
Learning Shape-Classes Using
a Mixture of Tree-Unions

Andrea Torsello and Edwin R. Hancock

Abstract—This paper poses the problem of tree-clustering as that of fitting a mixture of tree unions to a set of sample trees. The tree-

unions are structures from which the individual data samples belonging to a cluster can be obtained by edit operations. The distribution of

observed tree nodes in each cluster sample is assumed to be governed by a Bernoulli distribution. The clustering method is designed to

operate when the correspondences between nodes are unknown and must be inferred as part of the learning process. We adopt a

minimum description length approach to the problem of fitting the mixture model to data. We make maximum-likelihood estimates of the

Bernoulli parameters. The tree-unions and the mixing proportions are sought so as to minimize the description length criterion. This is the

sum of the negative logarithm of the Bernoulli distribution, and a message-length criterion that encodes both the complexity of the union-

trees and the number of mixture components. We locate node correspondences by minimizing the edit distance with the current tree

unions, and show that the edit distance is linked to the description length criterion. The method can be applied to both unweighted and

weighted trees. We illustrate the utility of the resulting algorithm on the problem of classifying 2D shapes using a shock graph

representation.

Index Terms—Structural learning, tree clustering, mixture modelinq, minimum description length, model codes, shock graphs.

�

1 INTRODUCTION

THE unsupervised learning of shape from a set of training
examples is a problem of considerable topicality and

practical importance in the field of computer vision. There
are two aspects to the problem. The first of these is that of
determining the set of shape-classes present and this is
effectively a problem of clustering shapes. The second
aspect to the problem is that of characterizing the modes of
shape variation present within each class. This latter
problem is frequently posed as that of learning a pattern-
space for the shapes and has attracted considerable interest
in both the computer vision and statistics literature.

These two problems have been extensively studied with
geometric characterizations of shape using both simple
descriptors such as landmark points on the boundary [4] or
more complex ones such as curve descriptors [34]. Shape-
classes can be located by vectorizing the shape-attributes and
applying standard central clustering techniques to the shape-
vectors. The problem of learning the modes of shape-
variations present within a class is a more challenging one.
A straightforward method is to capture shape-variations by
performing principal components analysis on the class
covariance matrix [4]. A more sophisticated approach, which
can be traced back to the seminal work of Kendall [20], is to
construct a shape-manifold [34].

An alternative to the use of boundary or curve attributes
is to use a structural abstraction. Here, the idea is to
decompose the object under study into component parts and

to represent the arrangement of these parts using a relational
graph [26], [21], [41]. In particular, trees are frequently used
to represent the hierarchical arrangement of the parts of
shape-primitives. For instance, trees can be used to represent
articulated objects [23], [41], [17]. Recently, there has been
interest in the structural representation of 2D and 3D shapes
using their medial axes or skeletons. In the shock-tree, nodes
represent sections of the skeleton of the shape and edges
represent their adjacency relations. The branches of the
skeleton are assigned labels that distinguish the shape of the
corresponding section of the object boundary [33]. The labels
distinguish whether the boundary is of constant width,
tapering, locally constricted, or a local bulge. Changes in
boundary shape give rise to structural variations in the
shock tree.

Unfortunately, the problem of learning shape-classes and
shape-variations is much less tractable when a structural
abstraction is used. The main obstacle is that graphs are not
easily converted to vectors and, hence, standard statistical
pattern recognition techniques cannot be easily applied to
them. The reason for this is that there is no canonical
ordering for the nodes in a graph and a correspondence
order must be established before analysis can commence.
Moreover, the shape variation present may manifest itself
as changes in node and edge structure. Hence, even if a
correspondence order can be established, then graphs do
not necessarily map to vectors of fixed length.

To overcome these problems, the aim in this paper is to
develop an unsupervised method for learning a generative
model of tree structure from unlabeled data. We capture class
structure using a mixture model over the different shape
categories present in the data. Shape variations within each
class are captured by using a structure referred to as a union
tree. This is a structure from which each tree assigned to a
particular class can be obtained using node and, hence, edge,
removal operations. The nodes in the structure are assigned
weights to indicate their relative importance in the training
sample. We show how to fit this mixture model to samples of

954 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

. A. Torsello is with the Dipartimento di Informatica, Universitá Ca’ Foscari
di Venezia, via Torino 155, 30172 Venezia Mestre, Italy.
E-mail: torsello@dsi.unive.it.

. E.R. Hancock is with the Department of Computer Science, University of
York, Heslington, York, YO10 5DD England. E-mail: erh@cs.york.ac.uk.

Manuscript received 17 Nov. 2004; revised 14 Oct. 2005; accepted 18 Oct.
2005; published online 13 Apr. 2006.
Recommended for acceptance by L. Kuncheva.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0614-1104.

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/223140847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tree data by minimizing a description length criterion. In the
remainder of this section, we review the literature related to
this problem and underline the novelty of our contribution.

1.1 Related Literature

In this paper, we aim to take an information theoretic
approach to the problem of estimating the tree model. The
literature on description length methods is intricate and the
distinction between the different approaches is relatively
fine. Broadly speaking, there are two approaches to the
problem. The first to be developed was Wallace and Burton’s
minimum message length (MML) principle [39]. This was
followed about a decade later by Risannen’s minimum
description length formulation (MDL) [29]. The two ap-
proaches were jointly presented at a Royal Statistical Society
Discussion Meeting in 1987. There is an interesting account of
the following discussion, which highlights some of the
differences in perspective. More recent and rather different,
accounts of the similarities and differences are given in the
surveys by Baxter and Oliver [1] and by Lanterman et al. [22].
Both methods revolve around the use of the log-posterior
probability to locate a model that is optimal with respect to
code length. In MDL, it is the selection of the model that is the
focus of attention, and the model parameters are simply an
means to this end. In fact, the model parameters are usually
taken to be the maximum-likelihood estimates and these may
be different from the MDL estimates. In MML, on the other
hand, the recovery of the model parameters is a central aim.
The two approaches lead to rather different optimization
criteria. In MDL, the prior on the model parameters is
assumed to be flat, while for MML this is not the case.

The choice of coding scheme is also important. The
simplest approach is to assume that the code-length follows
an exponential distribution. If this is not the case, then more
complex coding schemes including universal coding and
predictive coding can be used [13]. Of course, the assumption
of an exponential distribution leads to algorithms that are
more tractable than universal or predictive codes. In MDL,
the codes can be either one part or two part, depending on
whether or not the parameters are encoded. In MML, the
codes are two-part. MML has been used as a means of fitting
mixture models to data [7].

However, it should be stressed that the distinctions
between MML and MDL are not clear cut, and our approach
is as follows: We aim to fit a mixture of tree union models to a
set of sample trees (the data). The individual trees constitut-
ing the data are assumed to be sampled from the tree-unions
under a Bernoulli model. For each node of each tree union,
there is a parameter that describes whether or not the node is
observed in a data sample. These parameters are estimated
using a standard maximum-likelihood method and this is
hence consistent with the MDL approach. Our aim is to find
the mixture of tree unions that best accounts for the observed
tree sample using a minimum encoding criterion. Each
mixture component is a probability distribution over a union
tree structure. The tree-union is a structure from which the
individual data samples assigned to the corresponding
mixture component can be obtained by edit operations. The
Bernoulli distribution describes the probability of observing
individual nodes in the training samples. The assignment of
tree-samples to tree unions is represented by a set of binary
indicator variables. The coding criterion corresponding to the
mixture model has three parts. The first part describes the

tree-data, given the set of tree union parameters together with
the cluster membership indicators. This is the negative of the
log-probability of the Bernoulli distribution. The second part
encodes the membership indicators given the mixture model
parameters. This is the negative of the logarithm of the mixing
proportions. The final part of the criterion encodes the model
parameters. Here, we assume an exponential prior over the
size of the model. Our aim is to update both the membership
indicators and the tree union so as to optimize this three-part
code. Hence, our coding scheme is more reminiscent of those
used in MML than those conventionally used in MDL.

The machine learning literature describes a number of
attempts to use description length methods to learn graph or
tree structure. The main problems addressed are learning
Bayesian networks [14], [10], mixtures of tree-classifiers [25],
and relational models [11]. In each of these problems, the
nodes represent random variables and the edges the
dependency between different random variables. In order
to estimate the dependency of the random variables and,
hence, the structure of the graphical model, Friedman [9]
introduces a structural version of the EM algorithm. The
method uses a description length criterion to gauge the effects
of structural changes in the graph, and model selection is
based on the minimum description length (MDL) principle
[29]. Building on earlier work on tree-based classifiers by
Chow and Liu [3], Meli�aa [25] develops a model of the
distribution of tree structures. Formally, the model is a
probabilistic mixture of Bayesian networks, where the
topology of each mixture is constrained to be a tree. This
restriction allows for efficient inference using a structural
variant of the EM algorithm and this has proven to be effective
for several classification problems. Here, too, a Bayesian
approach is used for model selection. An alternative
approach to estimating the underlying representation of
structured data is found in the literature on concept learning
[8]. Here, the data is composed of identifiable semistructured
elements such as words in sentences and the goal is to
estimate the underlying relations such as the grammar or the
semantic affinity, so as to group observations into concepts
that are not known ab initio. A similar approach can be found
in [12] where the MDL principle is used to infer a grammar
from a sample of sentences.

