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Abstract

This paper presents a geometric measure that can be used to gauge the similarity of 2D

shapes by comparing their skeletons. The measure is defined to be the rate of change of bound-

ary length with distance along the skeleton. We demonstrate that this measure varies continu-

ously when the shape undergoes deformations. Moreover, we show that ligatures are associated

with low values of the shape-measure. The measure provides a natural way of overcoming a

number of problems associated with the structural representation of skeletons. The first of these

is that it allows us to distinguish between perceptually distinct shapes whose skeletons are am-

biguous. Second, it allows us to distinguish between the main skeletal structure and its ligatures,

which may be the result of local shape irregularities or noise. We illustrate how the new shape-

measure can be used for the purposes of clustering shock-trees of the same shape class.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The skeletal abstraction of 2D and 3D objects has proved to be an alluring yet

highly elusive goal for over 30 years in shape analysis. The topic is not only impor-

tant in image analysis, where it has stimulated a number of important develop-

ments including the medial axis transform and iterative morphological thinning

operators, but is also an important field of investigation in differential geometry

and biometrics where it has led to the study of the so-called Blum skeleton [8]. Be-
cause of this, the quest for reliable and efficient ways of computing skeletal shape
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descriptors has been a topic of sustained activity. Recently, there has been a re-

newed research interest in the topic which has been aimed at deriving a richer de-

scription of the differential structure of the object boundary. This literature has

focused on the so-called shock-structure of the reaction-diffusion equation for ob-

ject boundaries [19,20].
Skeleton-based representations are just one of the possible abstractions of shape.

Examples in the literature include boundary curves [6], regions [12], boundary statis-

tics [7,18], and the medial axis [23,41]. Focusing on these methods in more detail,

Basri et al. [6] opt for curve-based representations where object boundaries are

matched by minimizing a curve functional that penalizes stretching and bending.

Carson et al. [12], on the other hand, opt to represent a shape by clustering the

set of interior pixels into a color–texture–position feature space. The clusters of pix-

els are then compared using a quadratic distance function. According to the shape-
contexts of Belongie et al. [7] matching is effected using unordered boundary points

labeled with a coarse histogram of the relative position of the remaining boundary

points. Working at a more abstract structural level, Ioffe and Forsyth [18] learn

an hierarchical distribution of image features represented as a mixture of trees. There

are also examples in the literature of skeletal representations that are not based on

the morphological skeleton. Among these are the shape axis representation of Liu

and Geiger [23]. Here the skeleton is not defined using the symmetry axis, but as

the midpoint between two corresponding boundary points on opposite sides of the
shape. Another important skeleton-based representation is that used in the FORMS

system [41]. In this work the medial axis is matched to a model skeleton using a

branch and bound strategy.

1.1. Motivation

Broadly speaking the representation and recognition of 2D shapes based on the

shock representation is a three-stage process. First, the skeleton must be computed
from the available shape-boundary information [1,2,10,11,24,25,34]. The second is-

sue is how to use the extracted skeleton to represent the differential structure of

the original boundary [9,20,35]. The final step is the matching of the resulting shape

representation [21,27,32,33,36,37]. Based on this three-step view, we provide a brief

analysis of the related literature.

The idea of characterizing boundary shape using the differential singularities of

the reaction equation was first introduced into the computer vision literature by Ki-

mia et al. [20]. The idea is to evolve the boundary of an object to a canonical skeletal
form using the reaction-diffusion equation. The skeleton represents the singularities

in the curve evolution, where inward moving boundaries collide. The reaction com-

ponent of the boundary motion corresponds to morphological erosion of the bound-

ary, while the diffusion component introduces curvature dependent boundary

smoothing. In practice, the skeleton can be computed in a number of ways

[1,2,24]. Recently, Siddiqi, Tannenbaum and Zucker have shown how the eikonal

equation which underpins the reaction-diffusion analysis can be solved using the

Hamilton–Jacobi formalism of classical mechanics [11,34].
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One of the criticisms that can be leveled at existing skeletonization methods is

their sensitivity to small boundary deformations or ligatures. Although these can

be reduced via curvature dependent smoothing, they may have a significant effect

on the topology of the extracted skeleton.

