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Abstract

In this study some results on the reactivity of silicatic consolidants employed for the conservation of valuable artistic and cultural
porous materials are discussed. In particular, a colloidal suspension of silica made by particles with an average diameter of 10–
15 nm, a sodium silicate and an ethyl silicate consolidant are studied. The chemical–physical characterization of xerogels achieved from
the examined products were carried out determining the superficial area (BET method) and the average dimension of particles (SAXS)
while the chemical structure of xerogels were investigated through NMR MAS spectroscopy of the 29Si nucleus. The investigation on
reactivity between silica and stone support was executed by mixing consolidants with calcite and quartz powder to simplify as much
as possible the system otherwise very complex. On silica produced by the three examined consolidants structural differences are revealed
and these diversities can be responsible for the dissimilar reactivity of the silicatic systems towards the stone, in particular with regard to
the carbonatic component.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The porous materials, as stones and plasters, exposed to
the external environment are subjected to chemical–physi-
cal decay processes that produce the loss of the consistence
of the material. The phenomenon is of particular impor-
tance when it involves valuable architectural and artistic
works, like masonry of historical buildings or mural paint-
ings. The conservation project of these materials includes a
consolidation intervention for restoring the physical–
mechanical characteristics of the support and in particular
the cohesion between material particles and their adhesion
to the non-deteriorated support. Usually this operation is
carried out applying polymeric compounds in organic sol-
vent or in inorganic products [1–3].

In general the polymeric products in organic solvent
have demonstrated to own good consolidant properties
but also some limits related above all to the different
behaviour towards the water of the consolidated material
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compared to the original one. Besides colour variations
of the treated support are often observed and they are
not always acceptable in the restoration field.

The inorganic consolidants and most of all the consoli-
dants with a basis of silica react reducing the porosity of
the material which becomes more compact and less suscep-
tible to the water action. They have less cohesive property
than the organic consolidants but they are most compatible
with the support that shows a less heterogeneous behaviour
in relation with water both in liquid and in vapour state. In
particular sodium silicate, ethyl silicate and a colloidal sus-
pension of silica made of particles with an average diameter
of 10–15 nm [1] are the most preferably used among the
inorganic consolidants made by silica. The application of
these products causes after many reactions the formation
of amorphous silica that acts as a consolidant and it is
made by a disorderly and continuous lattice of silica
tetra-coordinated tetrahedrons that make rings with 3, 4,
5, 6, 7 and 8 atoms of silicium. This structure contains
numerous silanolic Si–OH groups, which however give
hygroscopicity to the system, in particular where an inter-
ruption of lattice structure occurs [4,5].
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Table 1
Chemical–physical characteristics of the silicatic consolidants

Consolidant Silica/
(solvent +
silica)
product
weight (%)

Viscosity
(cp)

pH Solution
density
(g/cm2)

Dry product
density
(g/cm3)

Colloidal
silica

32 3.1 9.8 1.2 2.1

Sodium
silicate

31 3.2 11.1 1.2 2.1

Ethyl
silicate

31 2.5 6.1 0.9 1.8
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Initially the sodium silicate, the ethyl silicate and the col-
loidal silica, that are the objects of this study, form a gel of
amorphous silica that afterwards transforms itself in xero-
gel because of the evaporation of solvent and assumes
characteristics strictly correlated with the condition of the
solvent evaporation process. It could be put forward the
hypothesis that the consolidant action is exercised by
the aerogel filling the accessible porous of stone [6] but it
is not excluded that it could be influenced by the silicatic
structures reactivity with support [7]. There is not much
research on the subject but the knowledge of interactions
between consolidant and support could be of great applica-
tive interest; in fact it could allow to modify the entity of
this interaction in relation to the conservation state of the
support and its chemical nature.

In this study, some results on the reactivity of the
sodium silicate, ethyl silicate and colloidal silica with cal-
cium carbonate and quartz, that are the principal com-
pounds of the stone used in historical buildings, are
reported. In the first part of the research the xerogels
obtained from the three silicatic systems are character-
ized; afterwards the chemical reactivity of xerogels are
studied mixing them with calcite and quartz because they
are system well-known and recognizable for the
employed techniques and facilitate the interpretation of
the results.

