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Abstract

The Vehicle routing problem with time windows is frequently found in literature,
while multiple time windows are not often considered. In this paper a mathematical
formulation of the vehicle routing problem with multiple time windows is presented, taking
into account periodic constraints. An algorithm based on Ant Colony System is proposed
and implemented. Computational results related to a purpose-built benchmark are finally
reported.
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1. Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) is defined
as the problem of minimizing costs when a fleet of homogeneous vehicles
has to distribute goods from a depot to a set of customers satisfying time
windows and capacity constraints [4]. The objective of the problem is
usually to minimize the total length of the subtours.
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A variant of the problem is proposed in this paper: the difference
between the two problems consists in the objective functions and in the
presence of some constraints. In the formulation here presented, the total
weighted time, traveling and waiting time, has to be minimized, satisfying
constraints related to multiple time windows and periodicity.

The VRPTW has been solved in literature both with exact [11],
heuristic [4], [6], [15] and meta-heuristic [1], [2] algorithms.

In this paper, an algorithm based on Ant Colony System is proposed
and implemented for the problem considered. Some experiments are
presented, tackling instances of the Vehicle Routing Problem with Multiple
Time Windows (VRPMTW) of a benchmark derived from literature ([11])
and modified for taking into account the presence of multiple time
windows for which, as far as we know, no results are currently available.

In Section 2 the Vehicle Routing Problem with Multiple Time Win-
dows and periodic constraints is formulated. Section 3 deals with the
approach of Ant Colony System while Section 4 gives the description of
the procedure proposed. In Section 5 computational experience related to
a purpose-built benchmark is reported and discussed. Finally, conclusions
and hints for future research are presented in Section 6.

2. Mathematical formulation

Consider a Vehicle Routing Problem with Time Windows (VRPTW)
having the following features:

• each customer has multiple time windows, the number of which
varies from 1 to TW;

• each customer may require to be served many times during the
period considered, [0, T];

• each subtour cannot be longer than a fixed value P.

The problem can be formulated as a VRPTW [6] with the addition
of some variables related to the multiplicity of time windows and some
specific constraints taking into account the request of periodic visits
during the period. The formulation proposed is inspired by the one
presented in [5].

Let G = (V, E) be a graph where V is the set of nodes and E is the set
of not oriented edges. More precisely, V = {0} ∪ M, where 0 is the depot
and M = {1, 2, ..., m} is the set of customers, and E=({0}×M)∪ (M×M),
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where M× M is the set of edges connecting the customers and {0} × M is
the set of edges connecting the customers and the depot.

A positive demand qi and a set of wi time windows [ev
i , lv

i ] ⊂ [0, T],
1≤ v≤wi, wi ≤ TW, such that ev

i < lv
i and lv

i < ev+1
i , v ∈ {1, 2, . . . , wi−1},

are associated to each customer i ∈ M.
Let M′ ⊆ M be the set of customers requiring to be served more than

once in the period [0, T]. To every customer belonging to M′ is associated
one dummy customer for each requested visit, except the first one. To each
dummy customer, time windows equal to the ones of the real customer
which they are referred to, are associated.

Let Z be the set of dummy customers, N = Z∪M and A = ({0}×N)
∪ (N × N). In this way all the customers in N must be served only once
in the considered period choosing one of the requested time windows in a
suitable way as will be discussed in the following.

For each i ∈ M′ and j ∈ M′ ∪ Z define oi, j in the following way:

oi, j =

{
1, if j is a dummy customer associated to i or i = j,

0, otherwise.

Moreover, for each i ∈ M′ define πi such that:

πi =

{
1, if customer i requires visits having suitable time distance,

0, otherwise.

Two visits are defined to have a suitable time distance if the width of the

interval between them is at least equal to
⌊

T
∑

j∈N
oi, j

⌋
; this value is the bigger

integer not greater than the ratio between the time horizon and the total
number of visits that customer i requires. A customer is allowed to impose
this restriction only if he indicates appropriate time windows.

To each edge (i, j) ∈ A is associated a weight ti, j, representing
the time required to travel from node i to node j increased by the time
necessary for the service at i, if i is different from 0.

In the time interval [0, T], H0 disjoint subperiods are considered,
which may represent for instance different days in a planning horizon
corresponding to a week. Let H = {1, 2, . . . , H0} be the set of such
subperiods. Moreover, it is required that each subtour begins and finishes
in the same subinterval.
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Let C be the cost of a waiting time unit and K the set of available
vehicles each having capacity Q.

