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At 160–180 uC, in the presence of alkali metal exchanged faujasites (MX or MY; M = Li, Na, K),

the reaction of dimethyl carbonate with indolyl-3-acetic, -3-propionic, and -3-butyric acids

proceeds towards the formation of the corresponding methyl esters or carbamate esters which can

be isolated in 93–99% yields. The methylation of the indolyl-NH group is never observed. This

high chemoselectivity is driven by the nature of the catalyst and the reaction temperature. In

particular, among the six different zeolites used, the more basic MX faujasites show better

performances in terms of both activity and selectivity than MY solids. A similar trend also holds

for the reaction of dimethyl carbonate with indolyl-carboxylic acids, where MX compounds are

still efficient catalysts for the formation of methyl esters. In this case, however, the overall

reactivity/selectivity also reflects the relative positions of the NH and CO2H groups which may

account for significant decarboxylation reactions observed for indolyl acids substituted at

positions 2 and 3. This process is totally absent for indolyl-6-carboxylic acid.

Introduction

In the past two decades, the non-toxic dimethyl carbonate

(MeOCO2Me, DMC) has emerged as a green candidate for the

replacement of highly noxious compounds such as phosgene

and methyl halides/sulfate, in both methylation and methoxy-

carbonylation reactions.1 A number of homogeneous and

heterogeneous catalysts have been reported for DMC-

mediated processes:1,2 among them, we recently observed that

alkali metal exchanged faujasites offered unique possibilities to

catalyze methylation and esterification reactions. Most rele-

vant examples were in the class of ambident nucleophiles. In

the presence of NaY faujasite, the reaction of dimethyl

carbonate with amino-phenols, -benzyl alcohols, -benzoic

acids, and -benzamides not only showed a very high mono-

N-methyl selectivity (up to 99%), but it proceeded with

complete chemoselectivity towards the amino group

[Scheme 1, path (a)].3 The other nucleophilic functionalities

(OH, CO2H, CH2OH, CONH2) were fully preserved from

alkylation and/or transesterification reactions.

Likewise, at a higher temperature of 165 uC, the DMC/NaY

system allowed the exclusive esterification of hydroxy-benzoic

acids (ortho- and para-isomers), mandelic acid, and phenyllac-

tic acid, without affecting aromatic and aliphatic OH-

substituents [Scheme 1, paths (b) and (c)].4

All these processes were genuine green examples: they were

truly catalytic, they did not require additional solvents (DMC

served simultaneously as a reagent and solvent), and they

released only MeOH and CO2 as co-products. Moreover,

typical selectivities of reactions of Scheme 1 were in the

range of 90–100%: in a single step, with no derivatization

(protection/de-protection) sequences, the desired methyl-

amines or methyl esters were isolated in 80–99% yields.

On the contrary, in the presence of basic catalysts (i.e.

K2CO3), competitive reactions of O- and bis N,N-methylation,

N- and O-methoxycarbonylation took place simultaneously.

These findings prompted us to face the problem of indolyl-

substituted alkyl carboxylic acids and of indolyl carboxylic

acids, which were both good models of ambident nucleophiles

and examples of structural components of auxins and many

pharmaceutical agents.5 In particular, we focused our
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Scheme 1 Chemoselective reactions of DMC in the presence of NaY

catalyst.
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attention on indolyl-3-carboxylic, -acetic, -propionic, and

-butyric acids (compounds 1a–d), and on indolyl-2-carboxylic,

and -6-carboxylic acids (compounds 1e and 1f) (Scheme 2).

At 130 uC, Jiang et al. already reported that reactions of

DMC with acids 1a–d were efficiently catalyzed by K2CO3;6

however, chemoselectivity was elusive because competitive

processes of esterification and N-methylation occurred to

comparable extents (Scheme 3).

In the case of 1a, it was observed that a decarboxylation

process also took place to give N-methylindole in 45% yield.