Once the skeleton is on hand, the next step is to devise ways of using it to char-
acterize the shape of the original boundary shape. Most of the approaches reported

in the literature opt to use a structural characterization. For instance, Zucker, Sid-

diqi and others [36] have labeled points on the skeleton using so-called shock-labels.

According to this taxonomy of local differential structure, there are different classes

associated with behavior of the radius of the bitangent circle inscribed in the shape.

The so-called shocks distinguish between the cases where the local bitangent circle

has maximum radius, minimum radius, constant radius or a radius which is strictly

increasing or decreasing. Kimia and Giblin opt for a simpler representation which is
based just on the junctions and terminations of the skeleton [37].

Once the skeletal representation is on hand then shapes may be matched by com-

paring their skeletons. One approach in the literature adopts a structural approach

to the matching problem. For instance, Pelillo et al. [27] use a sub-tree matching

method. The shock-tree is attributed with the length, radii, velocities, and curvatures

of the shocks. This method is potentially vulnerable to structural variations or errors

due to local deformations, ligature instabilities or other boundary noise.

One of the criticisms of these structural-matching methods is that small boundary
deformations may significantly distort the topology of the skeleton. To overcome the

susceptibility of skeletal topology to noise and small deformation, Siddiqi and Zuc-

ker [33,35,36] label the shocks generated by the eikonal equation with their time of

formation. The later the time of formation, and hence their proximity to the center of

the shape, the higher the shock in the hierarchy. This temporal notion of relevance is

based on the observation that the skeletal branches generated by noise and high-fre-

quency features are always close to the border. Unfortunately, the converse does not

hold. To give an example, a protrusion that ends on a vertex will always have the
earliest time of creation, regardless of its relative relevance to the shape. For this rea-

son the time of formation is not an effective measure of branch relevance in the pres-

ence of sharp boundary structure or high-curvature features.

Kimia and Klein, and their co-workers [21,29,37], have a potentially more robust

method which matches by minimizing graph-edit distance. In particular, Sebastian

et al. [29,30] have developed a variationalmethodwhich canbeused tomeasure the cost

of boundary deformation, which they refer to as ‘‘edit distance’’ [29]. The cost of re-

moving a branch of the skeleton is related to the associated boundary deformation.
The distance measure based on this skeleton editing procedure has been successfully

used to index and retrieve shapes from a large database [30]. However, the method is

cumbersome since it requires alignment and explicit comparison of the boundary,

and hence cannot be encoded on the skeleton alone.

Golland and Grimson [16] provide an interesting alternative: they minimize a

boundary functional to find the optimal fit to a fixed model skeleton. This approach

is very robust to boundary deformations, but is computationally very expensive.

Therefore, it is not well suited to indexing large databases of shapes.
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1.2. Contribution

We draw three observations from this review of the related literature. The first is

that if a largely structural representation of the skeleton is used, then shapes which

are perceptually different but which give rise to the same skeleton topology can be
ambiguous with one-another. For this reason we would like to develop a represen-

tation which can be used to assess the differences in shape for objects which have to-

pologically identical skeletons. Second, we would also like to be able to make

comparisons between shapes that are perceptually close, but whose skeletons exhibit

topological differences due to small but critical local shape deformations. Third, we

aim to do this without making detailed boundary comparisons. In particular, we

wish to construct a representation which dispenses with the boundary, but encodes

information concerning its shape on the skeleton.
To meet these goals, our shape-measure must have three properties. First, it must

be continuous over local regions in shape-space in which there are no topological

transitions. If this were the case then it can be used to differentiate shapes with to-

pologically identical skeletons. Second, it must vary smoothly across topological

transitions. This is perhaps the most important property since it allows us to define

distances across transitions in skeleton topology. In other words, we can traverse the

skeleton without encountering singularities. Third, it must distinguish between the

principal component of the skeleton and its ligatures [4,5]. This will allow us to sup-
press instabilities due to local shape deformations.