Let xh,k
i, j and uv

i be binary variables having the following meaning:

xh,k
i, j =





1, if the vehicle k visits customer j immediately

after customer i in the subperiod h,

0, otherwise

and

uv
i =

{
1, if customer i is served in his v-th time window,

0, otherwise,

(i, j) ∈ A, k ∈ K, h ∈ H and v ∈ {1, . . . , wi}.

Let Si be the instant of time in which the service and Wi the waiting
time concerning customer i, i ∈ N.

The model can be formulated as follows

min ∑
h∈H

∑
k∈K

∑
(i, j)∈A

ti, j · xh,k
i, j + C · ∑

i∈N
Wi + F ∑

k∈K
∑

h∈H
∑
j∈N

xh,k
0, j , (1)

subject to ∑
h∈H

∑
k∈K

∑
j∈N

xh,k
i, j = 1, i ∈ N, (2)

∑
h∈H

∑
k∈K

∑
i∈N

xh,k
i, j = 1, j ∈ N, (3)

∑
k∈K

∑
j∈N

xh,k
0, j ≤ |K|, h ∈ H, (4)

∑
k∈K

∑
i∈N

xh,k
i,0 = ∑

k∈K
∑
j∈N

xh,k
0, j , h ∈ H, (5)

wi

∑
v=1

uv
i = 1, i ∈ N, (6)

wi

∑
v=1

uv
i · ev

i ≤ Si , i ∈ N, (7)

wi

∑
v=1

uv
i · lv

i ≥ Si , i ∈ N, (8)

Si + tk
i, j + Wj − S j ≤ B(1− xh,k

i, j ),

(i, j) ∈ N × N, k ∈ K, h ∈ H, (9)

Si + tk
i, j + Wj − S j ≥ B(xh,k

i, j − 1),

(i, j) ∈ N × N, k ∈ K, h ∈ H, (10)
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∑
i∈N∪{0}

∑
j∈N

q j · xh,k
i, j ≤ Q, k ∈ K, h ∈ H , (11)

uv
z − uv

j ≤ 1, 1 ≤ v ≤ wi , i ∈ M′, z, j ∈ M′ ∪ Z :

oi,z = 1, oi, j = 1, z 6= j , (12)∣∣∣∣∣
wz

∑
v=1

uv
z · ev

z −
w j

∑
v=1

uv
j · ev

j

∣∣∣∣∣ ≥
⌊

T
∑

j∈N
oi, j

⌋
πi ,

i ∈ M′, z, j ∈ M′ ∪ Z : oi,z = 1, oi, j = 1, z 6= j , (13)

S j − Si − P ≤ B(2− xh,k
0,i − xh,k

j,0 ) ,

(i, j) ∈ N × N, i 6= j, k ∈ K, h ∈ H , (14)

xh,k
i, j ∈ {0, 1}, (i, j) ∈ A, k ∈ K , (15)

uv
i ∈ {0, 1}, i ∈ N, 1 ≤ v ≤ wi , (16)

Wi ≥ 0, i ∈ N , (17)

Si ≥ 0, i ∈ N . (18)

Constraints (2) and (3) restrict the assignment of each customer to
exactly one vehicle route. Constraint (4) means that at most a fixed number
|K| of vehicles in each time interval h can leave the depot. Constraint (5)
implies that the number of vehicles which have left the depot is equal to
the number of vehicles coming back to the depot in each time interval
h. Constraints (6), (7), (8), (9), (10) and (11) ensure the schedule feasibility
with respect to time considerations and capacity constraints. B is an
arbitrary large value. Constraint (12) implies that dummy customers of the
same real customer are not visited in the same time window. Constraint
(13) means that different visits of the same real customer can’t be chosen
arbitrarily if he required them to be suitably separated (i.e., if πi = 1):
the time distance between two visits must be greater than or equal to a
fixed value depending on the total number of required services and on
the length of the time period considered, as previously explained. It has
to be remarked that if πi = 0 for some i ∈ M′ the constraint is trivially
satisfied. Constraint (14) guaranties that each circuit belongs to only one
time interval h and that its total time length is less than or equal to a fixed
value P. Binary conditions and nonnegative constraints on the variables
are expressed by the last constraints (from (15) to (18)).

The objective function (1) is the sum of the weighted routing and
waiting time and the fixed cost of the vehicles used. Since the cost of
using an additional vehicle (F) is quite high compared with the other
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transportation costs, setting the value of F big enough the incidence of
the third term is much stronger than the one of the other ones. The need
of consideration of the waiting time follows immediately the choice of
minimization of the temporal duration of the tours. In many real situations
a main objective is the minimization of the total time spent by the drivers
for completing the services: a tour which is shorter in terms of distance
traveled and implying some hours more than another one is often not
preferable.