We wish to report herein that at 150–180 uC, the same

reactions of acids 1b–d and 1f, became highly selective when

carried out over alkali metal exchanged faujasites, particularly

of the X type: only methyl esters were obtained in substantially

quantitative yields, without affecting the NH group. For

longer reaction times, carbamate esters coming from simulta-

neous esterification and N-methoxycarbonylation of indolyl

substrates were isolated in up to 99% yield. Under these

conditions, acids 1a and 1e underwent both decarboxylation

and esterification reactions, but the methylation of the

indolyl-NH group was not appreciable. The outcome was

primarily driven by the acido-basic properties of the zeolite

catalysts.

Results

Six different faujasites, namely MY and MX (M = Li, Na, K)

were used as catalysts: four of them (M = Li and K), were

prepared through conventional ionic exchange reactions,

starting from two commercially available samples of zeolites

(NaY and NaX, respectively) and LiCl or KCl as precursors.7

The main features of these catalysts are summarized in Table 1.

The reaction of DMC with indolyl-3-acetic acid 1b was

initially investigated. In the presence of MX or MY catalysts, a

solution of 1b in DMC (4.5 6 1022 M, 30 mL) was set to react

at 160 and 180 uC, in a stainless-steel autoclave (90 mL).

Weight ratios (Q) MX : 1b or MY : 1b ranged from 1 to 0.05,

and different reaction times of 4–15 h were considered.

After purification of reaction mixtures [flash-column chro-

matography (FCC): petroleum ether–diethyl ether, 2 : 3 v/v],

four products were isolated and identified by GC/MS and by

NMR (Scheme 4). The results are reported in Table 2.

In the absence of catalysts, the acid 2b was recovered

unreacted after 3 h at 180 uC (Table 2, entry 1). At the same

temperature (180 uC, 4 h, Q = 1), reactions carried out over

MY zeolites showed good conversions (68–75%) but modest

selectivities (entries 2–4): the methyl ester 2b was formed along

with 3-methylindole (4b, 19–43%). The latter plausibly

originated from the decarboxylation of indolyl-3-acetic acid.8

Scheme 3

Table 1 Faujasite catalysts used in the reaction of DMC with acids
1a–c

Starting zeolite (Na, %)a Product Ionic exchange (%)b

NaX (7.5) LiX 71
NaX (7.5) KX 92
NaY (8) LiY 67
NaY (8) KY 86
a The Na content was evaluated through atomic absorption (AA).
b Percentage of ionic exchange (from NaX and NaY, respectively)
was evaluated by AA (K) and emission (Li).

Scheme 4

Scheme 2

Table 2 The reaction of DMC with 1b in the presence of different
zeolites

Entry Cat.

Cat. :
substr.
(Q)a t/h T/uC

Conv.
(%)b

Isolated product
yield (%)c

2b 3b 4b 5b

1 None 3 180 ,1
2 LiY 1 4 180 68 25 43
3 NaY 1 4 180 75 52 21
4 KY 1 4 180 72 50 19
5 NaY 0.1 15 180 75 56 16
6 NaY 0.5 9 180 80 55 25
7 NaY 0.5 15 180 100 61 35
8 LiX 1 4 180 95 87 10
9 NaX 1 4 180 .99 97

10 KX 1 4 180 .99 98
11 NaX 1 3 160 .99 95
12 NaX 0.1 9 160 .99 93
13 NaX 0.05 9 160 46 44
14 KX 0.1 8 160 .99 96
a Weight ratio zeolite : 1b. b Based on the recovered starting reagent
1b. c Yields of 2b–5b were evaluated after purification by flash-
column chromatography on silica gel (eluant: petroleum ether–
diethyl ether, 2 : 3 v/v).
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In the presence of NaY, a similar selectivity could be

accomplished even by using lower Q ratios (NaY : 1b = 0.1

and 0.5; 4b: 16–25%, entries 5 and 6). If the reaction was

continued for a longer time (15 h, Q = 0.5), a quantitative

conversion was reached, and products 2b and 4b were

transformed into the corresponding N-methoxycarbonyl deri-

vatives, 3b (61%) and 5b (35%), respectively (entry 7).

