
Department of Applied Mathematics,  University of Venice  
 

 
 

WORKING PAPER SERIES 
 
 

 

 
 
 
 
 
 
 

Tatiana Bassetto, Francesco Mason 

 
 

The 2-period Balanced Traveling 
Salesman Problem 

 
 
 
 
 
 
 
 
 

 
 

Working Paper n. 154/2007 
October 2007 

 
ISSN: 1828-6887 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/223146325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

This Working Paper is published under the auspices of the Department of Applied 
Mathematics of the Ca’ Foscari University of Venice. Opinions expressed herein are 
those of the authors and not those of the Department. The Working Paper series is 
designed to divulge preliminary or incomplete work, circulated to favour discussion 
and comments. Citation of this paper should consider its provisional nature. 



The 2-period Balanced Traveling Salesman Problem 

 1 

 
 

The 2- period Balanced Traveling Salesman Problem 
 

Tatiana Bassetto                    Francesco Mason 
tbassetto@unive.it                          fmason@unive.it 

Dept. of Applied Mathematics                  Dept. of Applied Mathematics 
University of Venice                                   University of Venice  

  
 

 
Abstract.  In the 2-period Balanced Traveling Salesman Problem (2B-TSP), the customers 
must be visited over a period of two days: some must be visited daily, and the others on 
alternate days (even or odd days); moreover, the number of customers visited in every tour 
must be ‘balanced’, i.e. it must be the same or, alternatively, the difference between the 
maximum and the minimum number of visited customers must be less than a given 
threshold.  The salesman’s objective is to minimize the total distance travelled over the two 
tours.   Although this problem may be viewed as a particular case of the Period Traveling 
Salesman Problem, in the 2-period Balanced TSP the assumptions allow for emphasizing 
on routing aspects, more than on the assignment of the customers to the various days of the 
period. The paper proposes two heuristic algorithms particularly suited for the case of 
Euclidean distances between the customers. Computational experiences and a comparison 
between the two algorithms are also given.  

 
Keywords: period routing problem, period traveling salesman problem, logistic, heuristic 
algorithms. 
 
JEL Classification Numbers:  C61. 
 
MathSci Classification Numbers: 90B06, 90C59. 
 
  
 
0  Introduction. 
 
In the organization of picking up orders for commercial firms, it often 
happens that an agent (or vehicle) has to visit his/her customers (or cities) 
periodically but at different times on the grounds of the number and the 
frequency of the orders.  The simplest, but frequent, case is when the set V 
of customers can be divided into two sets over a period of two days: 
customers visited daily (set D) and customers visited only once in the period 
(set S).  This way, two tours must be constructed in such a way that both 
contain all the elements in D, while the customer in S are partitioned 
between them. 

Moreover, we wish the agent to work every day almost the same 
time amount: this way, we also impose some balancing constraints on the 
two tours. 
This can be achieved in different ways: we can require that the difference 
between the number of customers, which are visited in each day, must be 
below a given threshold or, in a multi-objective setting, it must be 
minimised. 



Tatiana Bassetto – Francesco Mason 

 2 

 In this paper we particularly consider the case in which the two tours 
contain the same number of customers or they can differ by one.   
 The objective is to minimise the total distance travelled in the two 
days. 
    

The (non-balanced) 2-period TSP may be viewed as a particular case 
of the Period Traveling Salesman Problem (PTSP) [5]. This last problem 
generalizes the TSP by extending the planning period to p days. In PTSP 
every customer must be visited a specified number of times: in many cases 
for each customer a set of feasible (allowable) combinations of visit days is 
also given.  The aim is to build p routes (one route for every day) in order to 
minimize the total covered distance: obviously, PTSP and 2-period TSP are 
NP-hard problems. 

 
The literature on periodic routing problems is not very extensive.   
The earliest work can be considered the paper [6], by Christofides 

and Beasley (1984).  In this paper, the authors propose solution approaches 
for the routing problem over more than one day, although the purpose is to 
study the PVRP (Period Vehicle Routing Problem), i.e. a problem with 
weighted nodes and a capacity constraint on the vehicles.  They propose two 
heuristic algorithms which make use of the solution of other NP-hard 
problems, i.e. the Period Median Problem and the well known Travelling 
Salesman Problem. 