3. Ant colony system

Ant Colony System is an Ant Colony Optimization (ACO) algorithms,
where ACO is a meta-heuristic which studies a set of artificial ants
cooperating to the solution of an optimization problem, by the exchange
of information via pheromone deposited on graph edges [9].

Among the problems strictly related to the one considered in this
paper, the first one to which this method has been applied is the Traveling
Salesman Problem (TSP) [7], [8], [16], then algorithms have been proposed
for VRP [1], [2] and VRPTW [12].

The aim of this paper is to propose an algorithm to solve the
VRPMTW1 formulated in the previous section, using the Ant Colony
System method.

Following the literature ([12]), the Vehicle Routing Problem is trans-
formed into a TSP considering a number of depots equal to the number
of vehicles which must be used to serve the customers. The initial graph
G presented in the previous section is modified adding as many nodes
as is the number of vehicles used minus one, moreover the arcs between
each fictitious depot and each customer are duplicated and the distances
between copies of the depot are set equal to infinity. To each edge two
weights are associated: τ(i, j), called pheromone, which is modified at
each iteration by artificial ants, and η(i, j), the value of which depends
on the length of the edge.

At the beginning f ants are located in the same depot. Each ant
generates a complete tour by choosing the nodes according to a proba-
bilistic transition rule. Ants prefer to move to nodes connected by shortest
edges with high amount of pheromone. When the ants move the level

1For ease of exposure in the following the problem formulated in Section 2 will be referred
to as Vehicle Routing Problem with Multiple Time Windows (or VRPMTW), not including in this
denomination periodic constraints that are nonetheless a relevant part of it.
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of pheromone on the edges used is modified using a local updating
rule. Once all the ants have completed their tours a global pheromone
updating rule is applied, increasing the pheromone level on the edges
which belong to the current best tour. Then the whole process is repeated.

ACS ends when one of the following conditions becomes true: a fixed
number of solutions has been generated, a fixed computational time has
elapsed or a fixed number of iterations with no improvement of the
objective function has been performed.

The state transition rule shows how ant k in node i chooses node j to
move to. Let q0 be a fixed parameter (0 ≤ q0 ≤ 1) and q be a random
number uniformly distributed in [0, 1].

If q ≤ q0 ant k in node i chooses node j such that

j = arg max
u∈Jk(i)

{[τ(i, u)] · [η(i, u)]β}, (19)

where

τ(i, u) is the level of pheromone associated to the edge (i, u);

η(i, u) is a function of the length of the edge (i, u);

β is a parameter which determines the relative importance of η

versus pheromone;

Jk(i) is the set of nodes which can be visited by ant k leaving from i.

Remark that the index k associated to ants is completely different
from the one associated to vehicles and this will not generate confusion
in the following.

If q > q0, the choice of ant k in node i is random. Each node j has a
probability to be chosen equal to

pk(i, j) =





[τ(i, j)] · [η(i, j)]β

∑
u∈Jk(i)

[τ(i, j)] · [η(i, u)]β
, if j ∈ Jk(i),

0, otherwise.

(20)

This means that, if q is greater than q0, each node has a probability of
being chosen proportional to its desirability.

If q is greater than q0, this process is called exploration, otherwise it is
called exploitation.
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When f hamiltonian circuits are determined, the pheromone level is
modified on all edges by a global modification. In this context, only the
ant that has found the shortest route deposits pheromone on the edges it
went through, so that the choices of the following agents will be positively
affected by those ants which have obtained the best solutions.

4. Description of the approach

The approach used to tackle the Vehicle Routing Problem with
Multiple Time Windows has been called MACS-VRPMTW, where MACS
means Multiple Ant Colony System.

The algorithm is quite similar to the one proposed in [12], where two
types of colonies of ants minimize simultaneously two different objective
functions: the number of vehicles and the total cost. More precisely, the
first colony must determine a feasible solution, if it exists, with a fixed
number of vehicles; such colony will be called ACS-VEI. The second one
tries to improve the solution found with the minimum number of vehicles;
such colony will be called ACS-TIME. This procedure is slightly different
from the one proposed in [9].

These two kinds of colony work in a very similar way: analyzing
each node with respect to the constraints imposed by the model (capacity
of each vehicle, time windows, etc.) each ant builds a list of feasible
movements and chooses the one indicated by a probabilistic rule similar
to the one described in Section 3.

