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a b s t r a c t

The cationic complexes trans-[Pd(COOR)(H2O)(PPh3)2](TsO) have been synthesised by reacting cis-
[Pd(H2O)2(PPh3)2](TsO)2·2H2O with CO in ROH (R = Me and Et), practically under room conditions, or
by methathetical exchange of trans-[Pd(COOMe)Cl(PPh3)2] with Ag(TsO) (R = n-Pr, iso-Pr, n-Bu, iso-Bu,
sec-Bu). They have been characterised by IR, 1H NMR and 31P NMR spectroscopies.

The X-ray investigation of trans-[Pd(COOMe)(TsO)(PPh3)2] reveals that the palladium center is sur-
rounded in a virtually square planar environment realized by two PPh3 trans to each other, the carbon
atom of the carbomethoxy ligand and an oxygen atom of the p-toluensulfonate anion, with two crystal-
lization molecules of CHCl3. The Pd–O–S angle, 151.9 (3)◦, is very wide, probably due to the interaction of
one CHCl3 molecule with the complex inner core. The carbomethoxy derivatives react with R′OH yield-
ing the corresponding R′ carboalkoxy derivative (R′ = Et, n-Pr and iso-Pr); ethene does not insert into the

◦
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Hydrocarboalkoxylation Pd–COOMe bond; decarbomethoxylation occurs when treated with TsOH/H2O in MeOH at 50 C.
All the carboalkoxy are precursors for the catalytic carboalkoxylation of ethene if used in combination
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. Introduction

Pd(II)-carboalkoxy complexes are involved as key intermediates
n several catalytic carbonylation reactions, such for example the
xidative carbonylation of alkanols to carbonates and oxalates, or
f olefins and alkyns to diesters or unsaturated esters [1–3], the
ouble carbonylation of organic halides [4,5], the carbonylation of
lefins to polyketones [6,7]. They have been proposed as key inter-
ediates also in the hydroesterification of an olefin to monoesters

8–11].
Methods of synthesis are based on the reaction of Pd(II) com-

lexes with CO and an alkanol, eventually in the presence of a

ertiary amine, or an alkoxide [12–17] or on the oxidative addition
f chloro or cyano formate or phenylcarbonate to Pd(0) complexes
18–22]. Most of the syntheses reported up to now are relevant
o carbomethoxy derivatives. The synthesis of neutral Pd(II) com-

∗ Corresponding author. Tel.: +39 041 2348553; fax: +39 041 2348517.
E-mail address: toniolo@unive.it (L. Toniolo).
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presence of some water. Experimental evidences are more in favor of the
rather than the “carbomethoxy” mechanism.

© 2008 Elsevier B.V. All rights reserved.

lexes of the type trans-[Pd(COOR)X(PPh3)2] (X = Cl and CN) with R
ulkier than Me (up to cyclohexyl) has been also reported [19–24].

The cationic carbomethoxy complex trans-[Pd(COOMe)(H2O)
PPh3)2](TsO) has been synthesised from the neutral trans-
Pd(COOMe)Cl(PPh3)2] by methathetical exchange with Ag(TsO).
ts role in the catalytic hydrocarbomethylation of ethene has been
nvestigated [25].

In the present paper we extend the study to the synthesis
nd characterization of the new cationic carboalkoxy complexes
rans-Pd(COOR)(H2O)(PPh3)2](TsO), with R = Et, n-Pr, iso-Pr, n-Bu,
so-Bu, sec-Bu, together with further studies on the reactivity of the

ethyl analogue in relation to the catalytic hydrocarbomethyla-
ion of ethene. We also reported the X-ray diffraction structure of
rans-[Pd(COOMe)(TsO)(PPh3)2]·2CHCl3.

. Experimental
.1. Materials

Carbon monoxide and ethene (purity higher then 99%) were
upplied by SIAD Spa (Italy). Methanol was purchased from Baker

https://core.ac.uk/display/223146564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/13811169
http://www.elsevier.com/locate/molcata
mailto:toniolo@unive.it
dx.doi.org/10.1016/j.molcata.2008.10.002
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Table 1
Crystal and refinement data.