In this work, the data obtained by 29Si MAS spectros-
copy on samples coming from the support–consolidant
reactivity are discussed. This technique has already given
interesting results in studies on the interaction between bin-
der and aggregate of mortars with fragments of crushed
bricks and on the stone decay after consolidant treatment
[8,9].

Tests correlated to some properties of the products were
carried out in order to evaluate applicative aspect. The
capacity of the products to penetrate into real samples
and how they distribute on supports were considered deter-
mining at different depth the porosity and the porous distri-
bution in function of cumulative volume. The cohesive
capacity was measured by a method set up in laboratory
and designed in expectation of an employment in building
yards.

2. Experimental method

2.1. Samples

Table 1 reports some physical characteristics of the
products employed in this study which are available in
commerce at different concentration level.

The products were prepared to obtain the same dry
weight/humid weight rate (silica content after solvent evap-
oration process). The supports employed were quartz and
calcium carbonate. In this way many problems due to the
presence of impurities and different porosity of the support
were overcome. Quartz was ground and it was used the
fraction with a grain size smaller than 38 lm; calcium car-
bonate was a standard product 99% with a fine grain size
(smaller than 38 lm).

2.2. Xerogel characterization

After evaporation of the water in air (T = 19 �C,
HR = 65%) the products were dried in the same ambient
temperature and with a relative humidity of about 10%.

The xerogels were characterized using different
methodologies:

a. Measures of the specific area by BET method (Sorp-
tomatic 1900 Fison Instruments) and by small angle
scattering of X-ray (using a Kratky room with a point
to point counter and a Cu Ka radiation) [10]. This
technique was employed to verify the data obtained
by the BET method; in fact it can feel the effects of
the presence of different adsorbed water quantities in
the three xerogels.

b. NMR measures of the 29 silicium nucleus (Varian
UNITY 400 with resonance frequency 1H equal to
400 MHz) were carried out on xerogels. The calibration
of the abscissa scale was made comparing with the zeo-
lite X spectrum used as standard and the spectra were
deconvoluted into individual Lorentzian functions [11–
13].

2.3. Consolidant–support interaction investigation

The study was conducted on systems obtained by mixtures
of different consolidants both with calcite and quartz in 1:1
molar rate. The mixtures were exposed at the air and at
RH = 65% for enough time to guarantee the xerogel forma-
tion (60 days). The mixtures were kept at a relative humidity
of about 10% (T = 19 �C). The interaction between silica,
coming from the different consolidants, and calcite or quartz
was studied by 29Si NMR spectroscopy using the same condi-
tions described in the previous paragraph.

2.4. Determination of products distribution into support

The analyses were carried out on portion of different
mortar samples, considering different depth range of
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0–0.5 cm, 0.5–1.0 cm and 1.0–1.5 cm. All samples were trea-
ted with a same quantity of product equal to 4.5% in weight.

The porous values and the distribution were compared
to the data of the non-treated mortars. The porosity mea-
sures were repeated three times for each sample using a CE
Instrument Pascal 240 mercury porosimeter and following
the cultural heritage regulations [14].

2.5. Cohesion measure

The determination of the cohesion grade was set up with
an equipment made by a drill fixed on a vertical support
and connected with a roll whose rotation is proportional
to the covered space by the tip of the milling machine on
the sample. Graph paper is fixed on the roll and in regular
intermissions the covered space of the mill was plotted.

For every sample a mill with a diameter of 12 mm was
employed, using the minor rotation velocity and greater
available torque of the drill motor; the weight exerted on
samples was constant and equal to 3.8 kg. The values of
penetration speed (Ds/Dt) were extracted from the data
obtained and they are reported in a diagram in space func-
tion for each sample. The tests were carried out on proper
mortar samples prepared in laboratory characterized by a
composition of 20% calcium carbonate and 80% silicate
with well-known and constant values of porosity. The mor-
tar samples were treated with the same quantity of product
and for each consolidant (4.5% in weight) five measures of
the cohesion were tested. The analysis was carried out on
the samples prepared in the same manner of the samples
that were subjected to the porosimetric analysis.