Although these methods provide a powerful way to infer
the relations between the random variables or nodes in the
model, they rely on the availability of correspondences
between the observations in the training data and the nodes
of the structure that is being learned. However, in many
situations, the correspondences may not be available. Instead,
the correspondences are hidden variables that must be
recovered using a graph matching technique during the
learning process. Hence, there is a chicken and egg problem in
structural learning. Before the structural model can be
learned, the correspondences with it must be available and,
yet, the model itself must be to hand to locate correspon-
dences. The problem that we wish to address here is
complementary to that of learning a graphical model. In the
case of a graphical model, the training data is accompanied
with complete correspondence information, but the structur-
al information is absent and must be inferred from the data.
When learning structural archetypes, on the other hand, the
data has structural organization, but correspondence infor-
mation is lacking and must be estimated using graph
matching techniques. Additionally, in the latter problem,
the structural information may also be incomplete and noisy.

TORSELLO AND HANCOCK: LEARNING SHAPE-CLASSES USING A MIXTURE OF TREE-UNIONS 955

Recently, however, there has been some effort aimed at
learning structural archetypes and clustering data abstracted
in terms of graphs. Lozano and Escolano [24], and Bunke et al.
[2] summarize the data by creating super-graph representa-
tion from the available samples. While these techniques
provide a structural model of the samples, the way in which
the supergraph is learned or estimated is largely heuristic in
nature and draws neither on probabilistic nor information
theoretic methods. Jain and Wysotzki, on the other hand,
adopt a geometric approach which aims to embed graphs in a
high-dimensional space by means of the Schur-Hadamard
inner product [19]. Central clustering methods are then
deployed to learn the class structure of the graphs. Horváth
et al. [16] use edit-distance and pairwise classification to learn
logical predicates, while Hagenbuchner et al. [15] use
Recursive Neural Networks to perform unsupervised learn-
ing of graph structures. While these approaches preserve the
structural information present, they do notprovide ameans of
characterizing the modes of structural variation encountered
and this renders them of limited use for the analysis of shape.

1.2 Contribution

Hence, our contribution in this paper is to bring together ideas
from graph theory and statistical learning theory to develop a
method for learning the class prototype and class structure of
a set of unlabeled trees. The overall goal is to develop a central
clustering method that can be used to assign sample trees to
clusters. We apply the resulting framework to the problem of
learning a generative model for sets of shock trees. By fitting
our mixture of tree-unions to sets of shock trees, we are able to
learn the shape classes present in the training data. Moreover,
the tree-unions for each class can be used to construct shape-
spaces for the shock-trees.

The outline of this paper is as follows: In Section 2, we
develop the generative tree model that underpins our graph-
clustering method and describe how it may be encoded.
Section 3 extends the framework to trees with weights
associated to each node. Section 4 turns to details of how
the description length criterion may be minimized by refining
an initially overspecific model by merging pairs of trees. In
Section 5, we explore the relationship between the change in
description length gained through tree merge operations and
the corresponding tree edit distance. Here, we show that the
edit costs are related to the description costs (and, hence, the
node probabilities). Section 6 describes how the correspon-
dences can be used to map the trees onto pattern vectors and
how PCA may be used to construct pattern spaces for the
trees. In Section 7, we provide experiments which demon-
strate the utility of our method for the problem of clustering
shock trees. Finally, Section 8 offers some conclusions and
suggests directions for future work.

2 GENERATIVE TREE MODEL

We commence our development by providing some
preliminary definitions of trees and order relations. Let N
be an arbitrary set, a set O � N �N is a strict partial order
over N if

1. 8x 2 N ðx; xÞ 62 O (irreflexivity).
2. 8x; y 2 N ðx; yÞ 2 O) ðy; xÞ 62 O (antisymmetry).
3. 8x; y; z 2 N ðx; yÞ 2 O ^ ðy; zÞ 2 O) ðx; zÞ 2 O

(transitivity).

Furthermore, O is said to be a tree-order if
4. 9r 2 N 8x 2 N ; x 6¼ r ðr; xÞ 2 O.
5. 8x; y; z 2 Nðx; zÞ 2 O ^ ðy; zÞ 2 O) ðx; yÞ 2
O _ ðy; xÞ 2 O.

A hierarchical tree T ¼ ðN ;OÞ is the tuple consisting of a
node-setN and a tree-orderO overN , which is said to be the
topological order ofT . If ðx; yÞ 2 O, thenx is said to be an ancestor
of y and y a descendant of x. If ðx; yÞ 2 O ^ ð6 9z 2 N
ðx; zÞ 2 O ^ ðz; yÞ 2 OÞ, x is said to be the parent of y and y a
child of x. The node r that satisfies Condition 4 is said to be the
root of T .

Consider the set of hierarchical trees D ¼ ft1; t2; . . . ; tng.
Our aim in this paper is to cluster these trees, i.e., to perform
unsupervised learning of the class structure of the sample.
We pose this problem as that of learning a mixture of
generative class archetypes. Each class archetype is con-
structed by merging sets of sample trees together to form a
superstructure called the tree-union. The tree merging process
requires node correspondence information and we work
under conditions in which these are unknown ab initio and
must be inferred as part of the learning process.

2.1 Probabilistic Model

Our aim is to construct a probabilistic model that can be
used to describe the distribution of tree data. Formally, the
goal is to construct a conditional probability distribution
P ðtjHÞ for an observed tree t given the available structural
model H. To develop this probabilistic model, we make
some simplifying assumptions. First, we assume that the
observed tree data can be modeled as a mixture over k tree
models fT 1; T 2; . . . ; T kg, i.e.,

P ðtjHÞ ¼
Xk
c¼1

�cP ðtjT cÞ;

where f�1; . . . ; �kg are the mixing proportions. Second, an

observed tree t is assumed to have been generated by the

mixture component T c through a simple node observation

model, where sampling error acts only on nodes, while

hierarchical relations are assumed always to be sampled

correctly. More formally, the tree modelT c is specified by a set

of nodes N c, a tree order Oc and a set of node-observation

probabilities �c ¼ f�c;igi2N c
, where �i;c is the probability of

observing the node i in the set of trees assigned to the class c.

An observation from a model T c is a tree twith node-setN t �
N c and topological order Ot ¼ Oc \ ðN t �N tÞ. We assume

that the individual nodes of the observed tree t are sampled

from the model tree T c as independent Bernoulli trials.

According to this model, the node i in trees belonging to class c

is observed with probability �i;c and fails to be observed with

probability 1� �i;c. As a result, the tree-model T c generates

the observed tree twith probability

P ðtjT Þ ¼Q
i2N t �c;i

Q
j2N cnN tð1� �c;jÞ if t is an observation of T c

0 otherwise:

�
ð1Þ

In other words, the probability distribution is factored into

jN cj independent node observations. The interpretation of

this model is that T c represents the true tree structure, but the

956 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

observation process is such that noise or sampling errors

cause some nodes to go undetected by the observer. The error

process is independent over the nodes of the tree. As an

example, consider the tree model composed of a root and two

children with node sampling probabilities 1 for the parent

(root) and 0.5 for each child. This model can produce four

different observed trees and each of these occurs with

probability 0.25 (see Fig. 1).
Clearly, the structure produced by the observation model

is always acyclic. The reason for this that the original model is
acyclic and the observation process can only eliminate edges.
However, if the root is not observed, then the observed
sample might not be connected, and as result is a forest rather
than a tree. To avoid this potential problem, we assume that
the probability of observing the root is always 1. In this way,
the observation model can only eliminate lower level nodes
and the tree will always remain connected. In practice,
enforcing the observation of the root is not problematic in our
application domain. The reason for this is that shock trees
require the addition of a dummy root. However, the dummy
root is not actually part of the skeleton from which the shock
tree is derived (it is simply the barycenter of the shape). As a
result, the root node is always present. We work under the
assumption that node correspondences, except perhaps the
root, are not known ab initio and must be inferred from the
structural relations that survive in the observed trees.
Returning to the example in Fig. 1, this means that the second
and third tree observations are indistinguishable.

