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2.1 Introduction

An important criterion for the evaluation of an exchange market is its ability
to achieve allocative efficiency. The seminal paper by Gode and Sunder (1993)
shows that the protocol known as continuous double auction can attain the ef-
ficient allocation even if the traders exhibit “zero-intelligence”: hence, market
protocols may actively contribute to the discovery of an efficient allocation.
This paper spawned a variety of computer simulations that “enabled us to
discover that allocative efficiency [...] is largely independent of variations in
individual behavior” at least in canonical environments; see Sunder (2004).

However, the attainment of allocative efficiency is only a necessary condi-
tion for the effectiveness of a market protocol in an exchange economy. For
instance, consider the fictitious protocol of Walrasian tâtonnement, where a
centralized market maker iteratively elicit traders’ excess demand functions
and adjust prices before trade takes actually place. Under standard condi-
tions, this protocol attains allocative efficiency while simultaneously mini-
mizing both the volume of transactions and price dispersion. Moreover, the
efficient allocation is reached in one giant step, so that its speed of convergence
(after trade begins) is instantaneous.

Clearly, the Walrasian mechanism is only an idealization. Realistic market
protocols require far less information from traders and should not be expected
to perform as smoothly. This raises the question of ranking the effectiveness of
those different market protocols which are commonly used in real markets; see
Audet et al (2002) or Satterthwaite and Williams (2002). Assuming that they
all pass the test of achieving an efficient allocation, which additional criteria
should enter in their comparison? Walrasian tâtonnement suggests at least
three possibilities: excess volume, time to convergence, and price dispersion.

A major complication in the study of alternative protocols is that their
outcome is profoundly affected by traders’ behavior; see Brewer et al (2002).
This may exhibit sophisticated strategies, behavioral biases, access to different
forecasting abilities, and a variety of factors which we encompass under the
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term of traders’ intelligence. Gode and Sunder (1993) introduced the notion of
“zero intelligence” as an extreme assumption, under which all complications
in traders’ behavior are ruled out and traders are only requested to satisfy a
natural budget constraint. They argued that the outcome of a market protocol
under zero intelligence is a test of its intrinsic ability to perform effectively.

Assuming zero intelligence, LiCalzi and Pellizzari (2005) compares the per-
formance of different market protocols with regard to allocative efficiency and
other criteria such as excess volume or price dispersion. The main protocols
examined are: the batch auction, the continuous double auction, a (nondis-
cretionary) specialist dealership, and a hybrid of these last two. All the four
protocols exhibit a remarkable ability to achieve allocative efficiency under
three variants of zero intelligence, confirming the main insight from Gode and
Sunder (1993).

However, even under zero intelligence, stark differences in performance
emerge over other relevant dimensions. The continuous double auction has
the worst performance with respect to excess volume, time to convergence,
and price dispersion. The dealership has a lower time to convergence and
never performs worse than the batch auction. These differences are sometimes
dramatic and sometimes small (but persistent). Hence, LiCalzi and Pelllizzari
(2005) concludes that (under zero intelligence) there is a clear partial ranking
of these protocols with respect to excess volume, time to convergence, and
price dispersion. A dealership performs slightly better than a batch auction or
a hybrid market, and both are substantially more effective than a continuous
double auction.

The relevance of this conclusion for the evaluation of practical market pro-
tocols is severely limited by the assumption of zero intelligence, which rules
out the impact of differences in traders’ behavior. The question addressed
in this paper is how much of this conclusion remains true if we remove zero
intelligence. Using two simple rules for intelligent trading, we study the per-
formance ranking for the four market protocols with regard to excess volume,
time to convergence, and price dispersion.

The organization of the paper is the following. Section 2.2 describes the
model used in our simulations. Section 2.3 details the experimental design.
Section 2.4 reports on the results obtained and Section 2.5 offers our conclu-
sions. For an expanded and more robust analysis, see LiCalzi and Pellizzari
(2006).