Other heuristic approaches were subsequently proposed in 1992 by 
Paletta [15], and  Chao et al. [5]; then, in 1997, Cordeau, Gendreau and 
Laporte [8] present a tabu search technique;  in 2002 Paletta [16] presents a 
new heuristic algorithm for the PTSP, improved in Bertazzi, Paletta and 
Speranza [3] in 2004.  Other works are involved with PVRP [9] and with 
asymmetric PTSP  [17]. 

In PTSP there are two interrelated problems: an assignment problem, 
because for each customer a feasible combination of visit days must be 
chosen, and then a routing problem, in order to find the best tour that visits 
the customers of each particular day of the period.  These problems are often 
solved subsequently: then improvement-exchange procedures are used to get 
a better solution. 

  
Butler, Williams and Yarrow, in 1997 [4], introduce the 2-Period 

TSP.  The authors solve exactly a particular case study applied to milk 
collection in Ireland.  Their work appears to be independent from the paper 
of Christofides and Beasley [6] (which they do not quote).  After 
introducing  the problem, they give an integer programming  formulation.  
The procedure they suggest is an exact approach to the problem by a 
combination of cuts and Branch and Bound.  However, in their 
development, as the authors say, decisions ‘on line’ about the introduction 
of constraints must be made. 

 
Balancing constraints are never explicitly considered (both in PTSP 

and 2-period TSP): in [5], in the assignment phase, at the beginning of the 



The 2-period Balanced Traveling Salesman Problem 

 3 

algorithm, a uniform distribution of customers to the visit days is searched 
for.  But in the improvement steps, the solution can became not balanced. In 
[6], a constraint on the maximum length of each route is given.  In [4] the 
solution to the particular case gives two tours, having respectively 24 and 31 
nodes (including the depot: the nodes to be visited daily are 12).    

 
The 2-period balanced TSP is the particular case of the PTSP in 

which the period consists of two days (p = 2) and, in this way, two tours T1* 
and T2*  must be built: differently from the (more general) PTSP, in the 2-
period balanced TSP there is not a set of different combinations of visit 
days.  

In this paper we propose two heuristics particularly suited for the 
case in which the underlying graph satisfies the triangular property.  

The paper is divided into two sections: in the first one, after giving 
some notations and definitions, the 2-period balanced TSP is formulated as 
an integer programming problem; in the second one, the two heuristic 
algorithms are described. Last, conclusions are traced.  

 
 

 
 
1  An integer programming model for the 2BTSP. 

   
Let G = (V, E) a complete graph of n nodes (n > 1) without loops. Let cij be 
the weight of the edge (i, j).  In the 2-period balanced TSP the set V can be 
partitioned into two (disjoint) subsets: 

 
-  the set of single-nodes S = {s1, s2, … , sk}, i.e. the ones to visit once 

over two days; 
-  the set of double-nodes D = {d1, d2, … , dh}, i.e. the ones to visit 

every day. 
Obviously, h + k = n. 
In [4] a depot is also defined: here, for sake of simplicity, and 

without lack of generality, we include it in the set D of double-nodes.  This 
way, D ≠ ∅.  

In what follows, a node belonging to the set or tour X, will be called 
X-node.  Besides this, given a set A, we shall denote with A  its cardinality 
and with x , x being a real number, the greatest integer ≤ x.   

We want to build two tours, T1 and T2 (one for every day), which 
satisfy a balance constraint, in order to minimize the total travelled distance. 
Both tours visit all the D-nodes, while every single-node, i.e. every S-node, 
can be inserted only in one of the two tours, T1 or T2. 

This way, in every feasible solution, S is partitioned into two subsets, 
S1 and S2 (with S = S1 ∪ S2 and S1 ∩ S2 = ∅), the first one made up of nodes 
visited on the first (or odd) day and the second one on the second (or even) 
day. 