Complex

Formula C47H42O5P2SCl6Pd
Molecular wt 1099.9
Color colorless
Crystal system monoclinic
Space group P21/n (No. 14)
a (Å) 19.558(3)
b (Å) 12.155(2)
c (Å) 21.453(4)
ˇ (◦) 103.87(1)
V (Å3) 4951(1)
Z 4
Dcalc (g cm−3) 1.476
F(0 0 0) 2232
Crystal dimens (mm) 0.20 × 0.20 × 0.20
� limits (◦) 3.5/29.6
No. of independent data 11938
No. of data with I > 2� (I) 3892
No. of variables 560
R(F)a 0.058
wR(F2)b 0.110
Largest peak in (F (e Å−3) 0.824
GOFc 0.763

a R(F) =
∑∣∣

Fo
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Fc
∣∣
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purity > 99.5%, 0.01% of water) and Pd(OAc)2, Ag(TsO), NEt3, PPh3
nd p-toluenesulfonic acid were purchased from Aldrich Chem-
cals. NEt3 and the solvents were commercial grade and used

ithout further purification. [Pd(COOR)Cl(PPh3)2], [PdCl2(PPh3)2],
Pd(H2O)2(PPh3)2](TsO)2] and [Pd(TsO)2(PPh3)2] complexes were
repared according to the methods reported in the literature
24–27].

.2. General procedure

The IR spectra were recorded in nujol mull on a Nicolet FTIR
nstruments mod. Nexus. 1H and 31P NMR spectra were recorded
n a Bruker AMX 300 spectrometer equipped with a BB multinu-
lear probe operating in the FT mode at 300 and 121.5 MHz for 1H
nd 31P, respectively. All the samples were dissolved in deuterated
ethanol used also as internal reference for the assignment of the

hemical shifts.

.3. Preparation of trans-[Pd(COOR)(H2O)(PPh3)2](TsO) (R = Me
nd Et)

0.1 mmol of [Pd(H2O)2(PPh3)2](TsO)2 was dissolved in 2 ml of
eOH or EtOH, previously saturated with CO at r.t. The solution
as kept under 2 atm of CO for 5–10 min and then poured into
0 ml of cold water under vigorous stirring. A white precipitated
ormed immediately. The suspension was filtered, the solid was
ashed with cold water, n-pentane, and dried under vacuum (yield

7%).

.4. Preparation of trans-[Pd(COOR)(H2O)(PPh3)2](TsO) with R
ulkier than Et

AgTsO was slowly added to trans-[Pd(COOR)Cl(PPh3)2]
0.1 mmol) suspended in 2 ml of ROH. The solution was stirred
or few minutes at 15 ◦C till complete precipitation of AgCl and
hen quickly filtered using a micro-filter system. The solution was
ropped directly into 20 ml of cold water, under vigorous stirring. A
hite solid precipitates which was separated by filtration, washed
ith cold water, n-pentane and dried under vacuum (yield 75%).

his procedure gives good results also when R = Me or Et. If the
ltered methanol solution is poured into warm water (50 ◦C), the
omplex trans-[Pd(COOR)(TsO)(PPh3)2] separates.

.5. Reactivity

The reactivity tests under pressure higher than 2 atm were
arried out by dissolving the carboalkoxy complex (0.1 mmol) in
he appropriate alkanol (2 ml) in a 5–10-ml glass bottle placed
n an autoclave of ca. 50 ml volume. The autoclave was first
ashed several times with the appropriate gas (CO or ethene),

hen pressurised and warmed to the desired pressure and tem-
erature. The solution was stirred with a magnetic bar. After
he desired reaction time was over the autoclave was rapidly
ooled to r.t. (or even to 0 ◦C) and then slowly depressurised.

little sample was taken apart for GC analysis. The rest was
uickly poured into water. The precipitate was collected on a fil-
er, washed with cold water and n-heptane, dried under vacuum.
he nature of the solid was established by IR and NMR spec-

roscopy.

The reactivity was tested with alkanols, acids (HCl, AcOH and
sOH), water, water/TsOH and with ethene. In order not to be redun-
ant, the conditions of the tests are reported together with the
esults and the discussion in the next section.
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.6. Hydroesterification of ethene using the carboalkoxy
omplexes reported in Table 1 as catalyst precursors in the
elevant ROH

The precursor was used as such or also in combination with PPh3
nd PPh3/TsOH as reported in Section 3. All the experiments were
arried out in a stainless steel autoclave of ca. 250 ml of capacity
ollowing the same procedure already reported, using the solvent
ith 800 ppm of water in order to compare the activity with that
reviously reported using related precursors [25,28,29].

.7. X-ray data collection, structure solution and refinement

The X-ray data collection was performed at room temper-
ture with a STADI 4 CCD STOE area detector diffractometer
n single-crystal mounted in a thin-walled glass capillary with
raphite-monochromated Mo K� radiation (� = 0.71073 Å). The
rystals were obtained by slow evaporation of a CHCl3/n-hexane
olution of the complex at −10 ◦C. A summary of the X-ray analysis
s listed in Table 1.