2.2 The Model

We use the same setup as in LiCalzi and Pellizzari (2005), where a simple
exchange economy admits a unique efficient allocation. Given that the mar-
ket protocols attain allocative efficiency, this implies convergence to the same
allocation and facilitates comparisons. Following Smith (1982), we identify
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three distinct components for our (simulated) exchange markets. The envi-
ronment in Section 2.2.1 describes the general characteristics of the economy,
including agents’ preferences and endowments. The market protocols in Sec-
tion 2.2.2 provide the institutional details which regulate the functioning of
an exchange. The behavioral assumptions in Section 2.2.3 specify how agents
make decisions and take actions.

2.2.1 The Environment

We consider an economy with n traders. There is cash and one good, which
is an asset with a (random) realization value Y at a given time T in the far
future. Each trader i has an initial endowment of cash ci ≥ 0 and shares si ≥ 0.
We rule out any informational effect and assume that all traders believe that
Y is normally distributed with mean μ ≥ 0 and precision τ = 1/σ2 > 0 and
that no new information is ever released. Therefore, traders’ beliefs about Y
are homogeneous and never change until uncertainty resolves.

Each trader i has CARA preferences over his final wealth, with a coefficient
of risk tolerance ki > 0. Therefore, trader i’s excess demand function for the
asset (net of his endowment si) is the linear function

qi(p) = kiτ(μ − p) − si. (2.1)

Let K =
∑

i ki be the sum of traders’ coefficients of risk tolerance. The
unique efficient risk-sharing allocation for this economy requires that trader i
holds s∗i = (S/K)ki asset shares; that is, it is proportional to the coefficient
of risk tolerance. The competitive equilibrium achieves the efficient allocation
at the price p∗ = μ−S/(τK). At such price, the trader i’s net demand qi(p

∗)
is exactly filled, making his final allocation qi(p

∗) + si equal to the required
s∗i = (S/K)ki.

2.2.2 The Market Protocols

We compare the performances of four market protocols: a batch auction, a
continuous double auction, and a nondiscretionary dealership, and a hybrid
of these last two. The first protocol is simultaneous, while the other three are
sequential. The following features are common to all protocols.

A protocol is organized in trading sessions (or days). Agents participate
in every trading session, but each of them can exchange at most one share
per session. If the protocol is sequential, the order in which agents place
their orders is randomly chosen for each trading session. If the protocol is
simultaneous, all order are made known and processed simultaneously so the
time of their submission is irrelevant. In every trading session, each agent
selects on which side of the market he attempts to place a trade: he can
switch roles across trading sessions, but he cannot place simultaneous orders
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for buying and selling within the same session. The books are completely
cleared at the end of each trading session.

Prices are quoted using a minimum tick; in other words, they are dis-
cretized. Moreover, prices must be nonnegative: if a trader places a bid lower
than zero, this is ignored; if a trader places an ask lower than zero, this is
automatically converted to the lowest strictly positive price compatible with
the existing tick.

The specific market protocols studied in this paper are the following.

Batch auction. In each trading session, after traders submit their orders,
the exchange price p∗ is obtained at the intersection of demand and supply.
If there are multiple solutions, we choose p∗ as the midpoint of the interval
between the lowest and the highest possible values. (If there are no solutions,
no exchange takes place.) Shares and corresponding payments are exchanged
between traders who submitted bids not lower than p∗ and asks not higher
than p∗. Traders who placed orders exactly at price p∗ may be accordingly
rationed. This protocol is also known as the k-double auction, with k = 1/2.

Continuous double auction. In each trading session, traders place their
orders on the selling and buying books. Their orders are immediately executed
if they are marketable; otherwise, they are recorded on the books with the
usual price-time priority. Orders are canceled only when a matching order
arrives or the trading day is over.