The aim of this paper is to estimate the structural
model H and, hence, the tree models fT 1; T 2; . . . ; T kg, that
best fit the set of observed tree data D. The requirement
that the correspondences must be inferred from the
structural relations in the observed trees, means that the
conditional probability model is dependent on the set of
correspondences C between the nodes of the observed tree
and the nodes of the model tree. That is, the correspon-
dences provide information concerning the identity of the
model-node that generated a particular node in an observed
tree. Hence, the selected correspondences influence the

estimation of the node sampling probabilities. Clearly, for

the tree t to be valid observation of the model T , the

correspondences C must satisfy the hierarchical constraints

prevailing in T , that is

Hierðt; T c; CÞ ¼
8v; w nodes of t; ðv; wÞ 2 Otc ()

�
CðvÞ; CðwÞ

�
2 Oc:

Hence, the probability density for the observed tree t given

the model T c and the correspondences C is

P ðtjT c; CÞ ¼Q
j2N t �c;CðjÞ

Q
i2N cnImðCÞð1� �c;iÞ if Hierðt; T c; CÞ

0 otherwise:

�

The image of the correspondence map C, i.e., ImðCÞ, is the

set of model nodes that appear in the observed tree t with

node-set N t.

2.2 Model Coding

LetM be a k-dimensional parametric model, the MDL code-

length for a m-dimensional sample vector �xx is

LLð�xxjMÞ ¼ � logðP ð�xxj�̂�ð�xxÞÞÞ þ k
2

logðmÞ;

where �̂�ð�xxÞ is the maximum-likelihood estimate of the

parameters of M. The code-length can be divided into the

cost of describing the data LLð�xxj�̂�ð�xxÞÞ ¼ � logðP ð�xxj�̂�ð�xxÞÞÞ,
and the cost of describing the model parameters

LLð�̂�ð�xxÞÞ ¼ k
2 logðmÞ.

Given our tree-model, the cost of describing a tree t given

the model T c and the correspondences C is

� logP ðtjT c; CÞ ¼
�
P

i2ImðCÞ log �c;i �
P

j2NnImðCÞ logð1� �c;jÞ if Hierðt; T c; CÞ
1 otherwise:

�

Hence, the cost of describing the data set D ¼ ft1; t2; . . . ; tNg
using the mixture model H ¼ fT 1; T 2; . . . ; T kg is

LLðDjH; CÞ ¼ � logP ðDjH; CÞ ¼ �
X
t2D

logP ðtjH; CÞ

¼ �
X
t2D

log
Xk
c¼1

�cP ðtjT c; CÞ
" #

:

Assume that the tree t can arise as an observation from only
one tree-model T c. We can encode this association using an
indicator variable~zz that links each observed data tree to one

model. The indicator takes on the values

ztc ¼
1 if tree t is observed from model T c
0 otherwise:

�

Including the indicator variable, the cost of describing the

observed data given the model is

LLðDj~zz;H; CÞ ¼ �
X
t2D

Xk
c¼1

ztc logP ðtjT c; CÞ

¼ �
Xk
c¼1

X
t2Dc

logP ðtjT c; CÞ;

TORSELLO AND HANCOCK: LEARNING SHAPE-CLASSES USING A MIXTURE OF TREE-UNIONS 957

Fig. 1. An example of tree observation. The top structure represents a
tree model, the figures besides each node is the node’s sampling
probability and the labels indicate node identity. The bottom structures
represent the trees generated by the model, the figures below each tree
is the probability of observing it. Note that the second and third trees are
structurally indistinguishable.

whereDc ¼ ft 2 Djztc ¼ 1g is the set of samples generated by
the model indexed c, i.e., T c. To this cost, we need to add that
incurred in encoding the observation probabilities �̂c�c, i.e.,

LLð�̂�cj~zz;H; CÞ ¼
Xk
c¼1

nc
2

logðmcÞ;

where nc is the number of nodes in model T c and mc ¼P
t2D z

t
c is the number of trees assigned to the model.

Further, the cost of encoding the correspondence mapping
between the observed data-trees and the model that
generated them is:

LLð~zzjH; CÞ ¼ �
Xk
c¼1

log�c
X
t2D

ztc:

As for the model encoding, we make the simplifying
assumption that all models with n nodes and their feasible
correspondences are equally likely. It is well-known [27]
that the number of ordered trees with n nodes is Cn�1 where
Cn ¼ 1

nþ1
2n
n

� �
is the nth Catalan number. Asymptotically, we

have Cn � 4n. We also assume an exponential prior over the
model dimension, yielding a model encoding cost of
LLðT jCÞ ¼ nð2þ �Þ þ const:, where � is the prior term.
Here, we deal with unordered trees, so the previous
equation overestimates the cost. The number of unordered
trees is given by the Wedderburn-Etherington numbers [40].
An explicit formula for this sequence is elusive, but its
asymptotic behavior is exponential. This leads to the model
encoding cost LLðT jCÞ ¼ nð� þ �Þ þ const:, with � � 1:31.
By setting g ¼ � þ �, we obtain the cost of describing the full
model H

LLðHjCÞ ¼ g
Xk
c¼1

nc þ
k� 1

2
logðmÞ þ const:;

where nc is the number of nodes in model T c and k�1
2 logðmÞ,

with m ¼ jDj, is the cost of describing the mixing
parameters ���. Since the constant part does not affect the
solution, we will discard it from further consideration.

Hence, by adding together the different contributions,
the description cost is

LLðD;HjCÞ ¼
Xk
c¼1

"
�
X
t2Dc

logP ðtjT c; CÞ

þ nc
logðmcÞ

2
þ g

� �
�mc log�c

#
þ k� 1

2
logðmÞ:

ð2Þ

Let us return to the example presented in Fig. 1. Assume
that we have a sample of n trees generated by the tree model,
and that we wish to infer the structural model that generated
them. Since we do not have knowledge about the corre-
spondences, we will see only three possible tree structures in
our data, and these occur with relative frequencies 0.25, 0.5,
and 0.25, respectively (see Fig. 2). From this data, the model
depicted in Fig. 2 can be inferred. There are multiple sources
of bias in this estimation process that conspire to produce the
observed result. First, the use of the proposed three-part
code, which is not a universal code, does not take into
account the stochastic complexity of the models, nor the

number of distinct observations that can be made from the
same model. Overcoming this would be problematic since it
would require the computation of the dimension of the
isomorphic group of the structural model, that is, the group
of all possible isomorphisms, i.e., node-correspondences
from the structural model to itself. However, this source of
bias becomes increasingly weaker as the number of samples
increases. Second, there is a bias induced by the
ML estimation of the node-correspondences. By using a
single ML estimate of the correspondences, we do not take
into account that a model can produce the same observed
tree in different ways. That is, there can be more than one set
of correspondences that gives rise to the same observation.
This source of bias is, in a sense, complementary to the
previous one. The reason for this is that it wrongly penalizes
models which have a large isomorphic group, whereas the
first source of bias fails do to so when it should. Furthermore,
this second source of bias is arguably more relevant since it
does not vanish asymptotically. Overcoming this source of
bias is problematic since it would require that the data code-
length is averaged over all sets of correspondences that are
consistent with the hierarchical constraint. Work is currently
underway aimed at overcoming both sources of bias for the
general graph estimation problem. We hope to do this by
employing Bayesian approach to unify both model coding
and correspondence estimation. However, the computa-
tional complexity of the underlying problem means that goal
specific approximations must be used.

2.3 Maximum-Likelihood Node Parameter
Estimation

To estimate parameters of our model, i.e., the node

sampling probabilities, we compute the log-likelihood of

the sample data Dc given the tree-union model T c and the

correspondence mapping function C. Under the assumption

that the sampling process acts independently on the nodes

of the structure, the log-likelihood is

LðDj~zz;H; CÞ ¼
Xk
c¼1

LðDcjT c; CÞ;

where LðDcjT c; CÞ ¼
P

t2Dc logP ðtjT c; CÞ is the per-compo-
nent log-likelihood.