The first step of the algorithm finds a feasible solution by an heuristic
based on nearest neighbor [15]. A feasible solution is represented by a list
of nodes starting from a depot and alternating customer-nodes and depot-
ones; the last element of the list is the last node touched before the last
vehicle goes back to the depot. In this way the number of depots is exactly
equal to the number of vehicles required and each subroute starts with
a depot and ends with a customer. On the other hand the value of the
objective function includes also the time needed for each vehicle to go back
to the initial depot.

Let ψgb be the current optimal solution (globally best) and s be the
number of vehicles used.

The second step requires that an ACS-VEI colony of ants is activated
to find a feasible solution with s− 1 vehicles. The search will be repeated
decreasing of one unit the number of vehicles used at each iteration, until
no feasible solution can be found.
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In this way the algorithm determines the minimum number of
vehicles with which ants are able to find a feasible solution given the
established stop-criteria. With this number of vehicles the ACS-TIME
colony is activated to find the shortest route.

It may happen that in this phase an ant finds a route that has as
the last node a depot, which means that it has found a solution with one
vehicle less. In this case this last depot-node is dropped and the ants will
work with the new graph obtained. In this situation, ACS-TIME may find
a solution which uses a number of vehicles smaller than the one used by
ACS-VEI.

4.1 Set of feasible customers and time windows

Let Jk(i) be the set of feasible customers if the last node visited by ant
k is i. If i is a depot, Jk(i) will be the set of all customers not yet visited. If i
is a customer, Jk(i) will be the set of all not visited customers j such that:

• the capacity constraint is satisfied;

• there exists v, 1 ≤ v ≤ w j, such that [ev
j , lv

j ] belongs to the subperiod
in which the subtour has begun and lv

j is greater than or equal to
the instant in which j can be reached;

• the subtour obtained inserting customer j has a duration smaller
than or equal to P.

If this set is empty and at least
3
4

of the capacity of a vehicle is used, Jk(i)
contains also all non visited depots.

4.2 State transition rule

The state transition rule used in the algorithm is a variant of the one
described in Section 3. In this paper, in which multiple time windows
are considered, a new parameter ϑ is introduced to express a measure of
desirability taking into account the number of time windows which are
successive to the current instant. This parameter will be defined in the
next subsection.

If q ≤ q0 ant k in node i chooses node j such that

j = arg max
u∈Jk(i)

{[τ(i, u)] · [η(i, u)]β · [ϑ(i, u)]ν} , (21)
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where

ϑ(i, u) is a function of the width and of the number of

the available time windows of node u being in node i;

ν is a parameter which determines the relative importance of

ϑ versus pheromone τ and the heuristic measure η.

If q > q0, the choice of ant k in node i is random. Each node j has a
probability to be chosen equal to

pk(i, j) =





[τ(i, j)] · [η(i, j)]β · [ϑ(i, u)]ν

∑
u∈Jk(i)

[τ(i, u)] · [η(i, u)]β · [ϑ(i, u)]ν
, if j ∈ Jk(i),

0, otherwise.

(22)

4.3 Evaluation of η

The value of η(i, j) takes into account not only the time ti j necessary
to go from node i to node j, but also the urgency of serving customer j,
given by the time interval between the present moment and the one in
which the chosen time window closes; moreover, the number of times in
which node j has not been touched in the previous (unfeasible) routes is
considered.

More precisely,

η(i, j) =
1

max{1, γδi j(l̂ j − now)− IN3
j }

, (23)

where

now is the current time,

ê j and l̂ j are the beginning and the end of the time window

chosen for visiting customer j,

δi j = max{now + ti j, ê j}-now is the width of the time interval

elapsing before the beginning of the service to customer j,

IN j is the number of times which node j has not been inserted in

a tour,

γ is a scale factor used to have homogeneous quantities.

Formula (23) for η(i, j) is the same as the one proposed by Gam-
bardella et al. in [12], a part from the presence of the coefficient γ and from
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the raising to the third power of IN j, which is introduced to privilege the
choice of customers difficult to visit.

4.4 Evaluation of ϑ

The value of ϑ(i, j) depends on the time still available to visit node j
being in node i at the instant now and on the number of time windows of
customer j. More precisely,

ϑ(i, j) =





1, if SWj = ∅,
(

max

{
1,ξ

[
∑

v∈SWj

(lv
j − ev

j )

]
·(lmax

j − now− ti j)− w3
j

})−1

,

otherwise,

(24)

where

SWj = {v ∈ {1, . . . , w j} | lv
j > l̂ j} is the set of the time windows

subsequent the one chosen,

lmax
j is the end of the last time window of customer j,

ξ is a scale factor introduced to have homogeneous quantities.