Nondiscretionary dealership. There is a specialist dealer who posts bid
and ask quotes valid only for a unit transaction. Agents check sequentially
the dealer’s quotes for the side of the transaction they are attempting. If
an agent accepts the dealer’s quote, the exchange takes place at the quoted
price. Right after a transaction is completed, the two dealer’s quotes for bid
and ask increase (or decrease) by one tick if the agent completed a purchase
(or a sale). The size of the bid-ask spread stays fixed over time, so the price
is never unique. Limited to this protocol, therefore, convergence of prices to
a given value p∗ should be interpreted as convergence to within a bid-ask
interval that contains p∗.

Hybrid market. This combines the continuous double auction with the deal-
ership. Distinct selling and buying books hold quotes from the specialist dealer
and from the public, respectively. The dealer posts bids and asks valid only
for a unit transaction and revises her quotes as in the nondiscretionary deal-
ership; in particular, she moves her quotes only after transactions in which
she has been involved. Agents check sequentially the books for the side of the
transaction they are attempting. Their orders are immediately executed at
the best price available (which may be different from the specialist’s) if they
are marketable; otherwise, they are recorded on the traders’ book with the
usual price-time priority. Agents’ orders are canceled only when a matching
order arrives or the trading day is over. Hence, once deposited on the traders’
book, an order from an agent cannot be executed with the dealer.
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2.2.3 Behavioral Assumptions

A major obstacle in the study of microeconomic systems is that their perfor-
mance is jointly determined by the interactions of traders’ behavior within the
market protocol. As traders may react differently to different market proto-
cols, it is difficult to separate the intrinsic characteristics of a market protocol
from the properties induced by the traders’ strategies. Our approach is to
concentrate on the institutional characteristics of the protocols, by making
general-purpose assumptions on traders’ behavior. These assumptions hold
for all the simulations reported in this paper.

First, traders are restricted to trade one unit at a time. This restriction on
traded quantities simplifies the strategy space and allows direct comparisons
with existing theoretical results. Second, buying orders are constrained by
the available cash and selling orders by the available endowment of the asset;
that is, budget constraints hold. This is consistent with a value-based strategy
(“buy low, sell high”), which is a seemingly natural requirement of rationality
for traders’ behaviors.

Third, since the demand function (2.1) of each trader is strictly decreasing,
traders have decreasing marginal utility for additional units. If the current
endowment of a trader is si, his valuation for the next unit to trade is

p(±1) = μ − si ± 1

kiτ
, (2.2)

where the ± sign depends on whether the attempted trade is a purchase or
a sale. Clearly, this implies that the reservation price of each trader depends
on the side of the transaction he is entering and on his current endowment si;
moreover, his (implicit) bid-ask spread is 2/(kiτ).

Given his valuation, in each stage a trader must decide which side of the
transaction he wants to attempt and what price to offer. These two separate
decisions may exhibit various degrees of intelligence. LiCalzi and Pellizzari
(2005) models zero intelligence as follows. At the start of a trading session,
each trader chooses either side with equal probability. This randomized choice
is stochastically independent of previous history, endowment, or any other
parameter of the model. Hence, a trader ignores that the current market price
is an imperfect signal for whether he should seek to buy or sell. After the
trader has chosen his side of the transaction, suppose that he is going to
attempt a purchase. Then his valuation for the next unit to buy is p(+1)
from Equation (2.2). Under zero intelligence, this (potential) buyer bids a
price uniformly drawn from the interval [p(+2), p(+1)]. Similarly, a (potential)
seller asks a price uniformly drawn from the interval [p(−1), p(−2)]. Again,
the information associated with the current market price is ignored.

There are numerous possibilities to make traders “intelligent”, ranging
from the simple to the highly sophisticated. We attempt to capture the essence
of intelligent trading by making two distinct assumptions that exploit the
imperfect signal associated with the current price. One is concerned with the
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choice of which transaction to attempt, and the other with the price that is
offered or asked.

