowns are used to
de-couple the upper level and the lower level, i.e. they play a role similar to that of vector t.

min
x0,t

f̂(x0, x1, . . . , xp, t)

‖ti − Ci (yi − x0, si(yi, xi, t))‖∗ = 0, i ≤ p

min
yi,xi

1
2

[
‖yi − x0‖2 + ‖si(yi, xi, t)− ti‖2

]
gi (yi, xi, si(yi, xi, t)) ≥ 0, i ≤ p.

(8)

The reformulation (8) strongly requires that the sub-vector si = si(yi, xi, t) can be computed, by apply-
ing the implicit function theorem to the i-th block of MDA constraintsAi(yi, xi, si, t1, . . . , ti−1, ti+1, . . . , tp) =
0. As reported above, the bilevel structure of CO may be fruitfully exploited by using suitable nonlin-
ear programming techniques.14 Finally, the choice of the norm ‘∗’ is substantially arbitrary; however,
common choices are ‘∗’= 1 (CO1) and ‘∗’= 2 (CO2).

With the choice ‘∗’= 1 in (8), the constraints of the upper level are not differentiable. This implies that
the Lagrange multiplier rule could not be applied.23 On the other hand, the choice ‘∗’= 2 is appealing
because it gives a smooth feasible region of the upper level in (8). Unfortunately, in case the feasible
region of the upper level is open, the KKT optimality conditions may fail, since the Jacobian matrix
(of the upper level constraints) vanishes in any feasible point. Thus, the Lagrange multiplier rule5 may
fail as well.

III. A generalized PSO scheme for GO

As described in Section I, PSO is an iterative heuristics for the solution of (1). It generates subsequences
of points in IRn which possibly converge eventually to a stationary point of f(x).

At the current iteration k the PSO algorithm generates the P sequences {xkj }, j = 1, . . . , P , according
with (see9):

vk+1
j = χ

[
wkvkj + cjrj(pkj − xkj ) + cgrg(pkg − xkj )

]
,

xk+1
j = xkj + vk+1

j .

(9)

PSO belongs to the wide class of evolutionary algorithms and follows the natural paradigm of a bee swarm,
where the trajectories of the bees (so called particles) are represented by the P sequences {xkj }. On the other
hand, the vector vkj ∈ IRn represents the so called speed of the j-th particle at iteration k. Finally, the n-real
vectors pkj and pkg , for any k, satisfy the conditions

1) pkj ∈ {x`j} ` ≤ k, j = 1, . . . , P,

2) f(pkj ) ≤ f(x`j) ∀` ≤ k, j = 1, . . . , P,
(10)

and
1) pkg ∈ {x`1, . . . , x`P } ` ≤ k,

2) f(pkg) ≤ f(x`j) ∀` ≤ k, ∀j = 1, . . . , P.
(11)

Furthermore, χ,wk, cj , rj , cg, rg are real bounded coefficients. Observe that we use the subscript j to indicate
the subsequence, while the superscript k indicates the iterate in the subsequences {xkj }. Also note that
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pkj represents the ‘best position’ in the j-th subsequence, while pkg is the ‘best position’ among all the
subsequences. The choice of the coefficients is often problem dependent; however, several values for them
were proposed in the literature.9,12,21,24 In particular, the parameters rj and rg are often random parameters
with uniform distribution in [0, 1].

Observe that in relation (9) the speed vk+1
j depends only on the vectors pkj − xkj , pkg − xkj . However, for

the j-th particle an obvious generalization of (9) could be the following9

vk+1
j = χkj

[
wkj v

k
j +

P∑
h=1

ch,jrh,j(pkh − xkj )

]
,

xk+1
j = xkj + vk+1

j ,

(12)

where the speed vk+1
j depends on the P vectors pkh − xkj (see also19), h = 1, . . . , P .

Now, assuming χkj = χj and wkj = wj , for any k ≥ 0, the iteration (12) is equivalent to the discrete
stationary (time-invariant) system

Xj(k + 1) =

 ajI −ωjI

ajI (1− ωj) I

Xj(k)

+


P∑
h=1

χjch,jrh,jp
k
h

P∑
h=1

χjch,jrh,jp
k
h

 , (13)

where aj = χjwj , ωj =
∑P
h=1 χjch,jrh,j and

Xj(k) =

 vkj

xkj

 ∈ IR2n, k ≥ 0. (14)

The sequence {Xj(k)} identifies the trajectory of the j-th particle in the real space IR2n. In addition, this
trajectory can be split into the free response XjL(k) and the forced response XjF (k) (see also20). In other
words, for any k ≥ 0, Xj(k) may be rewritten according with

Xj(k) = XjL(k) +XjF (k), (15)

where

XjL(k) = Φj(k)Xj(0), XjF (k) =
k−1∑
τ=0

Hj(k − τ)Uj(τ), (16)

and (after few calculations9)

Φj(k) =

 ajI −ωjI

ajI (1− ωj) I


k

, (17)

Hj(k − τ) =

 ajI −ωjI

ajI (1− ωj) I


k−τ−1

, (18)