Our approach to shape recognition and classification using a skeletal representa-

tion requires several components. In particular, we need to (a) extract the skeleton,

(b) label the branches with some measure of shape-similarity, (c) calculate the global

similarity of two shapes using an edit-distance where the shape-measure is used to

determine edit cost, and, finally (d) use the overall similarity between shapes to learn

shape categories. This paper focuses only on the computation of the shape-similarity

measure. The remaining topics will be covered in separate publications. The exper-
imental assessment of the shape-similarity measure requires as a prerequisite that

we know the correct correspondences between skeletal branches are a prerequisite

for the calculation of the similarity measure. In the complete shape-matching system,

we would anticipate that the correspondences would be located using a tree-match-

ing algorithm to minimize the edit-distance between structures. However, the de-

scription and analysis of such an algorithm is beyond the scope of this paper. For

the purposes of making this paper self-contained, we perform most of our experi-

ments with hand-picked correspondences.
We opt to use a shape-measure based on the rate of change of boundary length with

distance along the skeleton. To compute the measure, we construct at each location on

the skeleton the bitangent circle inscribed in the shape. This circle is centered on a skel-

etal point and is bitangent to the boundary at the two boundary points. Hence, each

skeletal point is in correspondence with (at least) two points on the border. The rate

of change of boundary length with distance along the skeleton is computed by taking

neighboring points on the skeleton. The corresponding change in boundary length is

computed by determining distance along the boundary between the corresponding



A. Torsello, E.R. Hancock / Computer Vision and Image Understanding 95 (2004) 1–29 5
points of contact for the two bitangent circles. The boundary distances are averaged for

the boundary segments either side of the skeleton.

This measurement has previously been used in the literature to express relevance

of a branch when extracting or pruning the skeleton [24,25,31]. In [9], Blum and Na-

gel suggested that the border length to shock-length ratio could be used, together
with other measures, to characterize the shape, but the reasons for its proposal were

solely attributed to its ability to detect whether a skeletal section is a ligature. In

practice they too used the measure only as a purely static measure of relevance, ig-

noring the properties of the measure when the shape undergoes deformation.

We show that the rate of change of boundary length with distance along the skel-

eton has a number of interesting properties. The consequence of these properties is

that the descriptive content of the measure extends beyond simple feature saliency,

and can be used to attribute the relational structure of the skeleton to achieve a ri-
cher description of shape. Furthermore, we demonstrate that there is an intimate re-

lationship between the shape-measure and the divergence of the distance map. This is

an important observation since the divergence plays a central role when the skeleton

is computed using the Hamilton–Jacobi formalism to solve the eikonal equation.

Among the properties exhibited by this measure, we have that topological changes

on the skeleton correspond to zero crossings. This means that ligatures are associ-

ated with a value of the measurement which is zero, and hence have neutral weight.

Second, the measure does not change when the shape undergoes ‘‘bending.’’
Hence, the contribution of the paper is as follows. Although themeasure that we use

has been known for some time, it has not been used for shape comparison. The novelty

of our work resides in the use of the method to measure shape similarity. In particular,

the method is simple. For instance, it does not require explicit boundary comparison.

Moreover, it can be computed directly from the divergence analysis of the distance

map. From a theoretical perspective, the contribution of this paper is to demonstrate

the relationship of the measure to the divergence, and to illustrate a number of impor-

tant properties that it possesses. Although this paper concerns shape-similarity, there is
of course an underlying correspondence problem for the skeleton branches that must

be solved if themeasure is to beused formatching or recognition.When requiredweuse

the weighted tree-matching method outlined in [3] to compute correspondences.

The outline of the paper is as follows: Section 2 deals with skeleton extraction and in-

troduces to theHamilton–Jacobi framework.The shape-measure and its geometric prop-

erties are presented in Section 3. Section 4 builds on Sections 2 and 3 by showing how

the measure extraction process can be integrated with the Hamilton–Jacobi approach

to skeleton detection. Finally, experimental results are presented in Section 5 and Sec-
tion 6 provides some conclusions and identifies directions for further investigation.
2. Skeleton detection

A great number of papers have been written on the subject of skeleton detection.