Tatiana Bassetto – Francesco Mason 

 4 

Let k1 be the cardinality of S1 and k2 the cardinality of S2 , so that k1 
+ k2 = k.  T1-nodes constitute the set  D ∪ S1, while T2-nodes are D ∪ S2. 

Balance constraints can be formulated in several way: we use a 
parameter g* which represents the maximum allowed difference between 
the number of customers to be visited on the first and on the second day. 
Thus, we must have: 

 
  k1  -  k2    ≤   g*. 

 
Letting g* = 1, then in a feasible solution the number of visited 

customers must be equal in the two days (if k is even), or it can differ by one 
unit (when k is odd).   

The problem can be formulated as an integer linear programming 
one introducing the following Boolean variables: 

- xijq = 1 if and only if the customer j is visited immediately 
after i on the q-day and 0 otherwise, (q = 1 or 2);  

- yiq = 1 iff the customer i is visited on the q-day and 0 
otherwise (for every node si ∈ S and q = 1 or 2). 

 
The 2-period balanced TSP formulation is: 

 

                                                ∑ ∑
∈ =Eji q

ijqij xcMin
),(

2

1

                          (1) 

 
s.t. 

                                  ∑ =
∈Vj

ijqx 1                  qDi ∀∈∀ ;                  (2) 

                                  ∑ =
∈Vj

jiqx 1                 qDi ∀∈∀ ;                  (3) 

                                  121 =+ ii yy                 Si ∈∀                       (4) 

                             ∑ ∑ ==
∈ ∈Vj

i
Vj

jiij yxx 111           Si ∈∀                       (5) 

                            ∑ ∑ ==
∈ ∈Vj Vj

ijiij yxx 222          Si ∈∀                      (6) 

                             ∑ −≤
∈Zji

ijq Zx
,

1          qDSZ ∀∪⊆ ;               (7) 

                              *21 gyy
Si Si

ii ≤∑ ∑−
∈ ∈

                                          (8) 

                                   }1,0{∈iqy                  qSi ∀∈∀ ;                 (9) 

                                  }1,0{∈ijqx                qEji ∀∈∀ ;),(            (10) 

 
The objective function minimizes the total costs.  
Constraints (2) and (3) impose that all double nodes i ∈ D are visited 

every day, both for odd (q = 1) and for even (q = 2) days. 
Constraints (4) guarantee that every single-node i ∈ S is visited only 

once, either on even or on odd days; next constraints (5) and (6) compel the 
existence of only one outside edge and one inside edge for any node i ∈ S. 



The 2-period Balanced Traveling Salesman Problem 

 5 

Constraints (7) are classical sub-tour elimination constraints of the 
TSP, Z being a subset of nodes of the graph G (see [12] and [13]). 

Inequalities (8) represent the ‘balance constraints’: they impose an 
upper bound to the difference between the number of nodes (customers) that 
can be visited by a vehicle in each day.  

There are two extreme cases: when  D contains only the depot,  the 
problem becomes a VRP in which customers have unit demand and there 
are two vehicles, each of them associated to a day, with capacity (k+g*)/2 
; on the other hand, if  S = ∅  (so that every node has to be visited every 
day) the problem becomes a TSP. 

Obviously, the 2-period balanced TSP is a NP-hard problem (see [6], 
[8], [13]). 

 
 

2  Two heuristic techniques for 2BTSP. 
 

The core of the 2-period balanced travelling salesman problem is how to 
partition optimally the customers in S into the two sub-sets S1 and S2, to be 
attributed, respectively, to the two days of the period.  This appears the 
crucial point, because softwares now available allow to solve the subsequent 
Travelling Salesman Problems, in D ∪ S1 and D ∪ S2, in an exact way, at 
least for instances with some hundreds of nodes (a good example is 
constituted by Concorde).  This encourages the use of exact subroutines 
which solve TSP as a step in the achievement of an approximate solution of 
the 2-balanced period TSP. 