MX faujasites were superior catalysts in terms of both

efficiency and selectivity. At 180 uC (Q = 1, 4 h), the methyl

ester 2b was isolated in a 87% yield over LiX (entry 8), while

compound 3b [methyl(N-methoxycarbonyl)-3-indolyl acetate]

was obtained in 97 and 98% yields, in reactions catalyzed by

NaX and KX, respectively (entries 9 and 10). At a lower

temperature (160 uC), the esterification of 1b was the exclusive

process observed with NaX and KX, even at Q ratios of 0.05–

0.1. Isolated yields of 2b were of 93–96% (entries 11, 12 and 14)

and of 44% (entry 13). In all cases, side-products 4b and 5b

were never detected.

Reactions of DMC with indolyl-3-propionic, -3-butyric

acids, -3-carboxylic, -2-carboxylic, and -6-carboxylic acids

(1c, 1d, 1a, 1e, and 1f, respectively) were investigated under the

same conditions used for 1b. Solutions of compounds 1 in

DMC (4.5 6 1022 M, 30 mL) were set to react at 160 and

180 uC, in the presence of NaY and MX (M = Na, Li) catalysts

[weight ratios (Q) of catalyst : substrate were of 0.1 and 1]. In

the case of substrates 1c,d, products coming from the

esterification of the acid function (compounds 2c,d), and from

the N-methoxycarbonylation of the indolyl NH group

(compounds 3c,d) were observed [Scheme 5, path (a)]. The

reactions of DMC with acids 1a, and 1e and 1f yielded methyl

esters (2e,f) along with indole (6) originated by the decarboxyl-

ation of reagents [Scheme 5, paths (b) and (c)]. Products were

isolated and identified by GC/MS and NMR. The results are

reported in Table 3.

Acids 1c,d

As in the case of indolyl-3-acetic acid (1b), MX faujasites were

more active than NaY. At 180 uC (Q = 1), reactions of acids

1c,d catalyzed by NaY gave methyl esters 2c and 2d in

substantially quantitative yields, after 6 and 3 h, respectively

(Table 3, entries 2 and 6). Both processes were also possible

with a lower Q ratio of 0.1 (entries 1 and 5).

Instead, in the presence of MX zeolites, simultaneous

esterification and N-methoxycarbonylation reactions took

place to yield compounds 3c and 3d as sole products (96–

99%, entries 3, 4, and 7). These processes occurred at 160 and

180 uC, over NaX and LiX, respectively.

Crude esters 2c,d and carbamate esters 3c,d could be

recovered in a very high purity (97–98%), by simple filtration

of the zeolite and removal of DMC under vacuum.

It should be noted that, particularly for compounds 3, very

few synthetic methods are available in the literature, and they

are always based on multistep sequences.9

Acids 1a, 1e, and 1f

Indolyl-carboxylic acids (1a, 1e, and 1f) showed quite a

different behaviour with respect to 1b–d. Regardless of the

reaction conditions (catalyst, temperature, and time), acid 1a,

substituted at position 3, gave only the decarboxylation

reaction to produce indole 6 in a substantially quantitative

yield (Table 3, entries 9–11). In this case, a sluggish formation

of indole (5%, 3 h, 160 uC) was observed also without any

catalyst (entry 8). In the presence of NaX, acid 1e, substituted

at position 2, yielded a mixture of the methyl ester 2e (55%)

and indole 6 (32%) (entry 12), whereas the decarboxylation of

1e was the sole reaction observed over the NaY catalyst (entry

13). Only indolyl-6-carboxylic acid 1f underwent a highly

chemoselective esterification process: the reaction was cata-

lyzed by both NaX and NaY, at 160 and 180 uC, respectively

(entries 14–16). The methyl ester 2f was isolated in up to 93%

yield (entry 15).Scheme 5

Table 3 The reaction of DMC with indolyl-3-propionic and indolyl-
3-butyric acids (1c and 1d) in the presence of different zeolites

Entry Substrate Cat.