The structure was solved by direct methods and refined by
ull-matrix least-squares based on F2, where all non-hydrogen
toms were assigned anisotropic displacement parameters. As
ommented in Section 3.2, the solvent molecules suffer from high
hermal motions. The final Fourier difference maps showed no sig-
ificant features, the largest maxima (less than one electron) close
o the chlorine atoms. All calculations were made with programs
f the SHELXTL/PC system and SHELXL93 program [30].

. Results and discussion
.1. Synthesis and characterization of the carboalkoxy complexes
eported in Table 2

Complexes (Ia and b) have been prepared by reacting
Pd(TsO)2(PPh3)2] or [Pd(H2O)2(PPh3)2](TsO)·2H2O with CO in ROH
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Table 2
Selected IR, 1H NMR and 31P{1H} NMR data of trans-[Pd(COOR)(H2O)(PPh3)2](TsO) (Ia–g), trans-[Pd(COOMe)(TsO)(PPh3)2] (IIa) and trans-[Pd(COOEt)(TsO)(PPh3)2] (IIb).

R IRa 1Hb 31Pc

� cm−1 ı (ppm) ı (ppm)

Me (Ia) [REF?] H2O 3489, 3412 2.58 s: CH3 19.04 sd

C O 1685 2.36 s: CH3

C–O–C 1070
SO3 1230, 1035, 1013

(IIa) C O 1668 2.58 s: CH3 19.04 s
C–O–C 1086 2.36 s: CH3

SO3 1263, 1029, 1000

Et (Ib) H2O 3671, 3441 2.87 q: CH2 19.01 s
C O 1684 2.36 s: CH3

C–O–C 1057 0.49 t: CH3

SO3 1222, 1036, 1011

(IIb) C O 1663 2.87 q: CH2 19.01 s
C–O–C 1088 2.36 s: CH3

SO3 1268, 1029, 999 0.49 t: CH3

n-Pr (Ic) H2O 3640, 3485 2.81 t: OCH3 19.12 s
C O 1671 2.36 s: CH3

C–O–C 1083 0.88 m: CH2

SO3 1257, 1031, 1008 0.51 t: CH3

iso-Pr (Id) H2O 3220 3.82 m: CH 19.08 s
C O 1674 2.36 s: CH3

C–O–C 1051 0.31 d: CH3

SO3 1223, 1038, 1014

n-Bu (Ie) H2O 3640, 3488 2.87 t: OCH2 19.13 s
C O 1672 2.36 s: CH3

C–O–C 1081 0.87 m: CH2

SO3 1246, 1030, 1007 0.68 t: CH3

iso-Bu (If) H2O 3142 2.63 d: OCH3 19.27 s
C O 1669 2.36 s: CH3

C–O–C 1068 1.08 m: CH
SO3 1218, 1036, 1012 0.47 d: CH3

sec-Bu (Ig) H2O 3144 3.69 m: CH 19.10 s
C O 1671 2.36 s: CH3

C–O–C 1059 0.67 m: CH2

SO3 1231, 1037, 1013 0.41 t: CH3

0.20 d: CH3

NMR spectra are recorded in CD3OD. Abbreviations: s = singlet; t = triplet; q = quartet; m = multiplet.
a Nujol mull.
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b ı (1H) values in ppm referenced to CD3OD.
c ı (31P) values in ppm from external 85% H3PO4, downfield being taken as positi
d In Ref. [25] it was erroneously reported 16.51 ppm.

2 atm, r.t.):

[Pd(TsO)2(PPh3)2] + CO + ROH

H2O−→trans-[Pd(COOR)(H2O)(PPh3)2](TsO) + TsOH (1)

The reaction with MeOH takes place in a few minutes, whereas
ith EtOH is significantly slower as it takes 20–30 min.

Reaction (1) with bulkier alkanols gives unsatisfactory results.
n attempt to synthesise complex If failed. The carboalkoxy com-
lexes (Ic–g) with bulkier R (Table 2) have been prepared via
ethathetical exchange of the corresponding neutral chloride with
gTsO, as already experienced for the synthesis of (Ia) [25]:

trans-[Pd(COOR)Cl(PPh3)2] + AgTsO

H2O−→trans-[Pd(COOR)(H O)(PPh ) ](TsO) + AgCl (2)
2 3 2

It is noteworthy to point out that the synthesis based on reaction
1) does not require the presence of a tertiary base, at difference
f the analogous synthesis of the corresponding chloride trans-

b
l
w
a
i

Pd(COOR)Cl(PPh3)2] starting from trans-[PdCl2(PPh3)2], in which
ase the use of the base is necessary in order to neutralise HCl that
orms during the reaction and that otherwise reverses the reaction
12,24].