Suppose that the current market price3 is p. An intelligent trader decides
the side of his next (potential) transaction by comparing p with his current
valuations p(+1) and p(−1). If p(+1) > p, the market price is lower than the
price at which the trader would like to buy one more unit, so he attempts a
purchase. If p(−1) < p, the market price is higher than the price at which
the trader would like to sell one more unit, so he attempts a sale. If p(−1) ≤
p ≤ p(+1), the probability that he attempts a purchase is proportional to the
distance of p from p(+1). Formally, we assume that with probability

P (sale) =

⎧⎨
⎩

0 if p(−1) < p
p−p(+1)

p(−1)−p(+1) if p(−1) ≤ p ≤ p(+1)

1 if p(+1) > p

the trader attempts a sale and otherwise goes for a purchase. For later use,
we nickname this assumption S1 as a mnemonic for “side”. The former zero
intelligence assumption with P (sale) = 1/2 is denoted S0. (The subscripts “1”
and “0” denote the presence or absence of intelligence.)

Next, consider the choice of the price. Suppose that the trader is attempt-
ing a purchase. Under zero intelligence, he would post a bid uniformly drawn
from the interval [p(+2), p(+1)]. We model intelligent trading by assuming
that he compares the current market price p and his demand function to find
the interval [p(n + 1), p(n)] which contains p and then posts a bid uniformly
drawn from [p(n + 1), p(1)]. Compared to zero intelligence, this trader selects
his bid from a larger and more aggressive interval. There is a nice intuition
for this rule: at a price p in [p(n + 1), p(n)], the trader would like to buy n
units. However, as we constrain him to buy one unit a time, he can at best
try to buy the next unit at a price no greater than p(n + 1). The symmetric
version holds when the trader is attempting a sale. We nickname this rule P1

as a mnemonic for “price”; P0 denotes the rule under zero intelligence.

2.3 Experimental Design

2.3.1 Identification

A simulation run for our model requires the specification of five global para-
meters, a list of individual variables for each trader, as well as specific assump-
tions about market protocol and traders’ behavior. The global parameters are
the number n of traders, the mean μ and the variance σ2 of the realization
value Y of the asset, the number t of trading sessions, and the size Δ of

3 For a batch auction, we use the price observed in the last active trading session.
For the sequential protocols, we use the midpoint of the (best available) bid-ask
spread.
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the tick. Individually, a trader i is characterized by his coefficient ki of risk
tolerance and by his endowment of cash ci and asset shares si. Finally, for
protocols involving the dealer, we need to select her initial quotes.

The market protocols are described in Section 2.2.2. For ease of refer-
ence, we nickname the protocols as B (batch auction), C (continuous double
auction), D (automated dealership), and H (hybrid market). Recall that the
behavioral assumptions described in Section 2.2.3 are nicknamed Si and Pk

for i, k = 0, 1.
We have run simulations for all 4 × 4 × 3 = 48 possible combinations

of protocols, behavioral assumptions and performance criteria, over different
instantiations of the parameters. The results reported in Section 2.4 are robust
both to variations in the fine details in the market protocols and substantial
changes in the parameters, provided that the overall liquidity of the system is
sufficiently large. To simplify the presentation, we fix the exemplar parametric
configuration reported in Table 2.1 and for each performance criterion we
report the simulations for the four market protocols and the four behavioral
assumptions. The initial dealer’s quotes are a bid of 745 and an ask of 751,
with a fixed bid-ask spread of 6. The competitive equilibrium price is p∗ =
μ − 2σ2 = 760 in all the simulations reported in this paper.

Table 2.1. Exemplar for identification.