Even the non balanced version of the period TSP appears quite 
difficult to solve in an exact way: as we pointed out above, Butler, Williams 
and Arrows, in [4], propose a solution for a particular problem of 42 nodes, 
but they do not give a fully automatised procedure.  In our experience, 
branch and cut takes a too long time also for moderate size  instances.  So 
approximate algorithms are useful.  
 

We propose two heuristics, that we shall call A1 and A2, 
respectively, for the case in which, in the balancing constraint, g*=1 .  The 
two procedures, particularly A2, work if G is a geometric graph or if it 
satisfies the triangular property. 

A1 is a very simple technique which quickly provides a feasible 
good solution. 

The second algorithm, A2, taking into account the possibility of 
‘edge crossing’ (i.e.,  “two different edges cross in a graph drawing if their 
geometric representations intersect” [1]), gives a feasible solution, often 
better than the one obtained by A1 but at a greater computational cost.   

A1 and A2 both require, as a prerequisite, a hamiltonian cycle GT 
over all the nodes in V (General Tour): in practice, GT can be obtained by 
well known softwares, once more, for instance, Concorde. 

In this section first we describe the algorithm A1, then we motivate 
it; finally, we introduce the algorithm A2 on the basis of some observations 
concerning A1.  



Tatiana Bassetto – Francesco Mason 

 6 

 
A1 algorithm 
 
Step 1.  Choose a visit direction on the circuit GT.  Choose also a single 
node s.  Put S1 = {s}.  If k is even, go to step 2; otherwise go to step 3. 
 
Step 2.  Add to S1 the (k/2) – 1 subsequent single nodes following s in the 
chosen order of visit in GT.   Put in S2 the k/2 (following) remaining single 
nodes.  Go to step 4. 
 
Step 3.  Add to S1 the [(k-1)/2]  single nodes following s in the chosen order 
of visit in GT.  Put in S2 the remaining (k-1)/2 single nodes.  Go to step 4. 
 
Step 4.   Solve the TSP both in S1∪D and in S2∪D.  If there are other single 
nodes not yet considered as first node, choose one and go back to step 1.  
Otherwise go to step 5. 
 
Step 5.  Choose the best solution between the ones given from the 
procedure.  STOP. 
   

A1 is motivated by the following considerations. 
 Given a region R of area R, in which N customers are uniformly 
distributed, provided N is sufficiently large, i.e., at least a few dozens, a well 
known formula (see for example [7]) gives a good approximation for the 
total distance covered L in a TSP.  This value is the square root of the 
product RN, multiplied by a constant c, which depends on the metrics we 
use: 
 

L = c RN  
  
 To be true, in this formula (N+1) should be used, instead of N, but 
for large N this can be disregarded. 
 In our problem, due to the balance constraints, we must visit every 
day all the double nodes and (with an approximation, at most, of one unit!) 
one half of the total number of single nodes.  

Let us divide R into two compact sub-regions, R1 and R2  having the 
same area.  We must decide how many single nodes are to be visited on the 
first day from each sub-region in such a way that the total number of single 
nodes chosen is k1.  Of course, the k2 single nodes, which are not yet visited 
on the first day, must be included in the second tour.  
 Introducing a parameter α, which represents the fraction of nodes 
visited in region R1, the distance travelled during the first day can be 
approximated by the following formula: 
 

L = c ))2/)((2/( 1khR α+  + c ))1()2/)((2/( 1khR α−+  

 



The 2-period Balanced Traveling Salesman Problem 

 7 

Obviously, the same formula is valid for the distance travelled during the 
second day, replacing k1 with k2.   

Due to the concavity of the square root function, it is easy to see that 
the minimum of L is attained when α = 0 or α = 1.  This suggests to visit all 
the single nodes which belong to a sub-region on a day, and to visit the 
remaining ones (in the other sub-region) on the other day. 
 From an operative point of view, we must give a rule to define the 
two sub-regions.     

To this aim, experience shows that sub-paths of GT are very often 
used in the optimal tours for each day.  This, in turn, suggests to divide S in 
two subsets putting in the same set (k+1)/2 single points which are 
consecutively visited in GT: these points are roughly contained in a sub-
region having, more or less, half the area of the whole region containing all 
the points. 