The problem is a tricky one because it is based on the detection of singularities on the

evolution of the eikonal equation on the boundary of the shape.
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The eikonal equation is a partial differential equation that governs the motion of a

wave front through a medium. In the case of a uniform medium the equation is
o

ot
~CðtÞ ¼ a~NðtÞ; ð1Þ
where ~CðtÞ : ½0; s� ! R2 is the equation of the front at time t, ~NðtÞ : ½0; s� ! R2 is the

equation of the normal to the wave front in the direction of motion, and a is the

propagation speed. As the wave front evolves, opposing segments of the wave front

collide, generating a singularity. This singularity is called a shock and the set of all

such shocks is the skeleton of the boundary defined by the original curve. This re-
alization of the eikonal equation is also referred to as the reaction equation.

The geometric intuition underpinning the eikonal or reaction equation is fairly

simple: each point on the shape-boundary moves at constant speed in a direction

that is at each instant in time normal to the object boundary. When two such points

collide a singularity arises. The skeleton is the set of such singularities. Alternatively,

the skeleton can be thought of as the set of the centers of bitangent circles contained

within the shape-boundary. It is easy to see the relationship between these two views.

Since the boundary points move at a constant speed, they meet after having traveled
the same distance. The distance traveled by the set of points that meet first is the ra-

dius of the bitangent circle and the original positions of these points are the points

where the bitangent circle touches the shape-boundary.

2.1. The Hamilton–Jacobi framework

To detect the singularities in the eikonal equation we use the Hamilton–Jacobi ap-

proach presented by Siddiqi, Tannenbaum, and Zucker [11,34]. Here we review this
approach.

We commence by defining a distance-map that assigns to each point on the inte-

rior of an object the closest distance D from the point to the boundary (i.e., the dis-

tance to the closest point on the object boundary). The gradient of this distance-map

defines a field ~F whose domain is the interior of the shape. The field is defined to be
~F ¼ rD; ð2Þ

where r ¼ ð o

ox ;
o
oyÞ

T
is the gradient operator. The trajectory followed by each

boundary point under the eikonal equation can be described by the ordinary dif-

ferential equation _~x ¼ ~F ð~xÞ, where~x is the coordinate vector of the point.

Siddiqi claims that this system is Hamiltonian at non-skeletal points. Hence at

these non-skeletal points the field ~F is conservative, or r � F ¼ 0 [26]. However,

the total inward flux through the entire shape is non-zero. In fact, the flux is propor-

tional to the length of the boundary.

The divergence theorem states that the integral of the divergence of a vector-field

over an area is equal to the flux of the vector field over the enclosing boundary of
that area. In our case,
Z

A
r �~F dr ¼

Z
L

~F �~ndl ¼ UAð~F Þ; ð3Þ
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where A is any area, ~F is a field defined in A, dr is the area differential in A, dl is the
length differential on the border L of A, and UAð~F Þ is the outward flux of F through

the border L.
By virtue of the divergence theorem we have that, within the interior, there are

points where the system is not conservative. The non-conservative points are those
where the boundary trajectory is not well defined, i.e., where there are singularities

in the evolution of the boundary. These points are the so-called shocks or skeleton

of the shape- boundary. Shocks are thus characterized by locations where

r �~F < 0.

Unfortunately, the assumption that the field ~F is conservative does not take into

account density effects due to a curved front in the boundary evolution. In such cases

there still exists a conservative field~f ¼ q~F whose direction is always parallel to ~F .
As a result, r �~F can be negative at non-skeletal points corresponding to high-cur-
vature fronts. In such cases, however, the skeletal points represent minima of the

quantity r �~F along the direction orthogonal to the skeleton. In this paper we will

ignore the non-conservative effects at high-curvature fronts. However, in a recent pa-

per we have performed a more detailed analysis which incorporates the effects of

non-uniform density due to boundary curvature, and demonstrate that the resulting

boundary evolution process leads to improvements in the properties of the located

skeleton [40].

The extraction of skeletal points is reduced to the search for highly non-conserva-
tive points. Unfortunately, skeletal points are, also, ridges of the distance map D,
that is ~F ¼ rD is not uniquely defined in those points, but have different values

on opposite sides of the watershed. This means that the calculation of the derivatives

of ~F gives rise to numerical instabilities. To avoid this problem we can use the diver-

gence theorem again. We approximate the divergence with the outward flux through

a small area surrounding the point. That is r �~F ð~xÞuUUð~F Þð~xÞ, where U is a small

area containing x. Thus, calculating the flux through the immediate neighbors of

each pixel we obtain a suitable approximation of r �~F ð~xÞ.