Parameters Initialization
Global n = 1, 000

μ = 1, 000
σ2 = 120
t = 2,500
Δ = 1

Trader ki = divisors of σ2 in {10, . . . , 40}
ci = 50, 000
si = permutation of 2ki

We say that a market protocol exactly implements a trading rule if it is
never necessary to round traders’ offers to match the ticked prices; see LiCalzi
and Pellizzari (2005). An exact implementation allows exact convergence to
the equilibrium price supporting the efficient allocation. (This is not relevant
for the dealership protocol, because the fixed bid-ask spread prevents the price
from being unique.) Our exemplar case is chosen to ensure that all the simula-
tions reported in this paper satisfy the requirement of exact implementation.
To this purpose, we choose integer values for μ and σ2 and initialize each ki’s
with a stochastically independent draw from a uniform distribution over the
divisors of σ2. We also assume that the support of the uniform distribution
over bids and asks is formed by the integers in the two intervals.
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2.3.2 The Simulations

A round of testing requires to simulate 3×4 = 12 combinations of performance
criteria and behavioral assumptions. A typical round of simulations runs as
follows. For each of the 12 combinations, we instantiate parameters according
to the exemplar in Table 2.1 and work out a simulation batch consisting of
100 runs under different initial random seeds. Then we record the time series
for prices, volume, and endowments, and compute relevant statistics for the
performance criteria. The simulations have been run using a dedicated package
of routines written in Pascal.

2.4 Results

We separately evaluate the performance of the four market protocols with
respect to three criteria: excess volume, time to convergence, and price dis-
persion. Each one is defined and discussed in one of the following three sub-
sections.

2.4.1 Excess Volume

Getting from the initial endowment to the efficient allocation requires a mini-
mum number of (unit) transactions. The traded volume is the total number of
unit transactions completed before attaining the efficient allocation. The Wal-
rasian protocol attains the efficient allocation in one step and thus minimizes
the traded volume. Realistic market protocols usually waste transactions and
thus require higher volumes. We measure the excess volume in a market pro-
tocol as the percentage of traded volume in excess of the minimum required
to attain the efficient allocation. Clearly, higher excess volumes signal less
effective protocols that let unnecessary trades take place.4

Figure 2.1 shows four boxes. Each box is associated with a different as-
sumption about the intelligence of the traders, as noted at its bottom. For
instance, the top-right box is associated with S1P0: this corresponds to pos-
itive intelligence in the choice of the side and zero intelligence in the price
decision. Within each box, we graph the excess volumes for 100 runs for each
of the four protocols, as well as marking the average level. The dots are color-
coded: black is Batch (B), red is Continuous Double Auction (C), green is
Dealership (D), and Blue is the Hybrid (H) protocol. The market protocols
perform quite differently and these differences persist under various forms of
trading intelligence.

Figure 2.2 merges the dots from the four boxes of Figure 2.1 in a single
box. Two main findings emerge. First, the batch auction and the dealership

4 When a dealer mediates the transfer of one unit from a trader to another one, we
record only one transaction so that the statistics for excess volume are directly
comparable.
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Fig. 2.1. Excess volume — datapoints.

have a substantially lower excess volume than the other two protocols under
any of our variants of intelligent trading; regardless of these, the former two
never exhibit more than 4% excess volume, while the latter two never go below
40%. Second, increasing trading intelligence tends to reduce excess volume,
most notably in the continuous double auction, but does not eradicate the
differences.

We fit a linear model to the data using a robust regression based on an M
estimator; see Venables and Ripley (2002). The independent dummy variables
are B, C, D, and H for the protocols, and P, S for trading intelligence over
price and side. Dummies for protocols are increasingly ordered by the size of
their effect: here, we leave out D because it has the lowest marginal impact.
With t-values reported below each coefficient, the estimated equation for the
excess volume is

ExcVol = 0.0566 + 0.0065B + 0.7192C + 0.8205H − 0.0252S − 0.0889P
(16.70) (1.673) (183.9) (209.8) (−9.126) (−32.13)
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The intercept, of course, combines the joint effect of D and S0P0 and thus the
baseline is a dealership protocol with zero intelligence trading. It is clear that
the (average) effect of C and H on increasing the excess volume is statistically
significant. Similarly, side and price intelligence decrease the excess volume.