This way, we have the possibility to construct more different 
solutions, depending on which is the first single node of the k/2 consecutive 
ones to be visited on a particular day: it should be noted that, when k is 
even, the number of different solutions is exactly k/2; but when k is odd, 
then the number of different solutions (due to the difference between the 
numbers of customers visited each day) grows up to k.   

Finally, once we have determined these two sub-sets S1 and S2, we 
solve two TSPs, one for the first day and the other for the second one.   
 
 
A2 algorithm 
 
The algorithm A2, taking into account the triangular inequality, looks for a 
feasible solution often better than the one obtained by A1.  Consider, for 
example, the case of the graph in the following figure: 
 

 
 
 
 
 
 
 
 
 
    

 
 
 

 
 
Fig. 1   A graph and a shortest Hamiltonian Circuit. 
 

A B 

C 
D 

a1 

a2 

b1 b2 

c1 

c2 

d1 d2 



Tatiana Bassetto – Francesco Mason 

 8 

Black nodes are single ones and white nodes are double ones.  One 
(minimum cost) General Tour is clearly the one in heavy lines.  A typical 
solution given by the algorithm A1 is: a first tour which visits all the nodes 
from A to C (in the same order as in the GT), then it visits D and comes 
back to A; a second tour, which is symmetric with respect to the first one 
(see fig.2: continuous and dotted lines).   

However, this solution is not optimal, because the triangular property 
is not adequately taken into account.  Focusing the attention on paths from 
A to B, it is clear (see once more fig. 1) that the length of the path {A, a1, a2, 
B} on the first day plus the length of the edge (A, B) on the second day is 
greater than the length of the path {A, a1, B} (to be run on the first day) plus 
the length of {A, a2, B} (to be attributed to the second day). 

This way, in an optimal solution, the two single nodes, a1 and a2, 
between A and B must be visited on different days (the same is true for 
every couple of adjacent single nodes in GT; see fig.3).   

 
 
 
 
 
 
 
 
 
 
    

 
 
 

 
 

                                  Fig 2.The two tours obtained with A1.                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                   Fig 3. The two tours in an optimal solution. 

D 

A B 

C 

A B 

C 
D 



The 2-period Balanced Traveling Salesman Problem 

 9 

 
More generally speaking, here the crucial point is the following: if a 

path in GT linking two double nodes, say u and v, and containing some 
single nodes, crosses the chord (u, v), the single nodes on one side of this 
chord must be visited in a different day with respect to the ones on the other 
side.  This is the most important point in A2. 
 

Before giving A2 in detail, some more definitions are useful. 
Let “single-node path” P(u, v), SNP for short, be any path in GT 

having node set {u, s1, s2, …sr-1,  v }, and r ≥ 2 edges, in which the two 
endpoints, u and v, are double-nodes, while nodes, s1, s2, …sr-1 are single.   

Single node paths are univocally defined whenever G contains more 
than two  double nodes. In the case in which there are only two double 
nodes, (including the depot) we have two single node paths: they are 
distinguishable introducing a visit order in GT.       

Let the cardinality of a SNP be the number of nodes in the path and 
indicate it by P(u, v). 

As well as in the case of A1, in A2 also we must choose a visit 
direction for GT.   In our computational experiences, we introduced the visit 
order in which the nodes of the convex hull of G are met clockwise.   

The algorithm A2 consists of two phases. In the first one, every 
single node path which crosses its respective chord is analysed and its nodes 
are divided into two subsets; then, a partition problem is solved, step by 
step, inserting single nodes into two graphs, G1 and G2, i.e. the graphs 
containing the nodes to be visited respectively in the first and the second 
day, in such a way that the balancing constraint is fulfilled.  In this phase 
some heuristics are required in order to solve this partition problem.  In the 
second phase the TSP is solved both in G1 and G2 in order to find the best 
tours T1*  and T2* .   