2.2. Locating the skeleton

The thinning of the points enclosed within the boundary to extract the skeleton is

an iterative process which involves eliminating points with low inward flux. The steps

in the thinning and localization of the skeleton are as follows:

• At each iteration of the thinning process we have a set of points that are candi-

dates for elimination. We remove from this set the point with the lowest inward
flux.

• Next we check whether the point is topologically simple, i.e., whether it can be

eliminated without splitting the remaining point-set.

• If the point is not simple, then it must be part of the skeleton. Thus, we retain it.

• If the point is simple, then we check whether it is an endpoint. If the point is simple

and not an endpoint, then we eliminate it from the image. If this were the case then

we add to the candidate set the points in its 8-neighborhood that are still part of

the thinned shape (i.e., points that were not previously eliminated).
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• If a simple point is also an endpoint, then the decision of whether or not it will be

eliminated is based on the inward flux value. If the flux value is below a certain

threshold we eliminate the point in the manner described above. Otherwise we re-

tain the point as part of the skeleton.

We initialize this iterative process by placing every boundary point in the candidate
set. We iterate the process until we have no more candidates for removal. The re-

sidual points will all belong to the skeleton.
3. The shape-measure and its properties

When the skeleton is computed in this way, then the eikonal equation induces a

map from a point in the skeleton to a set of points on the boundary of the shape.
That is, there is a correspondence between a point on the skeleton and the set of

points on the boundary whose trajectories intercept it under the motion induced

by the eikonal equation. The cardinality of this set of corresponding points on the

boundary can be used to classify the local topology of the skeleton in the following

manner:

• the cardinality is greater than or equal to 3 for junctions.

• For endpoints the cardinality is a number from 1 to a continuum.

• For the general case of points on branches of the skeleton, the cardinality is ex-
actly 2.

As a result of this final property, any segment of a skeleton branch s is in correspon-
dencewith two boundary segments l1 and l2. This allows us to assign to a portion of the
skeleton the portion of the boundary fromwhich it arose (see Fig. 1). For each internal

point in a skeleton branch, we can thus define the local ratio between the length of the

generating boundary segment and the length of the generated skeleton segment. The

rate of change of boundary length with skeleton length is defined to be
d

ds
klk ¼ d

ds
kl1k þ

d

ds
kl2k; ð4Þ
where kl1k is the length of the segment l. This ratio is our measure of the relevance of

a skeleton segment in the representation of the 2D shape-boundary.

Our proposal in this paper is to use this ratio as a measure of the local relevance of
the skeleton to the boundary-shape description. In particular, we are interested in

using the measure to identify ligatures [4]. Ligatures are skeleton segments that link

the logically separate components of a shape (see Fig. 2). They are characterized by a

high negative curvature on the generating boundary segment. The observation which

motivates this proposal is that we can identify ligature by attaching to each infinites-

imal segment of skeleton the length of the boundary that generated it. Under the eik-

onal equation, a boundary segment with high negative curvature produces a

rarefaction front. This front will cause small segments to grow in length throughout
their evolution, until they collide with another front and give rise to a so-called

shock. This means that very short boundary segments generate very long skeleton

branches. Consequently, when a skeleton branch is a ligature, then there is an asso-
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ciated decrease in the boundary-length to shock-length ratio. As a result our pro-

posed skeletal shape-measure ‘‘weights’’ ligature less than other points in the same

skeleton branch.

To better understand the rate of decrease of the boundary length with skeletal

length, we investigate its relationship to the local geometry of the bitangent circle
inscribed within the object boundary. We have
d

ds
kl1k ¼ cos h

1� rk1
ð5Þ
and, similarly,
d

ds
kl2k ¼ cos h

1� rk2
; ð6Þ
where r is the radius of the bitangent circle and ki is the curvature of the mapped

segment on the boundary. The curvature is oriented inwards, that is, when the
boundary bends towards the skeleton we have a positive curvature, while when

the boundary bends away from the skeleton the curvature is negative. Finally, h is

the angle between the tangent to the skeleton and the tangent to the corresponding

point on the boundary. These formulae show that the measure is inversely propor-

tional to negative curvature and radius. That is, if we fix a negative curvature k1, the
measure decreases as the skeleton gets further away from the border. Furthermore,

the measure decreases faster when the curvature becomes more negative.