Remark that if there is no time windows successive to the current
instant, the value of ϑ must be set equal to 1 so that the criterion on which
the next node is chosen relies completely only on η and τ . This heuristic
measure allows to consider the multiplicity of time windows: the urgency
of node j depends both on the number and on the width of the time
windows not yet closed.

4.5 Pheromone updating rules

Pheromone updating rules are the following:

• local updating rule

τ(i, j) = (1− ρ) · τ(i, j) + ρτ0,

with

ρ parameter such that 0 < ρ < 1,

τ0 initial level of pheromone;

• global updating rule

τ(i, j) = (1−α) · τ(i, j) +α∆τ(i, j),
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with

∆τ(i, j) =

{
(Lψgb)

−1, if (i, j) ∈ ψgb,

0, otherwise,

α parameter such that 0 < α < 1;

Lψgb length of the globally best tour ψgb.

Each time a new ACS-VEI colony is activated the pheromone level is
set equal to τ0 on each edge, where τ0 = 1

|N|·LNN
with LNN length of the

solution found with the nearest neighbor algorithm; on the other hand,
each time a colony completes its task the pheromone level present on each
edge is recorded.

Once the minimum number of vehicles necessary to the algorithm
to find a feasible solution is determined, before activating the ACS-TIME
colony the trail of pheromone present on each edge is updated. The aim
of this operation is to go back to the situation that led the ants to the
construction of a feasible solution with the minimum number of vehicles
found. Computational experiments have shown that in this way the ants
of the ACS-TIME colony are able to find a feasible solution much faster,
and so they have more time and more iterations to try to improve it.
Remark that this procedure is different from the one used in [12], where
the level of pheromone is initialized before activating ACS-TIME.

4.6 The algorithm

In Figures from 1 to 4 the algorithm is depicted.

In MACS-VRPTW ([12]), the ACS-VEI and ACS-TIME colonies are
activated in a different way. For every feasible solution found by ACS-VEI
with s vehicles, ACS-TIME searches a better solution with s vehicles. The
procedure is repeated decreasing the number of vehicles used. In the
algorithm proposed, ACS-TIME is started only once, when the final
number of vehicles has been identified by ACS-VEI.

5. Computational results

The algorithm above described was coded in Visual Basic and run on
an Athlon XP 1600, 1.39 Ghz.

Referring to the results obtained in [10] the values chosen for α, ρ and
q0 are the following:

α = 0.1 , ρ = 0.9 , q0 = 0.9 .
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Figure 1
The algorithm

1. /* Initialization */
/* ψgb is the best feasible solution found,
ψk is current solution,
ψACS-VEI is the best solution found with the current number of vehicles,
N is the set of nodes of the graph,
s is the number of vehicles found by nearest neighbor,
LNN is the total cost of the tour obtained by nearest neighbor,
Lgb is the total cost of the best tour found,
Lψk is the total cost of the tour found by ant k */

Initialize variables
Call Nearest Neighbor
Create s depot-nodes

2. /* Main Loop */
Do

Delete a depot-node
Call ACS-VEI

While ACS-VEI finds a feasible solution
Create a depot-node
Call ACS-TIME

Figure 2
ACS-VEI procedure

1. /* Initialization of pheromone trail */

τi j =
1

|N| · LNN
, ∀ (i, j) ∈ ψgb

Do
2. For each ant k

Call Tour Building Procedure
If # visited customers (ψk) = |N| Then

ψgb = ψk

τrecord(i, j) = τ(i, j)
Exit Procedure

Else
If # visited customers (ψk) > # visited customers (ψACS-VEI) Then

ψACS-VEI = ψk

End If
End If
For each node j /∈ ψk

IN j = IN j + 1
End for each

End for each

3. /* Global pheromone updating with ψgb */

τ(i, j) =

{
(1−α) · τ(i, j) +α(Lψgb )−1 , if (i, j) ∈ ψgb ,

(1−α) · τ(i, j), otherwise
/* Global pheromone updating with ψACS-VEI */

τ(i, j) =

{
(1−α) · τ(i, j) +α(LψACS-VEI )−1 , if (i, j) ∈ ψACS-VEI ,

(1−α) · τ(i, j), otherwise
While a stop criterion is met
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Figure 3
ACS-TIME procedure

1. /* Initialization of pheromone trail */
τ(i, j) = τrecord(i, j)

Do
2. For each ant k

Call Tour Building Procedure
If # visited customers (ψk) = |N| Then

If the last visited node is a depot-node Then
Delete that depot-node
ψgb = ψk

Else
If L

ψk < L
ψgb Then

ψgb = ψk

End If
End If

End If
End for each

3. /* Global pheromone updating */

τ(i, j) :=





(1−α) · τ(i, j) +α(L
ψgb )−1 , if (i, j) ∈ ψgb ,

(1−α) · τ(i, j), otherwise

While a stop criterion is met

Moreover the values chosen for the other parameters are:

f = 80,
maximum number of iterations = 10000,
maximum computational time allowed = 250,
maximum number of iterations without improvement = 155.