Let Kt
c;i ¼ fj 2 N

tjCðjÞ ¼ ig be the set of nodes in the
different trees in Dc for which C maps a node to i 2 N c.
Since the node mapping is one-to-one, Kt

c;i is either the
empty set or the singleton fjg with CðjÞ ¼ i. Further, let

958 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

Fig. 2. Estimating a tree model from samples without correspondences.

lc;i ¼
P

t2Dc jK
t
c;ij be the number of trees in Dc that map a

node to i, and mc ¼ jDcj be the number of trees assigned to
model T c. Since we are using a simple Bernoulli model, the
ML estimate of the sampling probability is �c;i ¼ lc;i

mc
. When

the estimates of the sampling probabilities are substituted
into the log-likelihood function, we have that

L̂LðDcjT c; CÞ ¼
X
i2N c

mc
li
mc

log
li
mc

� �
þ 1� li

mc

� �
log 1� li

mc

� �� �

¼ �
X
i2N c

mcIð�c;iÞ;

ð3Þ

where Ið�c;iÞ ¼ � �c;i logð�c;iÞ þ ð1� �c;iÞ logð1� �c;iÞ
	

is the

entropy of the probability distribution for sampling node i

from class c. This equation holds provided that there exists

an order relation that is respected by every hierarchical tree

in the sample set Dc. If this is not the case, then the log-

likelihood function takes on the value L̂LðDcjT c; CÞ ¼ �1.
Similarly, the mixing proportions ��� ¼ f�c; c ¼ 1; . . . ; kg,

are estimated using the observed frequency ratio �c ¼ mc

m .
With these estimates, the code-length becomes:

LLðD;HjCÞ ¼
Xk
c¼1

X
i2N c

LLiðDc; T cjCÞ þmIð���Þ þ
k� 1

2
logðmÞ;

ð4Þ

where

LLiðDc; T cjCÞ ¼ mcIð�c;iÞ þ
logðmcÞ

2
þ g ð5Þ

is the per-node description cost, and Ið���Þ¼�
Pk

c¼1
mc

m log mc

m

� �
.

3 WEIGHTED MODEL

We can extend the method outlined in the previous section

to the case where the nodes have weights. When this is the

case, then we would expect the sampling likelihood to

reflect the distribution of node weights. Hence, the simple

probability distribution described above and which is based

on uniform sample node probability is not sufficient

because it does not take into account the weight distribu-

tion. To overcome this shortcoming, in addition to the set of

sampling probabilities �c, we associate with the union

model a weight distribution functionWc. In general, �c and

Wc are not independent. In fact, we would expect the most

relevant nodes to be associated with larger weights and to

be sampled with higher probability. In particular, we model

the mutual dependency by deriving �c;i and Wc;i from a

single stochastic node-observation model Xc;i. The idea

behind the node-observation model is that the each node is

observed only if it provides a sufficiently strong signal. We

assume that Xc;i is normally distributed with mean �c;i and

standard deviation �c;i. As a result, the probability

distribution of a sample x from Xc;i is

1

�c;i
ffiffiffiffiffiffi
2�
p exp � 1

2

ðx� �c;iÞ2

�2
c;i

 !
:

When sampling a tree from the tree model T c, for each
node i, we select a sample xi from Xc;i. If xi � 0, node i
will be observed in the tree and with a weight wi ¼ xi.
Conversely, if xi < 0, node i will not be present in the tree
sample. Hence, the weight distribution Wc;i will follow the
probability distribution

Pwðwj�c;i; �c;iÞ ¼
1

�c;i�c;i
ffiffiffiffi
2�
p exp � 1

2
ðw��c;iÞ2

�2
c;i

� �
if w � 0

0 otherwise:

8<
:

The sampling probability is the integral of the distribution
over positive weights, i.e.,

�c;i ¼
Z 1

0

exp � 1
2
ðw��c;iÞ2

�2
c;i

� �
�c;i

ffiffiffiffiffiffi
2�
p dw ¼ 1� erfcð	c;iÞ; ð6Þ

where 	c;i ¼ �c;i=�c;i and erfc is the complementary error
function

erfcðxÞ ¼
Z 1
x

1ffiffiffiffiffiffi
2�
p exp � 1

2
s2

� �
ds:

An advantage of using this observation model for learning

tree structure is that it provides a direct indication of

whether a node is a genuine feature or simply noise. In fact,

the larger (positive) 	c;i, the higher the confidence that the

node is a feature. Furthermore, the distribution of weight of

the samples extracted from the node has a maximum value

at the mean signal-strength �c;i. Conversely, if 	c;i is

negative, the node is most likely to be due to noise and

the weight distribution will decrease monotonically with w.
In the weighted case, the complete structural model is

represented by the tuple T c ¼ ðN c;Oc; �		c; ���cÞ, where �		c ¼
f	c;i; i 2 N cg and ���c ¼ f�c;i; i 2 N cg are sets of node
parameters.

According to this weighted model, model T c generates
tree t with probability

PwðtjT c; CÞ ¼Q
j2N t

�c;CðjÞP ðwjj�c;CðjÞ; �c;CðjÞÞ
Q

i2N cnImðCÞ
ð1��c;iÞ if Hierðt; T c; CÞ

0 otherwise:

8<
:

Using the weighted model there are two differences in the
description cost. First, there is the change in the observation
probability and, hence, on the cost of describing the data
given the model parameters. The expression for the cost is

LLwðDj~zz;H; CÞ ¼ �
Xk
c¼1

X
t2Dc

logPwðtjT c; CÞ;

where PwðtjT c; CÞ is the probability of the weighted

observation model. The second difference derives from

the added complexity of the model. Specifically, the model

now has two parameters per node, instead of just one

parameter in the unweighted case. Hence, the cost of

describing the parameters is now

LLwð	̂	 ; �̂�j~zz;H; CÞ ¼
Xk
c¼1

nc logðmcÞ:

TORSELLO AND HANCOCK: LEARNING SHAPE-CLASSES USING A MIXTURE OF TREE-UNIONS 959

All the remaining contributions remain unchanged, yield-
ing the description cost

LLwðD;HjCÞ ¼Xk
c¼1

"
�
X
t2Dc

logPwðtjT c; CÞ

þ ncðlogðmcÞ þ gÞ �mc log�c

#
þ k� 1

2
logðmÞ:

ð7Þ

3.1 Maximum-Likelihood Parameters

Using the weighted node model, the log-likelihood function
cannot be expressed as the sum of the per-node entropies.
However, it can be expressed as the sum of per-node log-
likelihood functions

LwðDcjT c; CÞ ¼
X
i2N c

"
ðmc � lc;iÞ logðerfcð	c;iÞÞ

� lc;i
2

logð2��c;iÞ �
1

2

X
t2Dc

X
j2Kt

c;i

wtj
�c;i
� 	c;i

 !2#
;

where wtj is the weight of node j of tree t, Kt
c;i ¼ fj 2

N tjCðjÞ ¼ ig is the set of nodes in the different trees inDc for
which C maps a node to i 2 N c, mc ¼ jDcj is the number of
trees inDc, and lc;i ¼

P
t2Dc jK

t
c;ij is the number of times node i

is observed in Dc.
To estimate the parameters of the weight distribution, we

take the derivatives of the log-likelihood function with
respect to �i and 	i and set them to zero. As a result,

�c;i ¼ �
	c;i
2
Wc;i þ

ffi
	c;i
2
Wc;i

� 2
þW 2

c;i

r
ð8Þ

ðmc � lc;iÞerfc0ð	c;iÞ þ lc;ierfcð	c;iÞ
Wc;i

�c;i
� 	c;i

� �
¼ 0; ð9Þ

with

Wi ¼
1

lc;i

X
t2Dc

X
j2Kt

c;i

wtj

and

W 2
i ¼

1

lc;i

X
t2Dc

X
j2Kt

c;i

wtj

� 2
:

It is clear that when lc;i ¼ mc then the likelihood function is
maximized by

�c;i ¼
ffi
W 2

c;i �Wc;i
2

q
and 	c;i ¼ Wc;i

�c;i
. When lc;i < mc, we maximize the log likelihood

by setting 	c;i
ð0Þ ¼ erfc�1ðmc�lc;i

mc
Þ and iterating the recurrence:

�c;i
ðkÞ ¼ � 	c;i

ðkÞ

2
Wc;i þ

ffi
	c;iðkÞ

2
Wc;i

� �2

þW 2
c;i

s
ð10Þ

	c;i
ðkþ1Þ ¼ 	c;iðkÞ �

fð	c;iðkÞ; �c;iðkÞÞ
d

d	c;iðkÞ
fð	c;iðkÞ; �c;iðkÞÞ

; ð11Þ

where

fð	c;iðkÞ; �c;iðkÞÞ ¼

ðmc � lc;iÞerfc0ð	c;iðkÞÞ þ lc;ierfcð	c;iðkÞÞ
Wc;i

�c;iðkÞ
� 	c;iðkÞ

� �
:

Substituting the estimates and dropping the iteration
index, we obtain the cost

LLwðD;HjCÞ ¼
Xk
c¼1

X
i2N c

LLiwðDc; T cjCÞ

þmIð���Þ þ k� 1

2
logðmÞ;

ð12Þ

where the per-node description cost is

LLiwðDc; T cjCÞ ¼ � ðmc � lc;iÞ logðerfcð	c;iÞÞ þ
lc;i
2

logð2��c;iÞ

þ 1

2

X
t2Dc

X
j2Kt

c;i

wtj
�c;i
� 	c;i

 !2

þ logðmcÞ þ g:

ð13Þ

4 LEARNING THE MIXTURE

Our aim is to learn the set of tree-union models that partition
the training dataD into nonoverlapping classesD1; � � � ;Dk so
as to minimize the description cost. Unfortunately, locating
the global minimum of the description length in this way is an
intractable combinatorial problem. There are two interrelated
optimization problems that must be solved. The first is that of
estimating the tree-unions given the class assignment
indicators �zz. The second problem is that of estimating the
class assignment indicators �zz. One popular way of solving
problems of this sort is to use the Expectation-Maximization
algorithm [5], and to treat the class indicators as missing data.
However, it is not easily used here due to the structural nature
of the class tree union models. Since the tree unions are found
by recursively merging sample trees, they are data-depen-
dent pattern space models. The domain of the optimization
process depends on the tree samples assigned to the clusters.
Hence, we resort to a local search technique, whose main
requirement is that we can optimally merge two tree models.
The approach is as follows:

. Commence with an overly specific model. We use a
structural model per sample-tree, where each model
is equiprobable and structurally identical to the
respective sample-tree, and each node has unit
sample probability.