A second important property of the shape-measure is that its value varies
smoothly across shape deformations, even when these deformations impose topolog-

ical transitions to the skeleton. To demonstrate this property we make use of the tax-

onomy of topological transition of the skeleton compiled by Giblin and Kimia [15].

According to this taxonomy, a smooth deformation of the shape induces only two

types of transition on the skeleton (plus their time reversals). The transitions are

branch contraction and branch splicing. A deformation contracts a branch joining

two junctions when it moves the junctions together. Conversely, it splices a branch

when it reduces in size, smoothes out, or otherwise eliminates the protrusion or
sub-part of a shape that generates the branch.

A deformation that contracts or splices a skeleton branch causes the global value

of the shape-measure along the branch to go to zero as the deformation approaches

the topological transition. This means that a decreasing length of boundary gener-

ates the branch, until the branch disappears altogether.

When a deformation causes a contraction transition, both the length of the skel-

eton branch and the length of the boundary segments that generate the branch go to

zero. A more elusive case is that of splicing. Through a splicing deformation, a de-
creasing length of boundary maps to the skeleton branch. This is because either the

skeleton length and its associated boundary length are both reduced, or because the

deformation allows boundary points to be mapped to adjacent skeleton branches.

For this reduction in the length of the generating boundary, we do not have a cor-

responding reduction of the length of the skeleton branch. In fact, in a splice oper-

ation the length of the skeleton branch is a lower bound imposed by the presence of
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the ligature. This is the major cause of the perceived instability of the skeletal repre-

sentation. Weighting each point on the boundary which gave rise to a particular skel-

eton branch allows us to eliminate the contributions from ligatures, thus smoothing

the instability. Since a smooth shape deformation induces a smooth change in the

boundary, the total shape-measure along the branch has to vary smoothly through
any deformation.

Just like the radius of the bitangent circle, key shape elements such as necks and

seeds are associated with local variations of the length ratio. For instance, a neck is a

point of high rarefaction and, thus, a minimum of the shape-measure along the

branch. A seed is a point where the front of the evolution of the eikonal equation

concentrates, and so is characterized by a maximum of the ratio (see Figs. 1 and 2).

A third important property of the shape-measure is its invariance to bending of

the shape. This invariance derives from the fact that, if we bend the shape, we loose
from one side the same amount of boundary-length that we gain on the opposite

side. This property was already identified in [8].
Fig. 1. Geometric quantities used in our analysis.

Fig. 2. Ligature points are generated by short boundary segments.
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To prove the bending invariance, let ks be the curvature on the skeleton, at point

O. We can assume, without loss of generality, that at this point the skeleton is di-

rected towards the border-segment dl2. Furthermore, let k1 and k2 be the inward cur-

vatures on the corresponding boundary points, and let h be the angle between the

border tangents and the skeleton tangent. At the point O the tangent angle and
the radius are linked by the relation dr=ds ¼ � sinðhÞ. We define the radius curvature

kr as
kr ¼
dh
ds

¼ d2r=d2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðdr=dsÞ2

q :
This quantity represents the degree to which the boundary bends towards the skel-

eton. Positive values indicate that the boundary is convex with respect to the skeleton

(i.e., bends towards the skeleton) and negative values that the boundary is concave

with respect to the skeleton (i.e., bends away from the skeleton). Given the boundary

segments dl1, we can perform a parallel transport of the segment along the radius,

hence obtaining the segment dlp1 that is parallel to dl1 and that crosses the skeleton at

point O. Similarly we can obtain the segment dlp2 parallel to dl2. The length of these

segments is jjdlp1 jj ¼ jjdlp2 jj ¼ cosðhÞdsþOðds2Þ, and their curvatures are kp1 and kp2 ,
respectively. Moving along the skeleton by a distance ds, the tangent to the skeleton

rotates by an angle da ¼ ks dsþOðds2Þ, while the tangent at the corresponding

border points dlp1 rotates by an angle db ¼ kp1 dlp þOðds2Þ. As can be clearly seen in