Selected IR and NMR data are reported in Table 1. The IR spec-
ra of (Ia–g) show a strong absorption band in the 1684–1670 cm−1

egion due to �C O of the carboalkoxy ligand. In the correspond-
ng neutral chloride the �C O absorption appears at slight lower
requency [24], which might be due to a stronger �-back dona-
ion from the metal to the carboalkoxy moiety in the neutral
omplexes.

Absorption bands due to coordinated water are observed in the
640–3142 cm−1 region [31]. Complexes (Ia–c and Ie) show two
harp bands of low intensity; complex If shows one band of low
ntensity at 3637 cm−1 and an unresolved broad absorption cen-
ered at 3142 cm−1; complexes Id and Ig show a broad unresolved

and centered at 3220 and at 3144 cm−1, respectively. Those at

ower frequency suggest the presence of a hydrogen-bond between
ater and TsO−, with consequent lowering of �O–H [31–33]. The

bsorptions in the ranges of 1273–1222, and 1014–1007 cm−1 are
dentified as some of the characteristic bands of the anionic –SO3

−
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Table 3
Relevant bond distances (Å) and angles (◦).

Pd–P(1) 2.353(2) Pd–O(3) 2.160(4)
Pd–P(2) 2.342(2) Pd–C(1) 1.978(6)
S–O(3) 1.452(4) C(1)–O(1) 1.187(7)
S–C(3) 1.789(6) C(1)–O(2) 1.336(7)

O(2)–C(2) 1.458(7)

P(1)–Pd–P(2) 177.2(1) C(1)–Pd–O(3) 170.8(2)
P(1)–Pd–O(3) 98.1(1) P(2)–Pd–O(3) 84.3(1)
P(1)–Pd–C(1) 89.2(2) P(2)–Pd–C(1) 88.3(2)
P
P
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roup [34–38]. The band in the 1037–1025 cm−1 is assignable to
he C–O–C stretch of the alkoxycarbonyl group [13,14,24].

The 1H NMR spectra of (Ia–g) show signals in the range of
.20–3.69 ppm assigned to the alkoxy group protons [24]. The
inglets observed at 2.36 ppm is assigned to the CH3 protons of
he TsO− anion. Two well separated multiplets for the aromatic
rotons are centered at about 7.6 and 7.3 ppm. The 31P NMR
pectrum shows a singlet in the range of 19.01–19.27 ppm,
lose to that of the relevant neutral chloride complex
24].

As reported in Section 2, complexes (Ia–g) have been precipi-
ated by pouring their alkanol solution into cold water. When warm
ater has been used to precipitate the carbomethoxy complex, a
ifferent derivative has been obtained, (IIa). The IR spectrum of
IIa) does not show absorbtion bands due to coordinated water.
he �CO and �C–O–C are shifted from 1685 and 1036 cm−1 to 1668
nd 1029 cm−1 and the bands of the –SO3

− group are shifted from
230 and 1013 cm−1 to 1263 and 1001 cm−1 and are assignable to
coordinated anion [34–38]. The 1H and 31P NMR spectra of com-
lexes (Ia) and (IIa) in CD3OD do not differ appreciably, probably
ue to the fast exchange of labile water, TsO−, solvent. The X-ray
rystal structure of the CHCl3 clathrated of complex (IIa) shows
hat it has a trans geometry, in which TsO− coordinates the metal
in place of H2O) in (Ia) [24]; the 31P NMR spectrum for this com-
lex in CDCl3 shows a singlet at 18.51 ppm slightly lower than

n CD3OD. On the basis of these data complex (IIa), precipitated
rom MeOH/H2O is formulated as trans-[Pd(COOMe)(TsO)(PPh3)2].

trans geometry is assigned also to all the new cationic complexes
Ib–g).

The IR spectrum of the solid precipitated by addition of cold
ater to the ethanol solution of the carboethoxy derivative shows
ouble absorptions in the �CO, �C–O–C and �SO3 regions, suggesting
hat this solid is a mixture of trans-[Pd(COOMe)(H2O)(PPh3)2](TsO),
Ib) and trans-[Pd(COOMe)(TsO)(PPh3)2], (IIb).