Cat. :
substr.
(Q)a t/h T/uC

Conv.
(%)b

Isolated product
yield (%)c

1 1c NaY 0.1 20 180 21 2c: 19
2 1c NaY 1 6 180 100 2c: 99
3 1c NaX 1 3 160 100 3c: 98
4 1c LiX 1 2 180 100 3c: 96
5 1d NaY 0.1 12 180 30 2d: 28
6 1d NaY 1 3 180 100 2d: 99
7 1d NaX 1 3 160 100 3d: 99
8 1a None 3 160 7 6: 5
9 1a NaX 0.5 3 120 45 6: 43

10 1a NaX 1 3 160 100 6: 99
11 1a NaY 1 3 140 100 6: 99
12 1e NaX 1 3 160 100d 2e: 55 6: 32
13 1e NaY 1 3 160 100 6: 99
14 1f NaX 0.1 5 160 22 2f: 19
15 1f NaX 1 7 160 100 2f: 93
16 1f NaY 1 3 180 40 2f: 36
a Weight ratio zeolite : substrate. b Based on the recovered starting
reagents 1a, 1c, 1d, and 1f. c Yields of 2c, 2d, 2f, 3c, 3d, and 6 were
evaluated after purification by flash-column chromatography on
silica gel (eluant: petroleum ether–diethyl ether, 2 : 3 v/v). d Reaction
mixture of entry 11 was not purified by FCC: yields of 2e and 6
were by GC. Minor amounts of methyl (N-methyl)indolyl-2-
carboxylate (,5%) were also observed.
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In all cases, faujasite catalysts were easily recyclable: after

reactions of acids 1a–f, they could be separated by filtration

and re-activated by a mild thermal treatment (90 uC/0.1 mm,

overnight). Both catalytic activity and selectivity were fully

restored. For instance, when a re-activated NaX was used

under the conditions of entry 11 of Table 2, the reaction of

indolyl-3-acetic acid (1b) with DMC yielded the corresponding

methyl ester (2b) in 92% isolated yield.

Discussion

Acids 1b–d

Acid–base properties of MY and MX faujasites affect the

results of Tables 2 and 3. In particular, according to the scale

proposed by Barthomeuf (Scheme 6),10 the more basic MX

show better performances than MY. The latter, especially LiY,

operates only at 180 uC: they promote either the competitive

reactions of esterification and decarboxylation of 1b, or the

esterification of acids 1c,d.11

At 160 uC instead, NaX and KX faujasites selectively

catalyze the formation of esters 2b and carbamate esters 3c,d.

The same reactions require a higher temperature of 180 uC,

with respect to the less basic LiX.

In the case of indolyl-3-acetic acid (1b), MX zeolites are

further activated by the temperature: at 180 uC, NaX and KX

allow a rapid and quantitative conversion of ester 2b into 3b.

While, under the same conditions, a sluggish and not selective

reaction is observed when NaY is the catalyst (Table 2,

entry 6). Shieh et al. reported that the N-methoxycarbonyla-

tion of 5-bromoindole with DMC also takes place only in the

presence of moderate-to-strong organic bases (DMAP and

DBU).12

Acids 1a, 1e,f

For indolyl-carboxylic acids, the effect of the catalyst is

evident for 1e and, particularly, for 1f: faster esterification

reactions and better yields of products 2e and 2f are achieved

over NaX faujasite with respect to NaY (entries 11–15,

Table 3). However, the reactivity of compounds 1a, and 1e

and 1f also reflects the relative positions of the NH and CO2H

groups. The high electron density of positions 2 and,

especially, 3 of the pyrrole ring of the indoles13 may account

for the important, if not exclusive, decarboxylation reaction

observed for reagents 1a and 1e. By contrast, this process is

totally absent for indolyl-6-carboxylic acid. The lower

reactivity of indolyl-3-acetic acid 1b compared to its homo-

logues 1c and 1d (Tables 2 and 3) can be explained accordingly.