Preliminary tests have been performed for different values of β and
ν, the exponents of η and ϑ in the state transition rule. The values tested
were β ∈ {0, 0.5, 1, 5, 10, 20, 30} and ν ∈ {0, 1, 2, 4, 5, 6, 7} and all the
combinations were checked. The selected quantities are those that reached
the best results in terms of average relative error on a set of instances
constructed as explained in Section 5.1:

β = 20 , ν = 2 .

Observing the state transition rule reported in formulas 21 and 22, it
is observable that these two measures imply that the accent is posed first
on the pheromone level on the arcs, which has implicitly exponent 1, then
to the heuristic ϑ and finally on η (since these values are all smaller than
one, the higher is the exponent, the smaller is the relevance attributed to
them).

The values of the coefficients γ and ξ have been fixed equal to 1.
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Figure 4
The tour building procedure

/* TourBuildingProcedure for the ant k */

Initialize ψk

Repeat
1. /* Definition of compatible customers */

For each not visited customer-node j
If Si + ti, j ≤ l j &

total time from last depot ≤ P &
the visit is sufficiently distant from the others to the same customer, if required, &
capacity constraint is satisfied Then

j is compatible
compute η(i, j) and ϑ(i, j)

End if
End for each
For each not visited depot-node j

If no compatible nodes has been found or
cumulated demand ≥ 3

4 . capacity Then
j is compatible
compute η(i, j) and ϑ(i, j)

End if
End for each

If there are compatible customers Then
2. /* Choice, of the node to visit */

Draw q
If q ≤ q0 Then

exploitation
Else

exploration
End if
Insert j in ψk

Update remaining capacity
3. /* Local pheromone updating */

τ(i, j) := (1− ρ) · τ(i, j) + ρ∆τ(i, j)
End if

Until no compatible customers are found

5.1 Construction of the benchmark

Since as far as we know it is not possible to find in literature results
related to a benchmark for Vehicle Routing Problem with Multiple Time
Windows (VRPMTW), we have created a set of instances for which the
optimal solution is known. To this aim we have considered the two
instances reported in literature by Fisher [11] for the VRP without time
windows and with a fixed number of identical vehicles, not considering
customers requiring periodic visits. In both cases the fixed number of
vehicles is the minimum possible, considering the capacity of the vehicles
and the total demand.
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The VRP without time windows has been transformed into a VRP
with multiple time windows in the following way: some time windows
have been created such that the instant in which the customers are served
in the optimal solution of VRP is contained in at least one of the time
windows generated. In this way, using the same number of vehicles, the
optimal solution of VRP without time windows is feasible and optimal for
VRP with multiple time windows. Moreover it has to be remarked that in
the optimal solution the waiting time in each node is zero which makes it
optimal also for the objective function (1).

For each instance reported by Fisher [11] 28 instances have been
created using the algorithm depicted in Figure 5. In this way 8 instances
for each of the following kinds are obtained:

• one time window per customer with width from 100 to 300 minutes
(instances 1-4, 29-32),

• one time window per customer with width from 50 to 100 minutes
(instances 5-8, 33-36),

• at most two time windows per customer with width from 70 to
100 minutes, separated by a distance which varies from 50 to 100
minutes (instances 9-12, 37-40),

• at most four time windows per customer with width from 30 to
200 minutes, separated by a distance which varies from 50 to 100
minutes (instances 13-16, 41-44),

• at most five time windows per customer having width from 50 to
100 minutes, separated by a distance which varies from 15 to 50
minutes (instances 17-20, 45-48),

• at most six time windows per customer having width from 50 to
200 minutes, separated by a distance which varies from 30 to 100
minutes (instances 21-24, 49-52),

• at most ten time windows per customer having width from 40 to 80
minutes, distant from 15 to 50 minutes (instances 25-28, 53-56).