3. Results and discussion

3.1. Xerogel characterization

3.1.1. Measure of specific area by BET method and small

angle scattering of X-rays
The superficial area measurements of silica by BET

method pointed out that from the colloidal suspension it
Fig. 1. 29Si NMR spectrum
was obtained a product with an area of about 150 m2/g,
while from sodium silicate and ethyl silicate were obtained
products with an area included into the 8–10 m2/g range.
The great superficial area of colloidal silica is due to the
small dimensions of the particles and it was evaluated by
SAXS diffractometry by which it was obtained an average
diameter value of 13 nm to which a superficial area of
220 m2/g, near to the value given by BET method corre-
sponds. It is important to consider that this technique
can evaluate a superficial area so restricted to the only open
porous while the low angle diffractometry permits to deter-
mine the entire area of the examined sample.
3.1.2. Measure of 29Si by NMR MAS spectroscopy
The 29Si NMR spectroscopy carried out on xerogel com-

ing from the colloidal suspension evidenced the presence of
two signals, one, predominant, at �114 ppm, the second
one at �103 ppm which correspond to Q4 and Q3 type
structures relative to tri-dimensional and planar systems
(Fig. 1). The analysis on xerogel coming from sodium sili-
cate indicates the presence of three signals at �110, �99
and �90 ppm, in which the Q3 (planar) type structure pre-
dominates and Q2 (mono-dimensional chains) linear type
structures appear (Fig. 2). A similar spectrum was obtained
from the ethyl silicate in which Q3 tri-dimensional type
structures seem to be predominant (Fig. 3).

Table 2 shows the percentage ratio of the areas corre-
sponding to the peaks of the different structures Q4, Q3,
Q2 and Q1 on the xerogels and on the mixtures with cal-
cium carbonate and quartz.

The values of the relative ratios indicate, as just
observed in NMR spectra, the prevalence of the Q4 struc-
ture on the xerogel coming from colloidal silica and the
Q3 structure on the xerogel coming from ethyl silicate
and sodium silicate. In these last two xerogels the contribu-
tion of planar structures on the entire complex structure is
very similar (78 and 72), while the Q4 type structures give
nearly a double contribution on the xerogel coming from
ethyl silicate compared with the sodium silicate’s one in
of colloidal silica gel.



Fig. 3. 29Si NMR spectrum of xerogel coming from ethyl silicate.

Fig. 2. 29Si NMR spectrum of xerogel coming from sodium silicate.
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which the Q3/Q4 and Q3/Q2 ratios substantially are the
same.

3.2. Consolidant–support interaction

3.2.1. Silica–calcium carbonate system

Figs. 4–6 show the 29Si NMR spectra of the three xero-
gels with calcium carbonate. Table 2 points out the per-
Table 2
Percentage ratio of the areas of each Qi peak on xerogels and on mixtures
in connection with the sum of the total area of peaks

System Q4/
P

Qi Q3/
P

Qi Q2/
P

Qi Q1/
P

Qi

Colloidal silica 93 7 0 0
Colloidal silica +

calcium carbonate
85 15 0 0

Colloidal silica + quartz 92 8 0 0
Sodium silicate 12 78 11 0
Sodium silicate +

calcium carbonate
31 57 12 0

Sodium silicate + quartz 21 61 18 0
Ethyl silicate 23 72 5 0
Ethyl silicate +

calcium carbonate
43 34 19 4

Ethyl silicate + quartz 46 49 5 0
centage ratios of the areas corresponding to the peaks of
the different structures Q4, Q3, Q2 and Q1.

3.2.1.1. Colloidal silica and calcium carbonate mixture. Sub-
stantial differences with the structure of xerogel coming
from the consolidant are not evident (Fig. 4), but the values
showed in Table 2 indicate a double contribution of Q3

structure in comparison with the xerogel.

3.2.1.2. Sodium silicate and calcium carbonate mixture.

Fig. 5 shows the 29Si NMR spectrum of the mixture from
which there are no clear and substantial differences with
the xerogel. Also in this case more information are given
from the lecture of the Table 2 data from which a substan-
tial decrease of Q3 structure comes out while there is a tri-
ple contribution of the Q4 structures. In this case, the
calcium carbonate acts in the opposite direction in compar-
ison with colloidal silica and calcium carbonate mixture
and it increases the part of the tri-dimensional structures
to the detriment of the planar structures.