. Iteratively generalize the model by merging pairs of
tree-unions. The candidates for merging are chosen so
that they maximally decrease the description length.

. The algorithm stops when there are no merges
remaining that can decrease the description length.

This is clearly a variant of the hierarchical clustering
method outlined in [18] in which the topmost level and,
hence, the composition of the extracted clusters is controlled
by the description length criterion.

We merge two tree models by calculating their tree-
union that is a superstructure that has the property that the
original trees can be obtained from it using a sequence of

960 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

node removal operations (see Fig. 3). This means that the
hierarchical constraints of the original models and, hence, of
all the trees assigned to them is preserved. This, in turn,
means that all the trees assigned to the merged model are
valid observations of the model.

Given two tree models T 1 and T 2, we wish to construct a
union T̂T whose structure respects the hierarchical con-
straints present in both T 1 and T 2, and that also minimizes
the description cost for the merged model T̂T and data
D̂D ¼ D1 [D2, where D1 and D2 are the sample sets used to
learn T 1 and T 2, respectively. Since the trees T 1 and T 2

already assign node correspondences C1 and C2 from the
data samples to the model, we can simply find a map M
from the nodes in T 1 and T 2 to T̂T and transitively extend
the correspondences from the samples in D̂D to the final
model T̂T in such a way that, given two nodes v 2 N 1 and
v0 2 N 2, then ĈCðvÞ ¼ ĈCðv0Þ , v0 ¼ MðvÞ.

Posed as the merge of two structures, the correspondence
problem is reduced to that of finding the set of nodes in T 1

and T 2 that are common to both trees. For each pair of nodes,
we consider the two alternative hypotheses. The first is that
the nodes match, and this strengthens the confidence that the
nodes correspond to a feature of the model. The second
hypothesis is that the two nodes do not match, and this
reinforces the confidence that they represent structural noise.
We compare the description cost incurred in by the alter-
native hypotheses. Starting with the two structures, we merge
the sets of nodes that reduces the description length by the
largest amount, while still satisfying the hierarchical con-
straint. That is we merge nodes u and v of T 1 with node u0 and
v0 of T 2, respectively, if and only if ðu; vÞ 2 O1 , ðu0; v0Þ 2 O2,
whereO1 andO2 are the tree-order relations of modelsT 1 and
T 2, respectively. This generalization process allows us to
circumvent the problem of directly modeling the detailed
probability distribution for structural noise. Instead, we learn
the distribution from the data samples.

From (4) and (12), we see that the description length is
linear with respect to the contribution from each node of
each component of the mixture. This allows us to pose the
minimization of the description length as a linear optimiza-
tion problem with a combinatorial constraint. In particular,
as we will show in the next section, we can pose the model-
merging problem as an instance of a particular minimum
tree edit-distance problem.

Letm1 ¼ jD1j andm2 ¼ jD2jbe the number of tree samples

from D̂D that are respectively assigned to T 1 and T 2. Further,

let lv and lv0 be the number of times the nodesvandv0 inT 1 and

T 2 are observed in the trees in D1 and D2, respectively. With

the unweighted model, if the two nodes are not merged, then

the sampling probabilities are �v ¼ lv
m1þm2

and �v0 ¼ l0v
m1þm2

,

respectively, while the sampling probability of the merged

node is �ðvv0Þ ¼ lvþlv0
m1þm2

. Hence, the description length advan-

tage obtained by merging the nodes v and v0 is

Aðv; v0Þ ¼ LLvðD̂D; T̂T jCÞ þ LLv
0 ðD̂D; T̂T jCÞ � LLvv

0 ðD̂D; T̂T jCÞ
¼ ðm1 þm2Þ Ið�vÞ þ Ið�v0 Þ � Ið�ðvv0ÞÞ

	

þ 1

2
logðm1 þm2Þ þ g:

ð14Þ

When using the weighted model the advantage is:

Awðv; v0Þ ¼ LLvwðD̂D; T̂T jCÞ
þ LLv

0

wðD̂D; T̂T jCÞ � LLvv
0

w ðD̂D; T̂T jCÞ:
ð15Þ

In both the unweighted or the weighted cases, the set of
merges M that minimizes the description length of the
combined tree-union also maximizes the advantage function

AðMÞ ¼
X

ðv;v0Þ2M
Aðv; v0Þ: ð16Þ

At the end of the node merging operation, we have a set
of nodes that respects the partial order relations present in
both the original models. The order relation is hence
respected by all the sample-trees in the merged sample
set D̂D. The new merged set of nodes, order relation and
estimated node parameters define a new tree model T̂T .
Among all possible pairs of model merges, T1 and T2 is the
one that minimizes the description length. Finally, the
learning algorithm is as follows:

1. Initialize the algorithm by creating one mixture
component per tree-sample in D and calculate the
description length of the resulting model.

2. For each pair of initial mixture components, calcu-
late their union and the description length of the
merged structure. The mixing proportion for this
optimal merge is equal to the sum of the proportions
of the individual unions.

3. From the set of all potential merges, identify the one
which reduces the description cost by the greatest
amount. If the description cost increases for all
merges, stop the algorithm.

4. Calculate the union and description cost that results
from merging the newly obtained model with each
of the remaining components.

5. Goto 3 and repeat until the description length cannot
be reduced any further.

To conclude this section, we refer to Fig. 4 which
illustrates an example of the merge of six sample trees.
The figure shows the structural archetype of the merged
models after each stage. The shading of the nodes represents
their sampling probabilities, and the higher the probability,
the darker the node.

5 TREE EDIT-DISTANCE

As noted in earlier, the description length advantage is
related to the edit distance between tree structures. This is
an important observation. One of the difficulties with graph

TORSELLO AND HANCOCK: LEARNING SHAPE-CLASSES USING A MIXTURE OF TREE-UNIONS 961

Fig. 3. The new model is obtained by merging matching nodes.

edit distance [31], [6] is that there is no clear methodology
for assigning costs to edit operations. By contrast, in the
work reported in this paper the description length changes
associated with tree merge operations are determined by
the node probabilities, and these, in turn, may be estimated
from the available tree-samples. By establishing a link
between edit-distance and description length, we provide a
means by which edit costs may be estimated.

Hence, in this section, we review the computation of tree
edit-distance developed in our previous work [37]. In
particular, we describe how tree edit distance may be used
to estimate node-correspondences and give an overview of
the algorithm we use to approximate the computation of
tree edit distance.

The idea behind edit distance is that it is possible to
identify a set of basic edit operations on nodes and edges of a
structure, and to associate with these operations a cost. The
edit-distance is found by searching for the sequence of edit
operations that will make the two graphs isomorphic with
one-another and which have minimum cost. The optimal
sequence can be found using only structure reducing
operations. This can be explained by the fact that we can
transform node insertions in one tree into node removals in
the other. This means that the edit distance between two trees
is completely determined by the subset of residual nodes
remaining after the optimal removal sequence or, equiva-
lently, by the nodes that are in correspondence. This means
that the constraints imposed by the edit-distance framework
on the set of matching nodes are equivalent to those required
to merge nodes on the model archetypes. Namely, that they
preserve the hierarchy present in the two original structures.