Fig. 3, we have dh ¼ db� da. Hence:
kr ds ¼ kp1 cosðhÞds� ks dsþOðds2Þ;

kp1 ¼ kr þ ks
cosðhÞ :
Fig. 3. Differential geometry of a skeletal branch.
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On the opposite side of the skeleton, since ks points towards dl2, we have

dh ¼ db� da. Hence
kr ds ¼ kp2 cosðhÞdsþ ks dsþ ks dsþOðds2Þ;

kp2 ¼ kr � ks
cosðhÞ :
Recalling that 1
k1
¼ 1

kp
1

þ r and kdl1kk1 ¼ kdlp1kk
p
1 þOðds2Þ, we have kdl1k ¼

kdlp1kð1þ rkp1 Þ þOðds2Þ ¼ ½cosðhÞ þ rðkr þ ksÞ� þOðds2Þ. Similarly, we have kdl2k ¼
½cosðhÞ þ rðkr � ksÞ� þOðds2Þ. Hence d

ds kl1k þ d
ds kl2k ¼ 2ðcosðhÞ þ rkrÞ ¼ 2 cosðhÞþ

2r dh
ds is independent of ks since the factors in kdl1k and kdl2k that depend on ks cancel

out. In other words, if we bend the object sufficiently to cause a curvature k in the

skeleton, the increase in boundary length on the one side is compensated by the de-

crease in boundary length on the opposite side.
4. Measure extraction

The extraction of the skeletal shape-measure is a natural by-product which comes
for free when we use the Hamilton–Jacobi approach for skeleton extraction. This is a

very important property of this shape-measure. Through the divergence theorem we

can transport a quantity linked to a potentially distant border to a quantity local to

the skeleton. Using this property, we can prove that the border length to shock-

length ratio is proportional to the divergence of the gradient of the distance map.

The Hamilton–Jacobi approach ensures that the eikonal equation induces a sys-

tem that is conservative everywhere except on the skeleton. As we have already men-

tioned, the conservative field is not ~F ¼ r~D as indicated by Siddiqi, but the field
~f ¼ q~F which is parallel to it (where q is a scalar function that corrects the density

effects due to a curved front). In this paper, we will ignore these curvature depen-

dency effects by assuming that ~F is conservative, or, equivalently, that r �~F ¼ 0 ev-

erywhere except on the skeleton. When dealing with these curvature effects,

arguments based on the assumption r �~F ¼ 0 will also hold when we substitute ~f
for ~F . More details of the curvature dependent analysis can be found in our recent

paper [40].

To show how the shape-measure can be computed in the Hamilton–Jacobi set-
ting, we consider a skeleton segment s and its �-envelope. The �-envelope of a func-

tion f is the set of points fðx; yÞjjjy � f ðxÞjj < �g, that is the set of points inside a

‘‘tube’’ of radius � around the value of the function. The �-envelope around a skeletal

segment s is, thus, an infinitesimally thin open area that includes every point in s.
The segment s maps to two segment borders l1 and l2. The evolution of the points

in these border segments defines two areas A�
1 and A�

2 enclosed within the �-envelope
of s, the segments of boundary l1 and l2, and the trajectories b11 and b21, and b12 and b22
of the endpoints of l1 and l2. The geometry of these areas is illustrated in Fig. 4.



Fig. 4. The flux through the border is equal to the flux through �.
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Sincer �~F ¼ 0 everywhere in A�
1 andA

�
2, by virtue of the divergence theoremwe can

state that the flux from the two areas are both zero, i.e., UA�
1
ð~F Þ ¼ 0 and UA�

2
ð~F Þ ¼ 0.

The trajectories of the endpoints of the border are, by construction, parallel to the field,

so the normal is everywhere normal to the field and thus there is no flux through the
segments b11, b

2
1, b

1
2, and b

2
2. On the other hand, the field on the shape-boundary is always

normal to the boundary. Hence, the flux through the border segments l1 and l2 is equal
to the length jjl1jj and jjl2jj of the segments l1 and l2, respectively.