The number of vehicles used in both sets of instances is 4, and the
service time is set equal to 0. The maximum duration of each tour is chosen
in order to have the feasibility of tours implying a total time equal to the
triple of the optimal one.
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Figure 5
Creation of instances

/* W is the maximum number of time windows per customer, Wj is the number of time windows

assigned to customer j, arrival j is the arrival instant according to the optimal tour,

distmax and distmin are the maximum and the minimum distance, between two consecutive

time windows of the same customer, widthmax and widthmin are the maximum and minimum width

allowed for a time window, q, d, w, n and a are random number related to the number of time windows,

the distance between time windows, the width of time windows, the time window and the instant in which

arrival j falls, respectively */

For each node j ∈ N

Draw q

Wj = Round(q ·W)
Calculate arrival j

Draw a and n

e
n·Wj
j = Round(arrival j − {a · [widthmin + Round(w · [widthmax −widthmin ])]})

l
n·Wj
j = Round(arrival j + {[1− a] · [widthmin + Round(w · [widthmax −widthmin ])]})

For v = 1 to n ·Wj − 1

Draw w and d

lv
j = ev+1

j − distmin + Round(d · [distmax − distmin ])

ev
j = lv

j −widthmin + Round(w · [widthmax −widthmin ])

Next v

For v = n ·Wj to Wj

Draw w and d

ev
j = lv−1

j + distmin + Round(d · [distmax − distmin ])

lv
j = ev

j + widthmin + Round(w · [widthmax −widthmin ])

Next v

For v = 1 to Wj

If ev
j < 0 Then

ev
j = 0

End If

If lv
j < 0 Then

lv
j = 0

End If

Next v

End for each

5.2 Results of the benchmark

In Table 1 the results of the computational experiences are reported.
The optimal value function and the number of nodes for the instances
numbered from 1 to 28 are 614 and 71 respectively and for the instances
numbered from 29 to 56 are 991 and 44, respectively. The first column
contains the number of instance. In the second one the value of the
objective function obtained as the best result between two runs using
MACS-VRPMTW is reported. Columns four, six and eight contain the
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values of the objective function obtained respectively by nearest neighbor
and by setting β = 0 and ν = 2 and β = 20 and ν = 0 in MACS-
VRPMTW. Remark that when β = 0 the transition rule takes into account
only τ and ϑ, while if ν = 0 the transition rule takes into account only τ

and η. In columns three, five, seven and nine the relative error referred to
the previous ones is computed. It has to be remarked that when the time
windows are multiple, the use of η and ϑ together gives better results,
except for only one instance, compared with the ones obtained using
separately η or ϑ (setting β = 0 or ν = 0, respectively).

In Table 2 the results about the relative error are reported.
From the computational experience it can be argued that the time

elapsed increases with the maximum number of time windows and of
course with the number of customers; moreover the ratio between the two
values referred to the two kinds of instance is almost equal to 2, which can
be interpreted as a kind of proportionality between computational time
and number of customers.

6. Conclusions

The construction of the instances taken as benchmark is certainly
unusual, but in absence of more classical source of data, the device used
has made it possible to measure the performance of the algorithm.

It has to be pointed out that in all the considered instances the number
of ants used is 80, which is high with respect to the number of nodes.
In fact, as it was underlined in [10], the larger is the number of ants, the
greater is the effect of the local updating rule of the pheromone and, then,
the greater is the number of explored solutions. In this way, it may be that
it is easier to jump out of a local minimum, even if of course this is not
assured. On the other hand, the possibility of falling in a local minimum
is a typical problem of many meta-heuristics.

Even if it is not possible to judge the results obtained in an absolute
way, it can be observed that the introduction of the heuristic measure ϑ

and its combination with the modification of the formulation of η have a
strong impact on the performances of the algorithm, allowing a significant
reduction of the average relative error in the instances considered. These
elements, then, represent a satisfactory first step that may open the way
to further analysis of the Vehicle Routing Problem with Multiple Time
Windows using the ACO meta-heuristics. Possible developments can be
the hybridization of the algorithm with a local search procedure and the
comparison of its performances with those of other approaches.
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Table 1
Results of the benchmark