.2. X-ray structure analysis of
Pd(COOMe)(TsO)(PPh3)2]·2CHCl3, (IIa)
The ORTEP [39] drawing of the complex is shown in Fig. 1,
ogether with the numbering scheme used, while relevant bond
engths and angles are reported in Table 3. The solid state investi-
ation revealed three sets of atoms lying in well defined planes:

a
g

p
e

ig. 1. A drawing of the complex with the selected numbering scheme. Ellipsoids are a
henyl rings and the CHCl3 molecules have been omitted for clarity.
d–O(3)–S 151.9(3) O(3)–S–C(3) 104.5(3)
d–C(1)–O(1) 124.6(5) Pd–C(1)–O(2) 110.0(4)

O(1)–C(1)–O(2) 125.4(6)

(1)–C(1)–P(2)–O(3), C(1)–C(2)–O(1)–O(2) and O(3)–S–C(3). The
toms in the set P(1)–C(1)–P(2)–O(3) (basal plane) are virtually
oplanar within 0.04 Å, with the Pd center out by 0.06 Å. The set
(1)–C(2)–O(1)–O(2) is strictly planar, and is almost orthogonal to
he basal plane, the two planes making a dihedral angle of 88.9◦.
nstead, the O(3)–S–C(3) set is tilted from both the previous plane,
eing inclined of 28.6◦ in respect of the basal plane and of 69.8◦ in
espect of the C2O2 set.

Looking at bond distances and angles, it appears worth noting
hat the Pd–O(3)–S angle is very wide, 151.9(3)◦; this is the largest
alue reported to date for a mononuclear Pd(II) complex. A search in
he Cambridge Structural Database (CCD) [40–42] showed that the
losest values found in (trifluoromethanesulfonato) (3-(diethyl-
mino)-propionyl)(diethylamine)palladium(II) and (2-(benzene-1,
-diyl)-2-methyl-propyl)-(trifluoromethanesulfonato)trimethyl-
hosphine-palladium(II) [43,44], were 150.5◦ and 146.0◦, respec-
ively. In [43], the abnormal widening of the Pd–O–S angle was
ttributed to van der Waals contacts between the other oxygen
toms of the sulfone with hydrogen atoms of a nearby ligands.
n the present case, the large Pd–O(3)–S angle might be due to
he very efficient interaction involving O(4) and the hydrogen
tom of a CHCl3 molecule, as indicated in Fig. 2 (the contact
istance is 1.99 Å, and the pertinent O(4)· · ·H–C(11) angle is 164◦),
nd only to a limited extent to steric interactions with the PPh3

roup.

The CCD exploration returned about 20 Pd mononuclear com-
lexes with the metal showing a Pd–O–S–C moiety and a Pd
nvironment similar to the one found in our compound [45–55].

t the 50% level; hydrogen atoms are represented by spheres of arbitrary size. The
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Fig. 2. The interaction between the sulfonato moiety

he Pd–O(3) (2.160(4) Å) and O(3)–S (1.452(4) Å) distances agree
easonably with the average values found in such complexes
2.175 and 1.461 Å, respectively) [43–55]. Similar considerations
lso apply to other geometrical parameters involving the sulfur
tom of the p-toluenesulfonato ligand. In fact, in the present com-
lex the S–C(3) distance and the O(4) S O(5), O(3)–S–C(3) angles
re 1.789(6) Å, 115.7(4) and 104.5(3)◦, whereas the corresponding
verage parameters found in about 30 Pd square planar complexes
howing at least 1 sulfonato ligand are 1.809 Å, 116.4◦ and 102.1◦,
espectively [40–42].

In the CCD there are also about 15 structures in which a
ononuclear tetracoordinated Pd atom is bound by a –C( O)–O–C
oiety [14,16,17,22,25,43,56–61], most of them also showing

he metal coordinated by two phosphine ligands. The aver-
ge Pd–C distance and the Pd–C–( O), Pd–C–O angles in the
eported structures are 1.979 Å, 126.6◦ and 112.9◦, respectively.
hese values compare quite well with 1.978(6) Å, 124.6(5)◦ and
10.0(4)◦ in the complex described here. Among known struc-
ures, the complexes most closely resembling these values are
rans-aqua-carbomethoxy-bis(triphenylphosphine)-palladium
1.975 Å, 124.5◦ and 111.4◦) [25], trans-carbomethoxy-chloro-
is(triphenylphosphine)palladium (1.972 Å, 125.3◦ and 111.9◦)
56] and chloro-(3-hydroxypropoxycarbonyl-C)-(2-(pyridin-2-
l)ethyldiphenylphosphine-N, P)-palladium(II) (1.964 Å, 124.5◦

nd 112.7◦) [17].
The two CHCl3 molecules in the unit cell, they are animated

y high thermal motions, and only one of them, as said above,
eems to interact with the complex inner core. Instead, the phenyl

ing of the p-toluenesulfonato moiety establishes a rather long-
ange (4.22 Å) �-interaction with a phenyl ring bound to P(2). Other
tructural parameters, like the six P–Cph distances (average value
.819 Å) do not show any new feature, and the same can be said of
he two Pd–PPh3 bonds, that match quite well the average value of

3

1
w
w

ne of the CHCl3 solvent molecules described in text.