 
 

A2 algorithm  
 
 Step  0.  Choose a visit direction in GT.  Let G1 = G2 = (D, ∅).  List 
all the SNP’s in GT as P1(u1, v1), P2(u2, v2), …, Pt(u t, vt). Go to step 1.    

 
 Step 1.  For i = 1, …t, consider the SNP Pi (ui, vi) ⊆ GT.  Test if any 
edge (s1

i, s2
i) ∈ Pi(ui, vi) crosses the chord (ui, vi) by the crossing-edge test: 

if yes, put Pi (ui, vi) in a set W of ‘crossing SNP’s’.  Otherwise, put Pi (ui, vi) 
in a set Z of ‘non-crossing SNP’s’.  Re-number SNP’s, both in W and in Z.      
Let w = W and z = Z.  (We will suppose, without lack of generality, W 
≠ ∅ ≠ Z.  In case this would not be true, the modifications to the algorithm 
are quite evident).  Go to step 2.   

 
Step 2. For i = 1,…w, consider the SNP Pi(ui, vi) ⊆ W.  Delete in 

Pi(ui, vi) every edge (s1
i, s2

i) which crosses the chord (ui, vi).  
Let  Pi

1
 , Pi

2, … Pi
m

 be the disjoint sub-paths ⊂ Pi(ui, vi) (possibly consisting 
of only one node) in the sequence in which they are visited in Pi(ui, vi). 



Tatiana Bassetto – Francesco Mason 

 10 

Insert single nodes which belong to sub-paths Pi with odd apex into a set WiL 
and the ones with even apex into a set WiR.  Let wiR = WiR , wiL = WiL.  
Go to step 3. 

 
Step 3.  For i = 1,…z, consider the SNP Pi(ui, vi) ⊆ Z.  Insert single 

nodes of this path in a set Zi.  Let zi =  Zi .  Go to step 4. 
 

Step 4.   Solve the following partition problem  
 
      (P)          Min     Σi=1

w (xiLwiL + xiRwiR)  +   Σi=1
z yizi     

        s.t.              Σi=1
w (xiLwiL + xiRwiR) + Σi=1

z yizi ≥ k/2     (*) 
                        xiL = 1 - xiR                                       (**) 
                        xiL,   xiR,   yi   ∈  {0, 1}. 

  
Insert into G1 the single nodes of the sets WiL,   WiR,   Zi for which the 
corresponding variable, in the optimal solution, is equal to 1.  Insert into G2 
the remaining single nodes.  Insert both into G1 and G2 all the double nodes.  
Go to step 5. 
  

Step 5.  Solve (twice) the TSP both in G1 and G2: call, respectively, 
T1*  and T2*  the two optimal tour.  Go to step 6. 

 
Step 6.  If the (absolute) difference between |G1| and |G2| is ≤ g*, i.e. 

if the balancing constraint is satisfied, STOP.   If the balancing constraint is 
not fulfilled, go to step 7. 

 
Step 7.  Let w.l.o.g. |G1| > |G2|.  For every single-node s in G1, 

consider its two neighbourhood nodes in T1* : let them be called a(s) and 
b(s).  Compute the transfer-cost r(s) given by  

 
                    r(s) =ca(s),b(s) – cs,a(s) – cs,b(s)  +  min(i, j)  cis + csj – cij, 
 
where the minimum has to be computed with respect to all the edges (i, j)∈ 
T2*.  Go to step 8.   
 

 
Step 8. Find the single-node s* with the minimum transfer-cost.  

Transfer s* from G1 into G2.  Go to step 5. 
 

 
A2 requires the resolution of the partition problem (P).  In the 

formulation, constraints (**) guarantees that, for every crossing SNP P(u, v), 
the single nodes on opposite sides with respect to the chord linking u and v 
will be visited in different days.  

 (P) can be reduced to the following subset sum problem: 
 
 



The 2-period Balanced Traveling Salesman Problem 

 11 

            (P’)          Min     Σi=1
w xi iw   +   Σi=1

z yizi 

                       s.t.        Σi=1
w xi iw    +   Σi=1

z yizi  ≥  k / 2 

                                         xi,    yi   ∈  {0, 1}, 
with the substitution: 
                   iw = wiL - wiR             k  = k -  Σ i=1

w min (wiL , wiR). 