The edit-distance between trees t and t0 can be
defined in terms of the nodes matched by the optimal
correspondence M:

Deditðt; t0Þ ¼
X

u 62DomðMÞ
ru þ

X
v 62ImðMÞ

rv þ
X
ðu;vÞ2M

mu;v: ð17Þ

Here, ru and rv are the costs of removing nodes u and v,
respectively,mu;v is the cost of matching u to v, and DomðMÞ

and ImðMÞ are the domain and image of the relation M.
Letting N t be the set of nodes of tree t, the distance can be
rewritten as:

Deditðt; t0Þ ¼
X
u2N t

ru þ
X
v2N t0

rv þ
X
ðu;vÞ2M

ðmuv � ru � rvÞ:

Hence, the distance is minimized by the set of correspon-
dences that maximize the utility

UðMÞ ¼
X
ðu;vÞ2M

ðru þ rv �muvÞ: ð18Þ

We can identify information theoretic node removal and
merge costs by equating U above with the description length
advantageA. The costs that allow the unweighted problem to
be posed as an edit distance problem are rv ¼ ðm1 þ
m2ÞIð�vÞ þ 1

2 logðm1 þm2Þ þ g for the removal of node v, and
mvv0 ¼ ðm1 þm2ÞIð�vv0 Þ þ 1

2 logðm1 þm2Þ þ g for matching
node v with node v0. In the weighted case, the corresponding
edit costs are rv ¼ LLvwðD̂D; T̂T jCÞ for the removal of node v and
mvv0 ¼ LLvv

0

w ðD̂D; T̂T jCÞ for matching node v with node v0.
Hence, our union-tree approach can be viewed as a

means of learning tree-edit costs. This has been a long-
standing problem since Fu et al. introduced the idea of
graph edit distance in the early 1980s [31], [6].

In our experimental analysis, we used the method
described in [37] to find the set of correspondences M	 ¼
arg minMUðMÞ that approximately minimize the edit
distance.

6 PATTERN SPACES FROM UNION TREES

It is important to note that the mixture of weighted tree-
unions also provides a route to embedding shapes of the
same class in a pattern space. To do this, we use the
correspondences with the union tree to map each tree onto a
pattern vector. The components of the vector are unity if the
corresponding sample has a corresponding node, and zero
otherwise. We perform principal components analysis for
the sample trees assigned to each class. To do this, we
compute the covariance matrix for the pattern vectors and
project the pattern vectors onto the space spanned by the
leading eigenvectors of the covariance matrix.

We place the nodes of the union tree T c in any arbitrary
order. To each sample tree t we associate a pattern-vector
~xxt ¼ ðx1; ; xnÞT 2 IRn, where n ¼ jN cj is the number of nodes
in the tree model T c. The component xtðiÞ of vector ~xx is wti if
the tree t maps a node to node i of the model, 0 otherwise. In
other words, we associate a pattern-vector~xxt with the sample
tree whose components are equal to the weight of the
corresponding node in the union tree, if the node is present,
and are zero otherwise. For each union-tree T c, we compute
the mean pattern-vector~̂xx̂xxc ¼ E½~xxt
 (i.e., the expectation of~xxt),
and its covariance matrix �c ¼ E½ð~xxt � ~̂xx̂xxcÞð~xxt � ~̂xx̂xxcÞT
. Sup-
pose that the eigenvectors (ordered to decreasing eigenvalue)
are ~ee1;~ee2; . . . ;~eeN c

. The leading lsig eigenvectors are used to
form the columns of the matrix E ¼ ð~ee1j~ee2j::::j~eelsigÞ. We
perform PCA on the sample-trees by projecting the pattern-
vectors onto the leading eigenvectors of the covariance
matrix. The projection of the pattern-vector for the sample
tree indexed t is~yyt ¼ ET~xxt. The distance between the vectors
in this space is DPCAðt; t0Þ ¼ ð~yyt �~yyt0 ÞT ð~yyt �~yyt0 Þ.

962 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

Fig. 4. Merging sample trees into a single tree-model.

7 EXPERIMENTAL RESULTS

We illustrate the utility of the tree-clustering algorithm on
sets of shock trees. We commence from 2D shape silhouettes.
For each shape, we extract the skeleton using the method
outlined in [36]. The skeleton is the medial axis of the
silhouette (i.e., the set of points that are equidistant from
opposite object boundaries) and it is hence the locus of the
center of a circle that is bitangent to the object boundary. The
skeleton is segmented into branches along which the radius of
the bitangent circle is either monotonically increasing or
decreasing. Each branch segment is the vertex of a graph. Two
vertices are connected by an edge if the associated branches
are adjacent. The exception is when the point of branch
contact is a minima of the radius of the bitangent circle. It is
straightforward to show that this graph is a forest [33]. In
order to transform the graph into a rooted tree, we add a
dummy root-vertex that represents the barycenter of the
silhouette. This dummy vertex is connected to the vertices
that correspond to branches that are adjacent to points
associated with a local maxima of the radius of the bitangent
circle. Fig. 5 shows an example silhouette, with its skeleton
superimposed, and the resulting shock-tree. Numeric labels
correspond to the labels on the skeletal branches, while the
dummy root is indicated by the symbol #. We consider two
variants of the shock tree matching problem. In the first

variant, we use a purely structural approach. The nodes in the
shock trees are given uniform weight and we match only their
structure. The second variant is weighted. Here, as outlined in
[35], we assign to each shock group, that is, to each node i of
shock tree t, a weight wti ¼ jjl1jj þ jjl2jj, where jjl1jj and jjl2jj
are the lengths of the “left” and “right” boundary segments
associated with the shock group. Our experiments are
divided into three parts. We commence by illustrating
qualitative examples of the clusters obtained with the two
variants of our algorithm. This suggests that the weighted
version is the most effective. We then focus in more detail on
some of the quantitative properties of the weighted version.
Finally, we provide a sensitivity analysis on synthetic data.

7.1 Clustering Examples

To illustrate the clustering process, we commence with a

study on a small database of 25 shapes. In order to asses the

quality of the method, we compare the clusters defined by the

components of the mixture with those obtained by applying a

graph spectral pairwise clustering method to the distances

between graphs. The graph spectral clustering method is the

maximum-likelihood technique developed by Robles-Kelly

and Hancock [30]. This probabilistic method locates the

clusters by iteratively extracting the eigenvectors from the

matrix of edit-distances between the graphs so as to maximize

a log-likelihood function. The edit distances are computed in

two alternative ways. First, we compute weighted edit

distance using the method outlined in Section 5. The second

method involves computing the distance matrix using the

projected tree-vectors obtained from PCA as described in

Section 6.
Fig. 6 shows the clusters extracted from the database of

25 shapes. The first column shows the clusters extracted using

the mixture of tree unions approach, and relies on a purely

structural representation of shape. The second column dis-

plays the clusters extracted from the weighted edit-distances

between shock-trees; here, the structural information is

enhanced with geometrical information. The third column

shows the clusters extracted from the distances obtained by

embedding the geometrically enhanced shock-trees in a

single tree-union. While there is some merge and leakage,

the clusters extracted with the mixture of tree unions compare

TORSELLO AND HANCOCK: LEARNING SHAPE-CLASSES USING A MIXTURE OF TREE-UNIONS 963

Fig. 5. A silhouette, its skeleton, and the corresponding shock-tree.

Fig. 6. Clusters extracted with a purely structural mixture of trees approach versus pairwise clustering of attributed distances obtained with edit

distance and tree union. (a) Mixture of unattributed tree models. (b) Weighted edit-distance. (c) Union of attributed trees.

favorably with those obtained using the alternative clustering
algorithms, even though these are based on data enhanced
with geometrical information. The second to last cluster
extracted using the mixture of tree unions deserves some
further explanation. The structure of the shock-trees of the
distinct tools in the cluster are identical. Hence, by using only
structural information, the method clusters the shock-trees
together. To distinguish between the objects, geometrical
information must be provided too. Hence, the two alternative
clustering methods are able to distinguish between the
wrenches, brushes, and pliers.

Fig. 7 compares the mixture of tree unions, and the
pairwise clustering method when applied to the unweighted
edit distance between graphs. The clusters obtained using the
mixture of tree-unions are shown on the left, while those
obtained through the pairwise clustering of unweighted edit-
distance are shown on the right. These results suggest that the
mixture of tree-unions method outperforms pairwise cluster-
ing of edit-distance on purely structural data.

It is also interesting to consider the relationship between
the edit distances defined on the union structure and the
conventional edit distance. Fig. 8 plots the distances obtained
using the union of weighted shock trees (x axis) versus the
corresponding pairwise edit distances (y axis). The main
feature to note from the plot is that the pairwise distance
method tends to underestimate the distances between shapes.

7.2 Quantitative Analysis

We now turn our attention to the properties of the weighted

variant of our mixture of tree unions clustering method, when

applied to a larger database of 120 trees. The database consists

of 120 shapes divided into eight shape classes containing

15 shapes each.
To perform an initial evaluation of this database, we have

applied multidimensional scaling to the weighted edit

distances between the shock graphs for the different shapes.