Uj(τ) =


P∑
h=1

χjch,jrh,jp
τ
h

P∑
h=1

χjch,jrh,jp
τ
h

 . (19)
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The issue of the convergence of the free response of the system has been partially investigated in17 and
finalized in.11

IV. PSO algorithm in a DAO formulation

As from Section II, DAO formulation is open with respect to design variable and interdisciplinary con-
sistency constraints. The latter are satisfied once we approach the set of optimal design variables. In fact, if
we consider a small variation of a prescribed design, we can assume that the values of the interdisciplinary
variables do not change dramatically. This sentence is untrue, for example, if we are in the vicinity of a
particular transitional state for the phenomena under analysis. If we are also in the position to obtain a small
modification in the design object for a small variation of the design variables, what we need are optimization
algorithms than naturally search the optimal solution by widely exploring the design space. This is not the
typical behavior of a global optimization algorithm: as a consequence, in the literature of MDO we find a
large number of applications in which the different objective function of the problem are re-casted into a
single merit function, and this problem is solved by using gradient-based optimization algorithms. By the
way, using the DAO formulation, the approximated computation of the gradient of the objective function
may be further affected by the uncertainty given by the incomplete convergence of the single MDA.

This approach heavily penalizes the final solution, since we are in the position to discover only local
minima of the problem in hands. Viceversa, the application of a global optimization algorithm can produce
a larger improvement because global optima are possibly found. If we observe the behavior of the PSO
algorithm, we can see how a number of interacting elements explore the design space in a coordinate way,
all looking for the global optimum of the objective function. The design space is globally investigated, but
the pattern of every single particle is potentially continuous, depending on the maximum speed the particle
is allowed to assume at each iteration. If we consider a DAO formulation for each swarm element separately,
we can obtain the convergence of the interdisciplinary constraints individually.

Furthermore, the PSO algorithm is also suitable for multi-objective problems: under this perspective,
using this algorithm a solution of a multi-objective problem, in which the objective function is not recast
into a single merit function, can be preformed. In this case, the full Pareto front of the problem can be
determined, instead of a single optimal solution valid just for the adopted recombination of the objective
functions.

The classical approach of the gradient-based algorithm for the solution of (5) has been utilized in,8 and
a comparison between the application of a gradient-based local optimization algorithm and a derivative-free
algorithm has been proposed in,10 giving also evidence of the convergence of the interdisciplinary consistency
constraints, as expected. In the following application, the PSO algorithm is tested on an MDO problem: a
vertical fin is travelling across the free surface, also deflecting due to the drift angle. While in the previous
papers an open-source code has been adopted for the solution of the elastic problem, here an in-house code
is applied.

V. Numerical Tools

For the solution of the hydro-elastic problem, we need two separate solvers, one for the solution of the
hydrodynamic problem, one for the elastic problem. A very simple code is utilized for the elastic problem
solution, and the fin is modelled using the thin beam approximation. For the flow solution, the Laplace
equations are solved by using a Boundary Element Method (BEM) for incompressible flows.

The MDA is performed iteratively: starting form the undeformed fin geometry, the pressures computed
by the fluid dynamic solver are the input loads for the structural solver. Conversely, the displacements
computed by the structural solver are applied to the fin and the deformed fin is computed again by the flow
solver. The procedure stops once the loads and deformation converge to stable values.

A. BEM for free-surface computations

The hypothesis of potential flows is assumed in this case. Vorticity is confined in zero-volume regions,
managing the wake as a thin surface. Two different plane elements are used for the distribution of unknowns
on the body and on the free surface, whose are limiting the computational domain. A system of Hess and
Smith plane sources, distribution on the exact body surface, is used in conjunction with vortex rings, in
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order to include lifting surfaces. The Poincaré formulation is giving the expression of the speed due to a
vortex ring, or and horseshoe vortex representing the wake.6 Wake position is an unknown of the problem,
and the deformation of the free surface as well. The problem is solved iteratively: at each step the wake is
aligned with the local speed, and the free surface collocation points are moved according to the actual local
wave elevation. Impermeability condition

∇Φ · ~n = 0

is enforced on the body while
ϕllϕ

2
l + ϕz/Fr

2 = 0

is the free surface non linear condition, where Fr is the Froude number and the derivatives are also performed
along the streamline l.4

B. FEM for elastic computations

An equivalent beam is produced basing on the actual fin geometry. A number of strips is considered spanwise:
on these locations, the 3D loads distribution is converted into a set of concentrated forces and moments. For
each strip, the equilibrium of the loads is enforced, and displacements are computed accordingly.

VI. Numerical Experiments

A surface piercing vertical fin is the argument of this numerical experiment. The original profile is a
NACA0012, with a chord of 10 cm and a span of 60 cm. It is travelling at the speed of 10 m/s with an angle
of attack of 5 degrees. Objective function is the efficiency of the fin, defined as the ratio between vertical
and longitudinal forces. This function is to be maximized.