 
(P’) can be solved by different techniques (see [14] for an exhaustive 
analysis).   
A feasible solution to (P) can be built from the one to (P’) as follows.  If in 
the optimal solution xi = 1, put in G1 the nodes of the set WiL iff   WiL  > 
WiR ; otherwise put in G1 the nodes in WiR.  (Note that if   WiL  =  WiR  
then iw = 0 and it is indifferent to put the nodes of  WiL in G1 or in G2 but, 

anyway, not in the same set where nodes of WiR are inserted!).  
 

The algorithm A2, in order to satisfy the balancing constraints (8), firstly 
partitions all the single-nodes paths in two sets, W and Z.  Then, it partitions 
the nodes of the SNP’s in the subsets WiL , WiR and Zi.  Note that, while the 
elements of W and Z are paths, the elements in the sets  WiL , WiR and Zi  are 
(single) nodes.  The aim is to build the two sets of nodes, G1 and G2 in such 
a way that the difference of cardinality between G1 and G2 is as close as 
possible to zero. In step 2, the sets WiL and WiR contain, respectively, the 
single nodes that lie by the same side with respect to the path from ui to vi.  

 
The complexity of the algorithm A2 depends first of all on the 

resolution of TSP.  Excluding from consideration the TSP, the complexity 
depends on [9]:  

- the complexity of “crossing-edge test” (step 1), i.e. O(n2); 
- the complexity of the insertion cost of a node (steps 9 and 

10), i.e. O(n2). 
 
Observation.  From a practical point of view, the best solution cost 

given by the first algorithm is less than twice the cost of GT.  
 
 

 
3   Computational experiences. 

 
In order to compare the two heuristics, we considered 10 random instances, 
each of them consisting in a graph of 48 nodes, of which 16 were double.  
So, every day, 32 nodes must be visited. 

We number these instances as I1, I2, …, I10.   The instances were 
drawn using Concorde. 

In each instance, and both for A1 and A2, we distinguished the case 
in which the obtained tours T1* and T2* ‘crossed each other’ or not, i.e., 
there exists (at least) one couple of edges, one in T1* and the other in T2*, 
which cross each other. 



Tatiana Bassetto – Francesco Mason 

 12 

In the ‘crossing’ situation, we performed a post-analysis, in order to 
improve he solution, taking account of the triangular property.  This was 
done by an exchange technique, moving sections of single node paths from a 
tour to the other one. This operation gave a better solution in many cases 
and changed the performance of one algorithm with respect to the other: it 
must be said, however, that the (happily limited) dimensions of the instances 
allowed a visual analysis and consequent choice of the nodes to be 
exchanged.  Moreover, the subset sum problems to be solved were easily 
handled: in most cases they have multiple solutions (and the choice between 
them was a ‘problem inside the problem)!  Unfortunately, it was not 
possible to compare the obtained solutions with the true optima.  

The results we obtained are reported in the following table: the value 
of the best solution is in heavy line.  Stars denote the best solution which we 
obtained without using improvement techniques. 

 
  A1   A2  

Istances Value crossing improved 
sol. 

value crossing  Improved 
sol. 

I1 338.04* yes 331.51 340.29 no - 
I2 309.29* no  - 311.05 no - 
I3 305.96* yes 305.49 311.98 yes 303.14 
I4 290.85 yes 286.86 287.13* yes 285.58 
I5 273.23* no - 274.25 yes 272.07 
I6 330.65 yes 329.58 329.15* no - 
I7 334.89 yes 325.61 331.44* no - 
I8 311.13 yes 307.51 309.74* no - 
I9 352.58* yes 346.97 353.35 yes 350.76 
I10 316.28* yes 313.95 317.99 no - 

 
The table shows that it is not possible to say which of the two 

proposed algorithms is to be preferred.  But we can note that the algorithm 
A2 behaves better, almost always, only after the elimination of ‘edge 
crossing’.   