Overall, the surface interactions between reagents and

catalysts can be affected by the different acid–base features

of MY/MX solids. Scheme 7 describes two plausible modes of

adsorption of carboxylic acids over alkali metal exchanged

faujasites.14

The formation of methyl esters 2b,c (Schemes 4 and 5) may

proceed according to tetrahedral or SN2-type or both

mechanisms, which are possibly favored over more basic X

zeolites.

Indole-NH groups of acids 1 are also expected to bind to the

polar surface of MY/MX faujasites.15 Nevertheless, the

reactivity of CO2H and NH functionalities is highly discrimi-

nated. Not to mention that compounds 1 never undergo

N-methylation reactions which are always observed over

conventional basic catalysts (Scheme 3).16,17 This fine tuning

of the selectivity suggests that the activation of acids 1 is a

complex phenomenon where both the geometry of adsorption

of reagents and the steric requisites of faujasites, can be

involved.18

Conclusions

The combination of dimethyl carbonate and Y or X faujasites

allows a straightforward and high-yield synthesis of methyl

esters 2 or methyl carbamate esters 3 derived from indolyl

acids 1. In particular, alkali metal exchanged X zeolites are

superior catalysts in terms of both efficiency and selectivity.

Typical chemoselectivity is up to 99% at quantitative conver-

sions, a result hitherto not possible with standard basic

catalysts (i.e. K2CO3), where only products of simultaneous

esterification and N-methylation of acids 1 are obtained.

Under the explored conditions, the reaction outcome is

affected by the acid–base nature of MX/MY zeolites which

likely alters the surface interactions between reagents and

catalysts.

Although the procedure is rather energy-intensive, multiple

green features can be recognized: (i) the non-toxic DMC is

used as a reagent/solvent which can be recycled;19 (ii) eco-safe

solids (faujasites) are catalysts which can be easily separated

and recycled; (iii) except for MeOH and CO2, no organic/

inorganic by-products are observed; and (iv) thanks to the

high chemoselectivity, not only derivatization sequences

can be avoided, but also purification steps are much

simplified.Scheme 6

Scheme 7
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Experimental

Compounds 1 and DMC were ACS grade and were employed

without further purification. Zeolites NaY and NaX were from

Aldrich. Other MY and MX catalysts (M = Li, Na, K) were

prepared according to a procedure previously reported by us.2h

Before each reaction, all the faujasites were dehydrated by

being heated at 65 uC under vacuum (10 mm Hg) overnight.

MS (EI, 70 eV) analyses were run using HP5/MS capillary

columns (30 m). 1H and 13C NMR spectra were recorded on a

300 MHz spectrometer, using CDCl3 as solvent.

Reactions carried out in autoclave. General procedure

A stainless-steel autoclave (90 mL of internal volume) was

charged with a solution (4.5 6 1022 M; 30 mL) of the chosen

acid (1, 1.35 mmol), dimethyl carbonate (0.36 mol) and MY or

NaX faujasites (catalyst : substrate in a 0.1–1 weight ratio, see

Tables 2 and 3). At room temperature and before the reaction,

air was removed by a purging valve with a N2 stream. The

autoclave was then heated by an oil-circulating jacket, while

the mixture was kept under magnetic stirring throughout the

reaction. A thermocouple fixed onto the autoclave head

monitored the temperature (160–180 uC). After different time

intervals (3–20 h), the autoclave was cooled to rt, purged from

CO2 and, finally, opened. The reaction mixture was analysed

by GC/MS.

Crude esters 2b and 2f, and carbamate esters 3b–d were

isolated in 93–98% GC-purity by simple filtration of the NaX

catalyst and removal of DMC under vacuum (35 uC/250 mm).

Likewise, products 2c and 2d (98% GC) were obtained from

reactions catalyzed by MY zeolites. Products 4b and 5b were

obtained from the reaction of 1b with DMC over MY

faujasites (Table 2). Reaction mixtures were further purified

by FCC on silica gel F60 (eluant: petroleum ether–diethyl

ether in 2 : 3 v/v).