2.4.2 Time to Convergence

Our second performance criterion is the number of trading sessions completed
before no further trading takes place. In our exemplar case, the maximum
number of units between the initial endowment and the final efficient endow-
ment is 60, so this is a lower bound on the number of trading sessions required
to achieve allocative efficiency. Figure 2.3 is similar to Figure 2.2 and reports
the merged datapoints for time to convergence.

The estimated equation for time to convergence is

Time = 183.31 + 16.022H + 156.78C + 208.98B − 149.26S + 7.5212P
(45.99) (3.481) (34.06) (45.40) (−45.86) (2.311)

The (average) effect of H, C and B on increasing the time to convergence is
statistically significant. Remarkably, while side intelligence contributes to this
reduction, the coefficient for price intelligence denotes a (weak) contrary effect
— when trading is aggressive, time to convergence lengthens.

2.4.3 Price Dispersion

Our third and final performance criterion attempts to quantify the dispersion
of prices by measuring the standard deviation of the time series of the prices
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observed at the end of each trading session. Figure 2.4 reports the merged
datapoints for price dispersion.
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The estimated equation for price dispersion is

PDisp = 1.5128 + 1.3868H + 3.0874D + 15.398C + 0.2826S − 0.5027P
(29.61) (23.50) (52.32) (261.0) (6.773) (−12.05)
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The (average) effect of H, D and C on increasing price dispersion is statisti-
cally significant, and particularly sizeable for C. Side intelligence has also an
increasing effect, while price intelligence has a moderating impact.

2.5 Conclusions

The simulations shows that the choice of a protocol may have a substantial
impact on the allocative effectiveness of an exchange market. Since lack of
space prevents us from a longer analysis, we offer only the main conclusions.
A richer and more complete analysis is carried out in LiCalzi and Pellizzari
(2006).

Excess volume. The ranking with respect to excess volume is {B, D} >>
C > H , where > stands for “lower volume” and >> for “much lower volume”.
The notation {B, D} means that the ranking is not statistically significant. In
simple words, the batch auction and the dealership generate minimal excess
volume; on the other hand, protocols involving a continuous double auction
are seriously wasteful. Moreover, intelligent trading helps, in the sense that
increasing the intelligence of traders tends to reduce (but does not eradicate)
the excess volume.

Prescriptively, this suggests that a market regulator attempting to reduce
excess volume in an exchange market would be well advised to opt for a batch
auction or a dealership. Moreover, he should make an effort to educate traders
towards making use of the signals embedded in the market price.

Time to convergence. The ranking with respect to time to convergence is
D > H >> C > B, where > stands for “lower time” and >> for “much lower
time”. Protocols involving a dealer converge much faster. Intelligent trading
is overall beneficial but has an ambiguous effect. A better choice for the side
of the transaction to attempt substantially reduces the time to convergence:
this alone might wipe out differences among all protocols except for the batch
auction. On the other hand, more aggressive behavior on the choice of the
prices slightly increases this time.

Prescriptively, this suggests that a market regulator attempting to reduce
the time to convergence in an exchange market should consider having a
dealership (possibly along an open book). Moreover, he should point out to
traders the importance of using the price signal to understand the direction in
which trade should be oriented, while attempting to reduce their greediness.

Price dispersion. The ranking with respect to price dispersion is B > H >
D >> C, where > stands for “lower dispersion” and >> for “much lower
dispersion”. The batch auction minimizes price dispersion and the continuous
double auction yields by far the worst performance in this respect. Intelligent
trading is overall damaging but with an ambiguous effect. More intelligence
on choice of the side of the transaction increases the dispersion, while a more
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aggressive pricing behavior has a mild moderating effect. Prescriptively, this
suggests that a market regulator attempting to reduce price dispersion in an
exchange market should avoid the use of a continuous double auction.
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