.33(3) Å found in 227 square planar Pd(II) complexes bearing two
Ph3 groups [40–42].

.3. Reactivity

The reactivity has been tested with both the carbomethoxy com-
lexes (Ia) and (IIa). They behave in the same way, therefore for the
ake of simplicity here below we report the tests done with (IIa)
nly, if not otherwise indicated.

.3.1. Reactivity with alkanols
At 80 ◦C, under 45 atm of CO, the carbomethoxy complex reacts

ith R′OH (R′ = n-Pr, iso-Pr), used also as a solvent, giving com-
lexes (Ic–d). These complexes react with MeOH under the same
onditions giving the carbomethoxy derivative.

Under the above conditions and in the presence of a base such
s triethylamine, complex (IIa) in MeOH is reduced to Pd(0) com-
lexes, [Pd3(CO)3(PPh3)3] and [Pd(CO)(PPh3)3], the latter forms
revalently when the reaction is carried out also in the presence
f 1 mol of PPh3 per Pd atom. The reduction occurs with concomi-
ant formation of dimethyl carbonate (DMC) and oxalate (DMO), as
ere below schematised:

IIa)
MeOH, CO and NEt3−→

−(NEt3H)(TsO)
(CH3)2 CO + (CH3COO)2 + Pd(0) (3)

Under similar conditions the analogous complexes trans-
Pd(COOMe)Cl(PPh3)2] and trans-[Pd(OAc)(COOMe)(PPh3)2] give
MC or DMO, respectively [61–63].
.3.2. Reactivity with acids HX (X = Cl, OAc and TsO)
The reactions have been carried in MeOH. At r.t. (IIa) reacts with

equiv. of HCl affording trans-[Pd(COOMe)Cl(PPh3)2], whereas
hen treated with 2 equiv. of acid the carboalkoxy moiety evolves
ith formation of MeOH, CO according to reaction (4) in which step
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ii) practically reverses the reaction that leads to the synthesis of
rans-[Pd(COOMe)Cl(PPh3)2] from [PdCl2(PPh3)2], CO and MeOH in
he presence of NEt3 [12,24]:

(IIa)
HCl, –TsOH−→

(i)
trans-[PdCl(COOMe)(PPh3)2]

HCl, –MeOH, –CO−→
(ii)

trans-[PdCl2(PPh3)2] (4)

At r.t. the carboalkoxy moiety is stable when treated with
cOH or TsOH, even in excess; with the first acid, in the ratio
d/AcOH = 1/1, (IIa) is partially converted to the corresponding
cetate, trans-[Pd(COOMe)(OAc)(PPh3)2], whereas the conversion
s complete using an excess of AcOH.

When treated at 50 ◦C with TsOH (Pd/TsOH = 1/6–1/10), complex
IIa) is unstable yielding [Pd(TsO)2(PPh3)], analogously to reaction
4), step(ii).

The complexes trans-[Pd(COOMe)X(PPh3)2] (X = Cl and AcO) are
asily obtained also by adding 1 equiv. of LiX to (IIa) dissolved in
eOH.

.3.3. Reactivity with water and with water/TsOH
Complex (IIa) in MeOH/H2O (10/1, v/v) does not react signifi-

antly in 1 h even at 50 ◦C, as it is recovered unreacted upon adding
old water to the solution, whereas when to this MeOH/H2O solu-
ion TsOH is added (Pd/TsOH = 1/6) the carbomethoxy moiety is
nstable and (IIa) is converted to [Pd(H2O)2(PPh3)2] (TsO)2].

IIa)
H2O, TsOH−→

–CO, –MeOH
cis − [Pd(H2O)2(PPh3)2](TsO)2 (5)

Taking into consideration the reactivity of (IIa) with TsOH
eported at Section 3.3.2, it appears that (i) the acid promotes the
emethoxylation of the carbomethoxy moiety, probably through
rotonation of the oxygen atom of the methoxy group, and that (ii)
ater does not play a significant role in the demethoxylation step.

When the same experiment is carried out under CO pressure
20 atm), reduction to Pd(0) complexes occurs, with formation of
Pd3(CO)3(PPh3)3] or [Pd(CO)(PPh3)3], the latter forming when the
eaction is carried out also in the presence of 1 equiv. of PPh3. The
eduction occurs with concomitant formation of CO2, probably via
reaction closely related to the water gas shift reaction through the

ntermediacy of a Pd(II)–(COOH) species [64–66]:

d�2+CO, H2O−→
−H+

Pd–COOH�+−CO2−→ Pd–H�+–H+
−→Pd(0) (6)

.3.4. Reactivity with ethene
After pressuring a methanol solution of (IIa) with ethene

1–40 atm) at r.t. for 1 h, the complex has been recovered unre-
cted, together with a minor amount of Pd(0) complexes (ca. 10%).
n the MeOH solution no methyl propanoate was detected by GC.
or any insertion was observed in CD2Cl2/MeOH from −78 ◦C up to
0 ◦C in a NMR tube pressurised with 6 atm of ethene.