By doing this, we embed points representing the graphs in a

low dimensional space spanned by the eigenvectors of a

similarity matrix computed from the pairwise distances. In

Fig. 9, we show the projection of the graphs onto the 2D space

spanned by the leading two eigenvectors of the similarity

matrix. Each label in the plot corresponds to a particular shape

class. Label 1 identifies hands, label 2 horses, label 3 ducks,

label 4 men, label 5 pliers, label 6 screwdrivers, label 7 dogs,

and, finally, label 8 is associated with leaves. The plot clearly

shows the difficulty of this clustering problem. The shape

groups are not well separated. Rather, there is a good deal of

overlap between them. Furthermore, there are a considerable

number of outliers.
To assess the ability of the clustering algorithm to separate

the shape classes, we performed experiments on an increas-

ing number of shapes. We commenced with the 30 shapes

from the first two shape classes and then increased the

number of shape classes under consideration until the full set

of 120 shapes was included. We compare the clusters

obtained with the mixture of tree-unions approach with the

result obtained by applying the pairwise clustering algorithm

to two different distance measure. The first of these is

approximate edit-distance described in [37], while the second

is a tree distance metric that can be computed in polynomial

time [38]. The distance metric between trees t1 and t2 is

computed using the function�ðu; vÞ that gauges the similarity

between node u in t1 and node v in t2. The similarity measure

for the two trees isSðt1; t2Þ ¼ max

P
ðu;vÞ2
 �ðu; vÞ, where
 is

964 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

Fig. 7. Comparison of clusters obtained from nonattributed edit-distance

and mixture of trees. (a) Mixture of tree models. (b) Pairwise clustering

from edit-distance.

Fig. 8. Scatter plot of the distances computed using the edit-union

versus the corresponding pairwise edit distance.

Fig. 9. Two-dimensional multidimensional scaling of the pairwise
distances of the shock graphs. The numbers correspond to the shape
classes.

a subtree isomorphism between t1 and t2. Hence, the distance
metric is defined as:

Dmetricðt1; t2Þ ¼ 1� Sðt1; t2Þ
maxðjt1j; jt2jÞ

:

Additionally, we explore the use of two graph-spectral
algorithms for clustering the different distance measures.
The first is the maximum-likelihood method described
earlier [30]. The second is the matrix factorization algorithm
developed by Perona and Freeman in [28].

In order to assess the quality of the groupings, we have
used two well-known cluster-validation measures [18]. The
first is the standard classification rate. To compute the
measure, for each cluster, we note the predominant shape
class. Those graphs assigned to the cluster which do not
belong to the predominant shape class are deemed to be
misclassified. The classification rate is a fraction of graphs
belonging to the predominant cluster shape classes divided
by the total number of graphs. This measure exhibits a well-
known bias toward a large number of classes. To overcome
this, we also used the Rand index. The Rand index is defined
as RI ¼ A

AþB . Here, A is the number of “agreements” that is
the number of pairs of graphs that belong to the same class
and that are assigned to the same cluster andB is the number
of “disagreements,” that is, the number of pairs of graphs that
belong to different shape classes and that are assigned to
different clusters. The index is hence the fraction of graphs of
a particular shape class that are closer to an graph of the same
class than to one of another class.

Fig. 10 plots the proportion of shapes correctly classified as
the number of shape classes is increased. The mixture of tree
unions appears as the curve marked with “boxes” and clearly
outperforms the alternatives by a substantial margin,
irrespective of which pairwise clustering method or which
distance measure is used. The margin of improvement is
greatest for large numbers of shape-classes. Fig. 11 compares
the value of the Rand index obtained with the mixture of tree
unions method and the values obtained with the alternative
distance measures and clustering algorithms, as a function of
the number of shape-classes. Again, the result of using the
mixture of tree-unions is marked with “boxes.” It is
interesting to note that for our method and the spectral

clustering method of Robles-Kelly and Hancock [30] the
value of the Rand index increases with the number of shape
classes present. This is due to the fact that the more shape-
classes that are present, the less the measure punishes
overfitting. With a small number of classes, the Perona-
Freeman algorithm separates the graphs into a smaller
number of clusters and, hence, produces the least overfitting.
However, as we increase the number of shape classes, the
mixture of tree unions method produces better results,
outperforming both the Robles-Kelly and Hancock, and the
Perona-Freeman pairwise clustering methods.

We now turn our attention to the results of applying
PCA to the union trees, as described in Section 6. Fig. 12
displays the first two principal components of the sample-
tree distribution for the embedding spaces extracted from
six shape classes. In most cases, there appears to be a tightly
packed central cluster with a few shapes scattered further
away than the rest. This separation is linked to substantial
variations in the structure of the shock trees. For example,
in the shape-space formed by the class of pliers, the outlier
is the only pair-of-pliers with the nose closed. In the case of
the horse-class, the outliers appear to be the cart-horses
while the inliers are the ponies.

7.3 Synthetic Data

To augment these real-world experiments, we have fitted the
mixture of weighted tree unions to synthetically generated
data. Our aim here has been to characterize the sensitivity of
the algorithm to cluster merging. We have randomly
generated a number of unweighted prototype trees and, from
each tree, we have generated structurally perturbed copies.
Theprocedure forgeneratingtherandomtreeswasasfollows:
We commence with an empty tree (i.e., one with no nodes)
and we iteratively add the required number of nodes. At each
iteration, nodes are added as children of one of the existing
nodes. The parents are randomly selected with uniform
probability from among the existing nodes. The trees are
perturbedbyrandomly addingthe required numberof nodes.

The sample of tree used in our study is controlled by
increasing the number of prototypes, and increasing the
degree of structural perturbation to which they are subjected.
We tested the performance of the mixture of weighted tree
unions, on samples generated from two, three, and four

TORSELLO AND HANCOCK: LEARNING SHAPE-CLASSES USING A MIXTURE OF TREE-UNIONS 965

Fig. 10. Proportion of correct classifications obtained with the mixture of

trees versus those obtained with pairwise clustering.

Fig. 11. Rand index obtained with the mixture of trees versus those

obtained with pairwise clustering.

prototypes of 10 nodes each. The amount of perturbation or
noise is increased from an initial 10 percent to a maximum of
50 percent of the total number of nodes. Fig. 13 plots the
fraction of pairs of trees that are correctly classified as
belonging to the same or different clusters as the noise is
increased. From this plot, it is clear that the method works well
with compact and well-separated clusters. However, the
algorithm undergoes a sudden drop in performance when the
structural variability of the class reaches 40 percent of the total
number of nodes of the prototypes. Furthermore, when more
prototypes are used, then the distance between the clusters is
smaller and, consequently the classes are harder to separate.

8 CONCLUSIONS

In this paper, we have presented an information theoretic
framework for clustering trees and for learning a generative
model of the variation in tree structure. The problem is posed
as that of learning a mixture of tree unions. We demonstrate

how the three sets of operations needed to learn the generative
model,namely, node correspondence, tree merging,andnode
probability estimation, can each be couched in terms of
minimizing a description length criterion. We provide
variants of algorithm that can be applied to samples of both
weighted and unweighted trees. Moreover, we illustrate the
relationship between classical tree edit distance, and the node
entropy in our model. The method is illustrated on the
problem of learning shape-classes from sets of shock trees.

There are clearly a number of ways in which this work
described in this paper may be extended. First, we have
concentrated on trees, and there is scope for generalizing the
method to graphs. Second, the method only accommodates
node probabilities, and an important priority is to incorporate
structures with weighted edges and to allow for edge-
probabilities. Third, the optimization process is extremely
simplistic, and prone to convergence to local optima. Hence,
there is a need to investigate the use of more sophisticated
methods such as mean field annealing or evolutionary search.

REFERENCES

[1] R. Baxter and J. Olivier, “MDL and MML: Similarities and
Differences (Introduction to Minimum Encoding Inference—Part
III),” Technical Report 207, Dept. of Computer Science, Monash
Univ., 1994.

[2] H. Bunke et al., “Graph Clustering Using the Weighted Minimum
Common Supergraph,” Graph Based Representations in Pattern
Recognition, pp. 235-246, 2003.

[3] C.J.K. Chow and C.N. Liu, “Approximating Discrete Probability
Distributions with Dependence Trees,” IEEE Trans. Information
Theory, vol. 14, no. 3, pp. 462-467, 1968.

[4] T.F. Cootes, C.J. Taylor, and D.H. Cooper, “Active Shape Mod-
els—Their Training and Application,” Computer Vision and Image
Understanding, vol. 61, pp. 38-59, 1995.

[5] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Like-
lihood from Incomplete Data via the EM Algorithm,” J. Royal
Statistical Soc., Series B, vol. 39, pp. 1-38, 1977.

[6] M.A. Eshera and K.-S. Fu, “An Image Understanding System
Using Attributed Symbolic Representation And Inexact Graph-
Matching,” IEEE Trans. Pattern Recognition and Machine Intelligence,
vol. 8, pp. 604-618, 1986.

966 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

Fig. 12. Principal components analysis of the union embedding of the clusters.

Fig. 13. Percentage of correct classifications under increasing structural

noise.

[7] M.A.T. Figueiredo and A.K. Jain, “Unsupervised Learning of
Finite Mixture Models,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 24, no. 3, pp. 381-396, Mar. 2002.