All compounds were characterized by GC/MS and 1H

NMR. Spectroscopic data of 2b–d, 2f, 3b, 4b, 5b, and 6 were

already reported in the literature.9,20–24 The structures of new

compounds 3c and 3d were confirmed also by 13C NMR.
1H NMR spectra were recorded at 300 MHz, 13C NMR at

75 MHz. Chemical shifts were reported in d values downfield

from TMS. CDCl3 was used as the solvent.

The structures of esters 2b–d and 2f, and of indole 6 were

confirmed also by comparison to authentic samples.

Compound 2e was not isolated: its structure was assigned by

GC/MS.

Methyl indolyl-3-acetate 2b

Mp 42–44 uC (pale yellow solid) [lit.20a mp 47–48 uC]. 1H

NMR (300 MHz, CDCl3) d 3.74 (s, 3H), 3.82 (s, 2H), 7.12–7.29

(m, 3H), 7.34–7.39 (m, 1H), 7.62–7.68 (m, 1H), 8.18 (brs, 1H).

MS (EI), m/z (relative int.): 189 (M+, 32%), 131 (11), 130 (M+

2 CO2Me, 100), 103 (7), 77 (8).

Methyl indolyl-3-propionate 2c21

Mp 75–76 uC (white solid) [lit.20b mp 79–80 uC]. 1H NMR

(300 MHz, CDCl3) d 2.75 (t, 2H, J = 8.1 Hz), 3.14 (t, 2H,

J = 7.9 Hz), 3.7 (s, 3H), 7.03 (m, 1H), 7.10–7.26 (m, 2 H),

7.35–7.41 (m, 1H), 7.62–7.66 (m, 1H), 8.02 (brs, 1H). MS (EI),

m/z (relative int.): 203 (M+, 18%), 131 (11), 130 (M+ 2

CH2CO2Me, 100), 103 (4), 77 (6).

Methyl indolyl-3-butyrate 2d22

Mp 70–71 uC (colorless solid) [lit.20c mp 70–72 uC]. 1H NMR

(300 MHz, CDCl3) d 2.06 (qui, 2H, J = 7.35 Hz), 2.41 (t, 2H,

J = 7.54 Hz), 2.82 (t, 2H, J = 7.54 Hz), 3.67 (s, 3H), 7.00 (m,

1H), 7.08–7.24 (m, 2 H), 7.33–7.39 (m, 1H), 7.57–7.65 (m, 1H),

7.98 (brs, 1H). MS (EI), m/z (relative int.): 217 (M+, 28%), 186

(M+ 2 OMe, 9), 143 (M+ 2 CH2CO2Me 2 H, 21), 130 (M+ 2

CH2CH2CO2Me), 77 (7).

Methyl indolyl-2-carboxylate, 2e23

MS (EI), m/z (relative int.): 175 (M+, 65%), 144 (M+ 2 OMe,

21), 143 (100), 116 (M+ 2 CO2Me, 12), 115 (53), 89 (28).

Methyl indolyl-6-carboxylate 2f

Mp 74–76 uC (pale yellow solid) [lit.24 mp 71–72 uC] 1H NMR

(300 MHz, CDCl3) d 3.93 (s, 3H), 6.61 (m, 1H), 7.38 (m, 1H),

7.66 (d, 1H, J = 8.3 Hz), 7.82 (dd, 1H, J1 = 8.5 Hz, J2 = 1.5 Hz),

8.17 (m, 1H), 8.45 (brs, 1H). MS (EI), m/z (relative int.): 175

(M+, 73%), 145 (11), 144 (M+ 2 OMe, 100), 116 (M+ 2

CO2Me, 50), 89 (18).