MACS Relative Nearest Relative MACS Relative MACS Relative

Instance VRPMTW error Neighbor error VRPMTW error VRPMTW error

β=20, ν=2 β=0, ν=2 β=20, ν=0

1 761 23.99 1303 112.30 1292 110.51 761 23.99

2 727 18.45 1296 111.16 760 23.83 727 18.45

3 727 18.45 1381 125.01 1366 122.57 727 18.45

4 692 12.75 1385 125.66 1376 124.19 692 12.75

5 807 31.49 1099 79.06 1043 69.94 807 31.49

6 770 25.46 1076 75.31 1101 79.39 770 25.46

7 798 30.02 1120 82.48 1123 82.97 1123 82.97

8 736 19.92 1080 75.97 1093 78.08 1093 78.08

9 878 43.05 1177 91.77 878 43.05 1158 88.68

10 905 47.45 1326 116.05 905 47.45 1263 105.78

11 808 31.65 1301 111.97 1263 105.78 1263 105.78

12 883 43.87 1308 113.12 1299 111.65 1299 111.65

13 889 44.85 1351 120.12 1336 117.68 1336 117.68

14 886 44.36 1286 109.53 1277 108.06 1277 108.06

15 842 37.19 1285 109.37 1272 107.25 1272 107.25

16 912 48.59 1258 104.97 1229 100.24 1229 100.24

17 806 31.32 1357 121.10 1164 89.65 1164 89.65

18 839 36.70 1192 94.21 1183 92.75 944 53.81

19 804 31.00 1173 91.12 1164 89.65 1164 89.65

20 859 39.96 1206 96.50 1188 93.56 1188 93.56

21 866 41.10 1307 112.95 1301 111.97 1301 111.97

22 848 38.17 1291 110.35 1282 108.88 1282 108.88

23 852 38.82 1264 105.95 1240 102.04 1240 102.04

24 881 43.54 1342 118.65 1329 116.54 1329 116.54

25 841 37.03 1108 80.53 1094 78.25 1094 78.25

26 825 34.42 1103 79.71 1086 76.94 1086 76.94

27 838 36.54 1210 97.15 1201 95.68 1201 95.68

28 751 22.36 1152 87.70 1130 84.11 838 36.54

29 1215 22.60 2048 106.66 1982 100.00 1210 22.10

30 1055 6.46 2070 108.88 2017 103.54 1265 27.65

31 1012 2.12 2125 114.43 2072 109.09 1012 2.12

32 1081 9.08 2030 104.85 2013 103.13 1260 27.15

33 1111 12.11 1752 76.79 1830 84.67 1194 20.49

34 1194 20.49 2159 117.86 1590 60.45 2107 112.62

35 1074 8.38 1891 90.82 1809 82.55 1108 11.81

(Contd. Table 1)
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MACS Relative Nearest Relative MACS Relative MACS Relative

Instance VRPMTW error Neighbor error VRPMTW error VRPMTW error

β=20, ν=2 β=0, ν=2 β=20, ν=0

36 1189 19.98 1869 88.60 1816 83.25 1202 21.29

37 1235 24.62 1741 75.68 1731 74.68 1731 74.68

38 1327 33.91 2095 111.41 2060 107.87 2060 107.87

39 1017 2.63 2066 108.48 2013 103.13 2013 103.13

40 1332 34.41 2214 123.41 2162 118.17 2162 118.17

41 1238 24.93 2016 103.43 1989 100.71 1989 100.71

42 1378 39.05 2325 134.62 1849 86.58 2272 129.27

43 1174 18.47 2063 108.18 2045 106.36 1635 64.99

44 1323 33.50 2052 107.07 1999 101.72 1999 101.72

45 1126 13.62 2180 119.98 1641 65.59 2128 114.74

46 1351 36.33 1940 95.77 1890 90.72 1890 90.72

47 1383 39.56 1944 96.17 1926 94.35 1926 94.35

48 1189 19.98 1894 91.12 1764 78.01 1764 78.01

49 1117 12.72 1464 47.73 1335 34.71 1295 30.68

50 1237 24.83 2015 103.33 1962 97.99 1592 60.65

51 1079 8.88 2188 120.79 2058 107.67 2058 107.67

52 1171 18.17 2162 118.17 1821 83.76 2032 105.05

53 1404 41.68 2115 113.42 1843 85.98 1574 58.83

54 1265 27.65 2049 106.76 1996 101.42 1996 101.42

55 1136 14.63 1777 79.32 1725 74.07 1725 74.07

56 1260 27.15 1807 82.34 1754 77.00 1754 77.00

Table 2
Relative error

71 customers MACS-VRPMTW Nearest MACS-VRPMTW MACS-VRPMTW

β = 20, ν = 2 neighbor β = 0, ν = 2 β = 20, ν = 0

Average relative error 34.02 102.13 91.88 78.22

Maximum relative error 48.59 125.66 124.19 117.68

Minimum relative error 12.75 75.31 23.83 12.75

44 customers MACS-VRPMTW Nearest MACS-VRPMTW MACS-VRPMTW

β = 20, ν = 2 neighbor β = 0, ν = 2 β = 20, ν = 0

Average relative error 21.36 102.01 89.90 72.82

Maximum relative error 41.68 134.62 118.17 129.27

Minimum relative error 2.12 47.73 34.71 2.12
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