In principle, ethene could insert into the Pd–(COOMe) bond with
ormation of a Pd–(CH2–H2–COOMe) moiety, which may be in equi-
ibrium with a so-called �-esterchelate, as it has been found to
ccur promptly with cationic cis-chelatediphosphine Pd(II) com-
lex [Pd(COOCH3(CH3CN)(dibpp)](TfO) (dibpp = 1,3-(iBu2P)2C3H6)

n CH2Cl2/MeOH/CH3CN even at −30 ◦C at ambient pressure, as
stablished by NMR multinuclear spectroscopy [11]. It has been

lso found that upon rising the temperature up to 25 ◦C the �-
sterchelate reacts with MeOH yielding methyl propanoate and
he starting carbomethoxy complex, thus the “carboalkoxy” cycle
or the hydromethoxycarbonylation of ethene was demonstrated
nder the conditions just reported [11].

t
t
s
t
p

ysis A: Chemical 298 (2009) 103–110

.3.5. Catalytic properties of complexes (Ia–g) in the
ydrocarboalkoxylation of ethene

The catalytic activity of complex (Ia) in the hydroesterication of
thene in MeOH has been already reported [25,29]. Under standard
onditions (40 atm, CO/ethene = 1/1, 70–100 ◦C) significant catalytic
ctivity is shown only in the presence of both PPh3 and TsOH
Pd/P/TsOH = 1/8/8). After catalysis the starting complex was recov-
red (65%) as trans-[Pd(COEt)(TsO)(PPh3)2], related to the “hydride”
ycle (see Scheme 1) [29]. This acyl complex reacts with MeOH to
ive expected methyl propanoate (MP) in an almost stoichiometric
mount and is a catalyst precursor for the methoxycarbonylation
f a different olefin to give the expected ester and an almost sto-
chiometric amount of MP. This proves that the acyl complex is
ufficiently stable to be isolated while being reactive enough to
nter the catalytic cycle. Using [Pd(TsO)2(PPh3)2] as catalyst pre-
ursor, it was found that a hydride source, such as H2, H2O, or
sOH, present a promoting effect on the catalysis [28]. All these
xperimental evidences are more in favor of the “hydride” cycle
ather than of the “carbomethoxy” cycle [67]. In addition, others
ound that using a closely related system, derived from Pd(AcO)2 in
ombination with an excess of PPh3 and of TsOH [68], there was
ormation of phosphine degradation products such as MePPh3

+,
tPPh3

+ and EtCOCH2CH2PPh3
+, isolated as TsO− salts, thus pro-

iding further evidences for the “hydride” mechanism, the last two
eing Pd mediated side products of the “hydride” route [69].

In the present case, we found that also complexes (Ib–g), tested
n the relevant alkanol at 100 ◦C, 40–50 atm, do not present any
ignificant catalytic activity and that extensive decomposition to
alladium metal occurs at 100 ◦C. Only in the presence of both
dded PPh3 and TsOH catalytic activity is observed. Qualitative
bservations indicate that the activity lowers with increasing bulk-
ness of the alkanol.

That being said, in addition to the fact that ethene does not
nsert into the Pd–COOMe bond under the condition reported in
ection 3.3.4, we present here further evidences that are more in
avor of the “hydride” cycle. In an experiment carried out under
onditions in which complex (Ia) is relatively stable, i.e., 40 ◦C and
n the presence of 2 equiv. of added PPh3, catalysis is not observed
ven under 80 atm total pressure (CO/ethene 1/1). At difference,
nder these conditions, but also in the presence of 10 equiv. of
sOH, there is formation of MP (TOF = 10 h−1), together with minor,
hough significant, amounts of light CO/ethene co-oligomers hav-
ng only keto–ester end groups (KE in Scheme 1), the most abundant
f them being 4-oxohexanoate (n = 2). Even more significant, no
imethyl succinate (DMS) or higher diesters co-oloigomers were
etected by GC of the reaction mixture.

Both the “carbomethoxy” and the “hydride” cycles lead to the
ormation of MP and KE co-oligomers. Though it is well known that
ntermediates arising from the insertion of ethene (a), (c) and (f)
re in equilibrium with the so-called �-chelates, and those arising
rom the insertion of CO (b) and (g) are in equilibrium with the so-
alled �-chelates, the omission of these chelates do not question the
alidity of the reasoning that follows, therefore they are omitted for
he shake of clarity.