Methyl (N-methoxycarbonyl)indolyl-3 acetate 3b

Mp 30–32 uC (white solid) [lit.9 mp 34–35 uC]. 1H NMR

(300 MHz, CDCl3) d 3.72 (s, 5H), 4.03 (s, 3H), 7.24–7.40 (m,

2H), 7.51–7.56 (m, 1H), 7.60 (s, 1H), 8.17 (d, 1H, J = 8.1 Hz).

MS (EI), m/z (relative int.): 247 (M+, 56%), 189 (13), 188

(M+ 2 CO2Me, 100), 143 (M+ 2 CH2CO2Me, 40), 129 [M+ 2

(CO2Me)2, 19], 128 (13), 102 (20), 76 (10).

3-Methylindole 4b

Mp 96–98 uC (white solid) [lit.25 mp 98–98.5 uC]. 1H NMR

(300 MHz, CDCl3) d 2.35 (d, 3H, J = 1.1 Hz), 6.97 (m, 1H),

7.09–7.24 (m, 2H), 7.32–7.38 (m, 1H), 7.57–7.63 (m, 1H), 7.87

(brs, 1H). MS (EI), m/z (relative int.): 131 (M+, 58%), 130

(M+ 2 H, 100), 102 (6), 77 (12).

(N-Methoxycarbonyl)-3-methylindole 5b

Viscous oil [lit.26 bp 101–102 uC/0.5 torr]. 1H NMR (300 MHz,

CDCl3) d 2.19 (d, 3H, J = 1.1 Hz), 3.93 (s, 3H), 7.15–7.32 (m,

3H), 7.40–7.45 (m, 1H), 8.00 (m, 1H). MS (EI), m/z (relative

int.): 190 (12), 189 (M+, 100%), 144 (82), 130 (M+ 2 CO2Me,

48), 103 (16), 77 (24).

Methyl (N-methoxycarbonyl)-3-indolyl propionate 3c

Mp 40–43 uC (white solid); 1H NMR (300 MHz, CDCl3) d 2.72

(t, 2H, J = 7.9 Hz), 3.01 (t, 2H, J = 8.0 Hz), 3.69 (s, 3H), 4.02

(s, 3H), 7.23–7.38 (m, 2H), 7.40 (s, 1H), 7.51–7.56 (m, 1H),

8.16 (d, 1H, J = 8.3 Hz); 13C NMR (75 MHz, CDCl3) d 20.18,

33.46, 51.62, 53.58, 115.12, 118.75, 120.18, 122.03, 122.70,

124.62, 130.12, 135.46, 151.30, 173.19. MS (EI), m/z (relative

int.): 261 (M+, 44%), 201 (M+ 2 CO2Me 2 H, 11), 188
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(M+ 2 CH2CO2Me, 100), 144 (36), 143 [M+ 2 (CO2Me)2, 20],

129 (13), 115 (22), 59 (14).

Methyl (N-methoxycarbonyl)-3-indolyl butyrate 3d

Mp 63–65 uC (white solid); 1H NMR (300 MHz, CDCl3) d 2.04

(qui, 2H, J = 7.4 Hz), 2.40 (t, 2H, J = 7.3 Hz), 2.73 (td, 2H, J1 =

7.5 Hz, J2 = 1.1 Hz), 3.67 (s, 3H), 4.02 (s, 3H), 7.22–7.37 (m,

2H), 7.39 (m, 1H), 7.51–7.56 (m, 1H), 8.16 (d, 1H, J = 7.9 Hz);
13C NMR (75 MHz, CDCl3) d 24.17, 24.21, 33.45, 51.49,

53.59, 115.11, 118.98, 120.92, 122.11, 122.67, 124.55, 130.42,

135.59, 151.39, 173.78. MS (EI), m/z (relative int.): 276 (14),

275 (M+, 81%), 244 (M+ 2 OMe, 16), 202 (17), 201 (M+ 2

CO2Me 2 Me, 78), 188 (100), 156 (15), 144 (43), 143 (18), 129

(20), 115 (15).

Indole 6

Mp 47–49 uC (yellow solid) [lit.27 mp 52 uC].
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