Important differences appear instead in the mixture
with sodium silicate and calcium carbonate: the signals
corresponding to Q4, Q3 and Q2 assume a more tight
and lengthened shape and a new signal at �89 ppm



Fig. 4. 29Si NMR spectrum of gel coming from colloidal silica and calcium carbonate mixture.

Fig. 5. 29Si NMR spectrum of gel coming from sodium silicate and calcium carbonate mixture.

Fig. 6. 29Si NMR spectrum of xerogel coming from ethyl silicate and calcium carbonate mixture.

1102 E. Zendri et al. / Construction and Building Materials 21 (2007) 1098–1106
corresponding to Q1 structure relative to dimers or to ter-
minal group in chains appear (Fig. 6). The different shape
of the signals could be index also of a system tendency to
a greatest structural order.
3.2.1.3. Ethyl silicate and calcium carbonate mixture. The
considerable structural differences induced by calcium car-
bonate presence are shown in Table 2. The contribution of
the Q3 structures is halved, the Q4 structures’s one dupli-
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cates and the contribution of the Q2 structures quadrupli-
cates, besides it appears an important contribution of Q1

structures. The calcium carbonate seems to aid to the
development of space and planar structures to the preju-
dice of planar’s ones. The shape of peaks can indicate the
presence of crystalline systems, in particular in Q1 and Q2

structures are related to linear and monomeric structures.
The calcium carbonate modifies in a significant way the
xerogel structure obtained from the three consolidant
products. The predominant presence of tri-dimensional
Q4 systems seems to reduce the reactivity of xerogel with
calcium carbonate. The Q3 systems appear to promote
the reactivity with calcium carbonate and to form tri-
dimensional and linear structures. In applicative terms this
fact could indicate that the xerogels with a development of
silica in ‘‘open’’ systems, like the planar ones, are generally
more reactive towards the carbonatic supports.

The ethyl silicate mixing with calcium carbonate seems
to modify in considerable manner the original structure
and that is underlined by the presence of shorter linear
chains of tetrahedral silica or dimeric forms. It could corre-
spond to an effective chemical interaction between the con-
solidant product and calcium carbonate that involves the
formation of linear silicatic structures, while the different
Fig. 7. 29Si NMR spectrum of xerogel coming

Fig. 8. 29Si NMR spectrum of xerogel coming
shape of signals could indicate the general tendency to a
greater order of the already presented silicatic structures
maybe induced by calcium carbonate presence.

An analogous behaviour was revealed also in the case of
mixture made from kaolin with lime studied to evaluate the
crushed brick mortar system reactivity [8].
3.2.2. Silica–quartz system

The three products mixed with quartz produce small
structural modifications corresponding to a low increase
of the more complex Q3 and Q4 type structures (Figs. 7–9).

3.2.2.1. Colloidal silica and quartz mixture. Variations in
the xerogel structure are not observed and the contribution
of every structures remains nearly unchanged (Table 2).

3.2.2.2. Sodium silicate and quartz mixture. Also in this case
there is not observed structural changes in comparison with
the xerogel coming directly from the consolidant (Fig. 8).

Nevertheless the contribution correlated to the different
structures suffers some modifications: the percentage of Q3

systems decrease and the Q2 and Q4 systems are favoured
in the same measure (Table 2).
from colloidal silica and quartz mixture.

from sodium silicate and quartz mixture.



Fig. 9. 29Si NMR spectrum of xerogel coming from ethyl silicate and quartz mixture.
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3.2.2.3. Ethyl silicate and quartz mixture. The presence of
quartz involves a greater equilibrium between the planar
and tri-dimensional structures (Fig. 9) that aid in a similar
way to the total structure of the mixture (Table 2). The Q2

systems do not seem to feel the presence of quartz.
In general quartz modifies moderately the xerogel struc-

ture and the more significant changes are debited Q3

systems.