In the “carbomethoxy” cycle, insertion of ethene into a
d–COOMe bond gives intermediate (a), which upon protonolysis
y MeOH yields MP and a Pd–OMe species, which inserts CO to con-
inues the catalytic cycle. Protonolysis competes with the further
ubsequent insertion of CO and ethene, with formation of inter-
ediates (b) and (c), which, after protonolysis with MeOH, give
he KE co-oligomers and again a Pd–OMe species, that continues
he catalysis. It should be noted that the copolymerization process
tops after the insertion of a few molecules of monomers, i.e., the
ermination process competes effectively with the chain growing
rocess. However, since it has been found that in the copolymeriza-
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Scheme 1. Propos

ion process CO insertion is faster than ethene insertion [6,7], it is
ard to explain why after CO insertion into intermediate (a) (or (c))
here is no formation of dimethyl succinate (or of higher diesters).
ormation of the diesters would occur via methanolysis with for-
ation of a Pd–H species which can start the “hydride” cycle. The

hift from one mechanism to the other has been demonstrated by
ultinuclear NMR spectroscopy [11]. For balance requirements of

he two cycles there should be also formation of diethylketone or
f co-oligomers having only keto ending groups for any molecule
aving only ester ending groups. However, co-oligomers of this type
id not form nor diethyl ketone.

Therefore is more likely that MP and the ketoesters form though

catalytic cycle that starts from a Pd–H species and terminates

ia attack of MeOH to a Pd–acyl bond of intermediates (e) and (g),
ith concomitant reformation of the hydride species. The hydride
ould form after decarbomethoxylation of the Pd–COOMe bond
romoted by TsOH/H2O (cf. Section 3.3.3), followed by the inter-

f
a
c
b
[

ction mechanism.

ction of H2O with CO (cf. reaction (6): under catalytic conditions
thene would insert into the Pd–H bond before deprotonation).

These results do not exclude that, under the conditions in which
atalysis occurs as just reported, ethene insertion into a Pd–COOMe
ond might take place to some extent. As a matter of fact it has
een found that the dibpp-based cationic complex under NMR con-
itions, both the acyl complex, related to the “hydride”, and the
-ester chelate, related to the “carbomethoxy” cycle, easily form at
60 ◦C and at −30 ◦C, respectively. In addition, it has been found

hat the acyl complex undergoes methanolysis at −30 ◦C in a few
inutes to give the ester as required from the “hydride” cycle,
hereas methanolysis of the �-ester chelate, required to give MP
rom the “carbomethoxy” cycle, is slow on a timescale of days,
t 25 ◦C. It was suggested that slow methanolysis of the �-ester
helate, rather than slow insertion of an alkene into the Pd–COOMe
ond, directs the catalysis towards the “hydride” mechanism
11].



1 Catal

P
c
t
u
t
u
W
i
s
a
t

m
[

[
n
m
b

R

[
[

[
[
[

[

[
[

[
[

[
[

[

[

[
[

[

a
a

[

[
[
[

[
[

[

[
[
[
[
[
[

[
[
[
[
[

[

[
[
[

[
[
[

[

[
[
[
[

[
[

[
[

[
[
[
[

[

[

[

[

[69] R.P. Tooze, K. Whiston, A.P. Malyan, M.J. Taylor, N.W. Wilson, J. Chem. Soc., Dalton
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However, it should be underlined that the dibpp- and the
Ph3-based systems are too different to consent a straightforward
omparison. A part that dibpp acts only as cis-chelating ligand and
hat the acyl- and carbomethoxy-complexes isolated after catalysis
sing the PPh3-based system have a trans-geometry,1 the two sys-
ems work under different conditions. The second one requires the
se of an excess of PPh3 in order to prevent deactivation to Pd metal.
hen PPh3 is added to the dibpp system the insertion of ethene

nto the Pd–COOMe bond is inhibited [11]. In addition, the PPh3
ystem, in order to be catalytically efficient, requires also the use of
n excess of TsOH and H2O, which lead to decarbomethoxylation of
he Pd–COOMe bond.

Not only, but the evidences here reported for the “hydride”
echanism, together with those reported in previous studies

25,27–29,68,69], refer to the actual catalysis conditions.
It is worth mentioning that also neutral trans-

Pd(COOMe)Cl(PPh3)2] treated at 95 ◦C with 1-hexene does
ot insert the olefin into the Pd–COOMe bond [71]. In this case the
uch greater coordination capacity of the chloride ligand and the

ulkier 1-hexene might prevent the insertion.
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