The Free Form Deformation approach has been used for the purpose of shape deformation.10 The fin is
deformed maintaining the cylindrical shape along the vertical axis. 4 design variables are applied all on the
same side of the profile: geometrical variation is transmitted to the opposite side of the profile in order to
enforce symmetry.

In order to check the convergence properties of the interdisciplinary design constraints, the value of the
hydrodynamic functions are traced trough the MDA iterations. If we compute the longitudinal (Fx) and
lateral (Fy) forces at two successive iteration of the MDA, we define

δ =

√(
Fxk − Fxk−1

Fxk−1

)2

+
(
Fyk − Fyk−1

Fyk−1

)2

where the index k is counting the MDA internal iterations. We stop the MDA if δ is lower than a
prescribed limit. At least two successive evaluations of the hydrodynamic function are needed for the
computation of δ.

In figure 1 the objective function and the convergence parameter δ for the original configuration are
reported as a function of the number of inner iteration of the MDA, achieving a multidisciplinary equilibrium.
We can see that a number of 13 inner steps are needed for the full convergence of the MDA: here a value
of δ close to 10−5 is obtained, that means that the difference in the objective function prediction between
two iterations is lover than 0.001%. In the following computations, a limit of 10−3 is adopted in order to
consider the MDA converged.

In figure 2, a front-up view of the fin and the free surface is presented. On left, the wave elevation
produced by the rigid (undeformed) fin is shown, whereas on right the same picture but for the fin deformed
under loads is reported. Only small differences are visible: this is connected with the small deformation
of the fin in the region across the water surface. The free surface is colored according to the local wave
elevation: red is representing high crest, blue is for deep trough.

The best solution of the MDO problem is provided by the profile reported in figure 3. The profile is thicker
in the front part and thinner at the trailing edge. The efficiency of the profile is increasing passing from the
value of 0.545 (original profile) to 0.653 (optimal profile). The final gain is around 20%. We remember that
this improvement is obtained considering throughout the optimization process the real deformation of the
fin under the hydrodynamic loads.

The elastic response of the optimal fin appear to be increased if we compare the deformations reported
in figure 4: in particular, an higher torsion of the fin is producing a local reduction of the angle of attack.
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Figure 1. Convergence history of the MDA of the original design. In abscissa the iteration number of the MDA
is reported. On left, the vertical axis reports the objective function values. Good convergence is obtained in
13 steps. On right, the vertical axis reports the values assumed by the parameter δ.

Figure 2. Comparison of the free surface deformation for the fin with and without elastic deformation. On
left, the free surface elevation past the undeformed fin, on right the same but with the fin under loads. Colors
are indicating the water level: red is representing high crest, blue is for deep trough. Small differences are
perceptible due to the small deformation of the fin near the free surface.

If we compute the flow around the original and optimized geometry without taking into account the
effect of the loads on the structure, the efficiency for the original profile would be 0.714, whereas it would
be 0.936 for the optimal profile, producing an ideal gain of about 31%. This means that the improvement is
not obtained by reducing the deformation of the fin: the larger part of the improvement is obtained just by
enhancing the hydrodynamic performances of the shape.

The maximum number of objective function evaluations has been fixed at 100 ∗N , being N the number
of design variables (4 in this example). This number is evidently too low for this numerical experiment: if
we observe the results in figure 5, we can see how the algorithm is producing an initial large exploration
of the design variable space, and than it start focusing on a limited region. This behavior is also evident
by looking at the convergence history reported on figure 6, where a sudden steepness change is indicating a
rapid improvement of the objective function. Unfortunately, the process is stopped before a real convergence
is achieved. Further computations are needed to produce a complete exploration of the capacities of the
method.

A different way to observe this behavior is from the design variable evolution, reported in figure 5. Here
the values of the design variables for all the particles are reported together in a single graph, one for each
design variable. Here we can see the initial large exploration phase, and than a sudden diversion of all the
swarm toward a single direction. One particle is not converging together with all the others: it will be
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Figure 3. Optimal shape at the end of the optimization process. Thick solid line is representing the optimal
solution, while thin line is showing the initial shape.

Figure 4. Comparison of bending and torsion of the fin for the original and optimal shape. Bending is reported
on left as a function of the span, while the torsion of the fin is shown on right.

probably recovered at the end of the optimization cycle, when all the particles are supposed to converge into
an unique location.

VII. Conclusions

Optimization problems in which the solution depends on more disciplines may be tackled with MDO. In
this paper we present results for the MDO optimal shape of a vertical fin travelling across the free surface,
simultaneously accounting for hydrodynamics and elasticity. In the MDO framework the fin is assumed to
be elastic and hence it can be modified by the hydrodynamic loads.

The optimal design problem is tackled considering a Global Optimization (GO) problem within a MDO
framework. Some numerical experiments have been performed on a test problem, showing how global
optimization algorithms can be applied in this context.

Future work will include the application of this technique to multi-objective problems, a more articulated
reshaping of the profile (as to the optimizer), the modelling of the fin using non-isotropic materials (like
carbon fiber) for the structural analysis, and the use of a RANS solver for the hydrodynamic analysis.
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Figure 5. Convergence history of all the 8 particles forming the swarm.
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