Finally, we do not give solution times: generally speaking, they 
obviously depend on the number of TSPs to be solved in both algorithms.  
In the studied instances, few seconds were required:  A2 is a little bit faster 
in that it requires a lesser number of these steps.        

 
 
 
 
4  Concluding remarks. 

 
In this paper we have introduced, formulated and solved the Single-Double 
Balanced TSP. Two heuristic algorithms are proposed for its solution.  

The performance of the heuristics depends above all on the quality of 
the initial solution and on the chosen improving methods.  Different 
improving methods lead to algorithms more or less effective according to 
objectives; this way the computational cost can change very deeply.   



The 2-period Balanced Traveling Salesman Problem 

 13 

An interesting generalization of the problem, that can have also 
practical application, is concerned with the utilization of more vehicles and 
of different cost functions linked to the visit of nodes.  This can be matter of 
future research. 

 
 

References 
 

[1]   M.J. Atallah (1999) Algorithms and Theory of Computation Handbook, 
CRC. 

 
[2]   S. Baptista, R.C. Oliviera, E. Zùquete (2002) “A period vehicle routing 
case study”. European Journal of Operational Research 139, 220-229. 

 
[3]   L. Bertazzi, G. Paletta, M.G. Speranza (2004), “An improved heuristic 
for the period traveling salesman problem”. Computers and Operations 
Research 31, 1215-1222. 

 
[4]   M. Butler, H.P. Williams, L-A.Yarrow (1997) “The two-period 
travelling salesman problem applied to milk collection in Ireland”.  
Computational Optimization and Applications  7 n° 3, 291 – 306. 
 
[5]  I.M. Chao, B.L. Golden, E.A. Wasil (1995) “A new heuristic for the 
period traveling salesman problem”. Computers and Operations Research 
22, 553-565. 

 
[6]  N. Christofides, J.E. Beasley (1984) “The period routing problem”. 
Networks 14, 237-256. 

 
[7]  N. Christofides, S. Eilon (1969) “Expected distances in distribution 
problems”. Operational Research Quarterly 20, n°4, 437-443. 
 
[8]   J.F. Cordeau, M. Gendreau, G. Laporte (1997) “A tabu search heuristic 
for periodic and multi-depot vehicle routing problems”. Networks  30, 105-
109. 

 
[9]  M. Gaudioso, G. Paletta (1992) “A Heuristic for the Periodic Vehicle 
Routing Problem”.  Transportation Science 26 n° 2, 86 – 92. 

 
[10]  G. Ghiani, R. Musmanno, G. Paletta, C. Triki (2005) “A heuristic for 
the periodic rural postman problem”. Computers and Operations Research 
32, 219-228. 

 
[11]  B. Korte, J. Vygen (2000). Combinatorial optimization. Theory and 
algorithms. Springer. 

 



Tatiana Bassetto – Francesco Mason 

 14 

[12]  G. Laporte (1992) “The traveling salesman problem: an overview of 
exact and approximate algorithms”. European Journal of Operational 
Research 59, 231-247. 

 
[13]  E.L. Lawler, J.K. Lenstra, H.G. Rinnooy Kan, D.B. Shmoys (1985) 
The traveling salesman problem: a guided tour of combinatorial 
optimization. Wiley, New York. 

 
[14]  S. Martello, P. Toth (1990)  Knapsack problems.  Wiley, Chichester. 

 
[15]   G. Paletta (1992) “A multiperiod traveling salesman problem: 
heuristic algorithms”. Computers and Operations Research 19, 789-795. 

 
[16]  G. Paletta (2002) “The period traveling salesman problem: a new 
heuristic algorithm”. Computers and Operations Research 29,1343-1352. 

 
[17]   G. Paletta, C. Triki (2004) “Solving the asimmetric traveling salesman 
problem with periodic constraints”. Networks  44, n° 1, 31-37.  

 
[18]  C.H. Papadimitriou, K. Steiglitz (1998) Combinatorial optimization. 
Algorithms and complexity. Dover Publications, New York. 

 
 
 

 
 
 