[8] D. Fisher, “Knowledge Acquisition via Incremental Conceptual
Clustering,” Machine Learning, vol. 2, no. 2, pp. 139-172, 1987.

[9] N. Friedman, “Learning Bayesian Networks in the Presence of
Missing Variables,” Proc. Int’l Conf. Machine Learning, pp. 125-133,
1997.

[10] N. Friedman and D. Koller, “Being Bayesian about Network
Structure,” Machine Learning, vol. 50, nos. 1-2, pp. 95-125, 2003.

[11] L. Getoor et al., “Learning Probabilistic Models of Relational
Structure,” Proc. Int’l Conf. Machine Learning, pp. 170-177, 2001.

[12] P. Grünwald, “A Minimum Description Length Approach to
Grammar Inference,” Proc. Symbolic, Connectionist, and Statistical
Approaches to Learning for Natural Language Processing, pp. 203-216,
1996.

[13] P. Grünwald, “Minimum Description Length Tutorial,” Advances
in Minimum Description Length: Theory and Applications, Apr. 2005.

[14] D. Heckerman, D. Geiger, and D.M. Chickering, “Learning
Bayesian Networks: The Combination of Knowledge and Statis-
tical Data,” Machine Learning, vol. 20, no. 3, pp. 197-243, 1995.

[15] M. Hagenbuchner, A. Sperduti, and A.C. Tsoi, “A Self-Organizing
Map for Adaptive Processing of Structured Data,” IEEE Trans.
Neural Networks, vol. 14, pp. 491-505, 2003.

[16] T. Horváth, S. Worbel, and U. Bohnebeck, “Relational Instance-
Based Learning with Lists and Terms,” Machine Learning, vol. 43,
pp. 53-80, 2001.

[17] S. Ioffe and D.A. Forsyth, “Human Tracking with Mixtures of
Trees,” Proc. Int’l Conf. Computer Vision, vol. I, pp. 690-695, 2001.

[18] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice
Hall, 1988.

[19] B.J. Jain and F. Wysotzki, “Central Clustering of Attributed
Graphs,” Machine Learning, vol. 56, pp. 169-207, 2004.

[20] D.G. Kendall, “A Survey of Statistical Theory of Shape (with
Discussion),” Statistical Science, vol. 4, no. 2, pp. 87-120, 1989.

[21] B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker, “Shapes, Shocks,
and Deformations I,” Int’l J. Computer Vision, vol. 15, pp. 189-224,
1995.

[22] A.D. Lanterman, “Schwarz, Wallace and Rissanen: Intertwining
Themes in Theories of Model Selection,” Int’l Statistical Rev.,
vol. 69, no. 2, pp. 185-212, 2001.

[23] T. Liu and D. Geiger, “Approximate Tree Matching and Shape
Similarity,” Proc. Int’l Conf. Computer Vision, pp. 456-462, 1999.

[24] M.A. Lozano and F. Escolano, “ACM Attributed Graph Clustering
for Learning Classes of Images,” Graph Based Representations in
Pattern Recognition, pp. 247-258, 2003.

[25] M. Meil�aa, “Learning with Mixtures of Trees,” PhD thesis, Mass.
Inst. of Technology, 1999.

[26] R.L. Ogniewicz, “A Multiscale Mat from Voronoi Diagrams: The
Skeleton-Space and Its Application to Shape Description and
Decomposition,” Aspects of Visual Form Processing, pp. 430-439, 1994.

[27] R. Otter, “The Number of Trees,” Ann. Math., vol. 49, pp. 583-599,
1948.

[28] P. Perona and W.T. Freeman, “A Factorization Approach to
Grouping,” Proc. European Conf. Computer Vision, vol. 1, pp. 655-
670, 1998.

[29] J. Rissanen, “Modelling by Shortest Data Description,” Automatica,
vol. 14, pp. 465-471, 1978.

[30] A. Robles-Kelly and E.R. Hancock, “A Probabilistic Spectral
Framework for Segmentation and Grouping,” Pattern Recognition,
vol. 37, pp. 1387-1406, 2004.

[31] A. Sanfeliu and K.S. Fu, “A Distance Measure Between Attributed
Relational Graphs for Pattern Recognition,” Proc. IEEE Int’l Conf.
Systems, Man, and Cybernetics, vol. 13, pp. 353-362, 1983.

[32] A. Shokoufandeh, S.J. Dickinson, K. Siddiqi, and S.W. Zucker,
“Indexing Using a Spectral Encoding of Topological Structure,”
Computer Vision and Pattern Recognition, vol. 2, pp. 491-497, 1999.

[33] K. Siddiqi et al., “Shock Graphs And Shape Matching,” Int’l J.
Computer Vision, vol. 35, pp. 13-32, 1999.

[34] E. Klassen, A. Srivastava, W. Mio, and S.H. Joshi, “Analysis of
Planar Shapes Using Geodesic Paths on Shape Spaces,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 3,
pp. 372-383, Mar. 2004.

[35] A. Torsello and E.R. Hancock, “A Skeletal Measure of 2D Shape
Similarity,” Computer Vision and Image Understanding, vol. 95, no. 1,
pp. 1-29, 2004.

[36] A. Torsello and E.R. Hancock, “Correcting Curvature-Density
Effects in the Hamilton-Jacobi Skeleton,” IEEE Trans. Image
Processing, vol. 15, no. 4, pp. 877-891, 2006.

[37] A. Torsello and E.R. Hancock, “Efficiently Computing Weighted
Tree Edit Distance Using Relaxation Labeling,” Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, 2001.

[38] A. Torsello, D. Hidovic-Rowe, M. Pelillo, “Polynomial-Time
Metrics for Attributed Trees,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 27, no. 7, pp. 1087-1099, July 2005.

[39] C. Wallace and D. Burton, “An Information Measure for
Classification,” The Computer J. , vol. 11, no. 2, pp. 195-209, 1968.

[40] J.H.M. Wedderburn, “The Functional Equation gðx2Þ ¼ 2axþ
½gðxÞ
2,” Ann. Math., vol. 24, pp. 121-140, 1922-23.

[41] S.C. Zhu and A.L. Yuille, “FORMS: A Flexible Object Recognition
and Modelling System,” Int’l J. Computer Vision, vol. 20, no. 3,
pp. 187-212, 1996.

Andrea Torsello received the “Laurea” degree
with honors in computer science from Ca’
Foscari University of Venice, Italy, in 1997. In
2004, he received the PhD degree in computer
science at the University of York, United King-
dom. Currently, he is an assistant professor at
Ca’ Foscari University of Venice, Italy. His
research interests are in the area of computer
vision and pattern recognition, in particular, the
application of stochastic and structural ap-

proaches to shape analysis. He is currently coediting a special issue
of Pattern Recognition on “similarity-based pattern recognition.”

Edwin R. Hancock studied physics as an
undergraduate at the University of Durham and
graduated with honors in 1977. He remained at
Durham to complete the PhD degree in the area
of high-energy physics in 1981. Following this,
he worked for 10 years as a researcher in the
fields of high-energy nuclear physics and pattern
recognition at the Rutherford-Appleton Labora-
tory (now the Central Research Laboratory of
the Research Councils). During this period, he

also held adjunct teaching posts at the University of Surrey and the
Open University. In 1991, he moved to the University of York as a
lecturer in the Department of Computer Science. He was promoted to
senior lecturer in 1997 and to reader in 1998. In 1998, he was appointed
to a Chair in Computer Vision. Professor Hancock now leads a group of
some 15 faculty, research staff, and PhD students working in the areas
of computer vision and pattern recognition. His main research interests
are in the use of optimization and probabilistic methods for high and
intermediate level vision. He is also interested in the methodology of
structural and statistical pattern recognition. He is currently working on
graph-matching, shape-from-X, image databases, and statistical learn-
ing theory. His work has found applications in areas such as radar
terrain analysis, seismic section analysis, remote sensing, and medical
imaging. He has published more than 90 journal papers and 350 refereed
conference publications. He was awarded the Pattern Recognition
Society medal in 1991 and an outstanding paper award in 1997 by the
Journal of Pattern Recognition. In 1998, he became a fellow of the
International Association for Pattern Recognition. Professor Hancock
has been a member of the editorial boards of the journals IEEE
Transactions on Pattern Analysis and Machine Intelligence, and Pattern
Recognition. He has also been a guest editor for special editions of the
journals Image and Vision Computing and Pattern Recognition. He has
been on the program committees for numerous national and interna-
tional meetings. In 1997, with Marcello Pelillo, he established a new
series of international meetings on energy minimisation methods in
computer vision and pattern recognition.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TORSELLO AND HANCOCK: LEARNING SHAPE-CLASSES USING A MIXTURE OF TREE-UNIONS 967

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