3.3. Determination of products distribution into support

The data obtained by mercury intrusion porosimetry
show that the products can penetrate into mortars in
1 cm depth and only colloidal silica arrives at 1.5 cm depth.
In particular Figs. 10 and 11 display how the xerogel from
colloidal silica modifies in appreciable way the distribution
of porous and show that the relative volume associable at
the porous range of 100–300 nm decreases in drastic way
in the first half centimetre. Besides the trend of the curve
of the cumulative volume is increasing to lower values of
porous ray and reveals a fraction of porous with little
Fig. 10. Cumulative volume curve of the
dimension which are always present because the product
do not close them.

The sodium silicate shows a porosity trend similar to the
non-treated mortars and it fills similarly all the hollows in
the entire dimension range of porous considered.

The ethyl silicate shows a decrease of the cumulative
volume of porous with a ray smaller than 200 nm but the
trend of porosity is very similar to the non-treated mortars.

3.4. Cohesion measure

The diagram in Fig. 12 shows in ordinate the average
values of the penetration velocity of the drill in mm/s while
in abscissa the depth expressed in mm.

The penetration velocity of non-treated mortars samples
decreases slightly with depth and the changes can be related
with the low variations of cumulative volume between the
internal and the external area of the mortar samples
(around 20 mm3/g). In all cases the products applied do
not seem to involve significant cohesion changes under
1 cm depth.
different products at 0–0.5 cm depth.



Fig. 11. Cumulative volume curve of the different products at 0.5–1 cm depth.
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Fig. 12. Speed of drill penetration in function of the depth.
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The samples treated with sodium silicate and colloidal
silica display a less penetration velocity (less cohesion) in
particular from the external surface until 10 mm in depth.
Upon 10 mm the sodium silicate shows a weak cohesive
action while colloidal silica reports values near the data of
non-treated mortars [15]. The ethyl silicate seems to induce
a moderate strength to penetration only below 10 mm in
depth, with values near the data registered by sodium sili-
cate. These measures do not seem to be correlated to poros-
ity changes before discussed. In particular, the ethyl silicate
and the sodium silicate show a different cohesive capacity in
comparison with a similar porosimetric distribution.
Although the colloidal silica penetrates more than the other
products and modifies significantly the porosimetric distri-
bution, it does not involve an increase of the cohesion on
the material in the same manner of the sodium silicate.
4. Conclusion

Structural differences on silica produced by the three
examined consolidants were revealed.

In xerogel coming from colloidal silica prevails the pres-
ence of Q4 systems related to tri-dimensional systems while
in xerogels coming from ethyl silicate and sodium silicate
prevail more planar ‘‘open’’ systems, much more available
for a chemical interaction with calcium carbonate and
quartz. The calcite reacts with xerogels involving signifi-
cant structural modifications. In all cases the presence of
Q3 systems seems to influence on the reactivity of the
silicatic consolidants towards the support.

The consolidant based on ethyl silicate proves more
reactive than others and this effect could offer good reasons
for suppose that ethyl silicate has a best re-aggregating
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effect on substrate. On the contrary measures of cohesion
on mortar samples treated with the three examined consol-
idants do not give great differences between the products
and in particular, the ethyl silicate proves to have less cohe-
sive effect on mortars than sodium silicate and colloidal sil-
ica. Instead the porosity distribution of treated samples
evidences a greater penetration capacity of the colloidal sil-
ica, characterized by little dimensions of the particles in
comparison with sodium silicate and ethyl silicate.

At this time we do not know how to quantify the phe-
nomenon of the chemical reactivity to evaluate how much
it really influences the consolidant effectiveness of the
applied products.

It is important to suggest this study methodology using
silicatic supports different from quartz in order to verify
how the possible and different silicatic structures of the
support can influence the reactivity with the consolidants.

Finally, we consider the chemical reactivity of quartz
very important for the consolidation operation if it is devel-
oped in the application phase. The case of ethyl silicate is
symbolic although it has not reactivity with the support:
if ethyl silicate is applied in presence of humidity it reacts
rapidly with water forming a compact superficial layer that
compromises the result of the consolidation operation
stopping the penetration of consolidant into the materials.
The research of the reactivity will allow to reveal the chemi-
cal interactions also in long time in order to favour them or
at last to create the best conditions for them to take place.
In this sense the mixture between silica, calcite and quartz
should be analyzed also after a period to study a possible
reactivity in long-term.
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