Since UA�
1
ð~F Þ ¼ 0 and UA�

2
ð~F Þ ¼ 0 the flux that enters through the border segments

l1 and l2 has to exit through the �-envelope of s. That is, if �1 and �2 are the sides of A�
1

and A�
2 on the �-envelope of s, we have U�1ð~F Þ ¼ Ul1ð~F Þ and U�2ð~F Þ ¼ Ul2ð~F Þ. This, in

turn, implies that the flux through the whole �-envelope of s is U�ð~F Þ ¼ kl1k þ kl1k.
Since
lim
�!0

Z
�

r �~F d� ¼
Z
s
r �~F ds
and the value of the flux through the �-envelope of s is independent of �, we have
Z
s
r �~F ds ¼ kl1k þ kl2k:
Taking the first derivative with respect to ds we have, for each non-singular point

in the skeleton,
r �~F ¼ d

ds
kl1k þ

d

ds
kl2k ð7Þ
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Fig. 5 plots at each skeletal point the extracted value of the shape-measure of each

of two sample shapes.

4.1. Computing the distance between skeletons

This result allows us to calculate a global shape-measure for each skeleton branch

during the branch extraction process. For our matching experiments we have used

mainly a simple graph representation where the nodes are junctions or endpoints,

and the edges are branches of the skeleton. In experiments, where we needed to com-

pare potentially very different shapes, we used the shock-graph representation: the

nodes still represent skeletal segments, but branches are split at points which are ex-

tremal in the radius of the bitangent circle. When we have completed the thinning of

the shape-boundary and we are left only with the skeleton, we select an endpoint and
start summing the values of the length ratio for each skeleton point until we reach

either a junction or an extremal point. This sum
P

i2s r �~F ð~xiÞ over every pixel xi
of our extracted skeleton branch is an approximation of
Fig. 5

shape-
Z
s
r �~F ds ¼

Z
s

d

ds
kl1k

�
þ d

ds
kl2k

�
ds ¼ kl1k þ kl2k;
the length of the border that generates the skeleton branch.

At this point we have identified a branch and we have calculated the total value of

the length-ratio along that branch, or, in other words, we have computed the total

length of the border that generated the branch. We continue this process until we

have spanned each branch in the entire skeleton. Thus, we obtain a weighted graph
representation of the skeleton. In the case of a simple shape, i.e., a shape with no

holes, the graph has no cycles and thus is an (unrooted) tree.

Given this representation we can cast the problem of computing distances

between different shapes as that of the total difference in shape-measure between

corresponding branches.
. Two sample shapes. The height and intensity of the skeleton at each point is proportional to the

measure.
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5. Experimental results

In this section we experiment with the new skeletal similarity measure. The exper-

imentation is divided into three parts. First, we assess the ability of the proposed

measure to discriminate between deformed shapes that give rise to skeletons with
the same topology. Second, we assess how smoothly the overall similarity measure

varies through transitions in skeletal topology. Finally, we show how the similarity

measure may be used to cluster similar shapes.

There is clearly an underlying correspondence problem that must be solved before

the similarity between two skeletons can be computed. This arises because we need to

know how to associate branches in the two skeletons being compared. To fully per-

form a shape recognition task we should recover these correspondences automati-

cally. However, the aim of the work reported here was to analyze the properties
of our length ratio measure independently of the correspondence process, and not

to solve the full shape recognition problem. Thus for our first two set of experiments

we have located the branch correspondences by hand. To assess the overall effective-

ness of the augmented skeletal representation, in the third set of experiments the cor-

respondences are not hand-picked, but are in fact automatically extracted using a

minimum edit-distance approach.

Tree edit distance is a generalization to trees of String edit distance. The edit dis-

tance is based on the existence of a set S of basic edit operations on a tree and a set C
of costs, where cs 2 C is the cost of performing the edit operation s 2 S. The choice

of the basic edit operations, as well as their cost, can be tailored to the problem, but

common operations include leaf pruning, path merging, and, in the case of an attrib-

uted tree, change of attribute. Given two trees T1 and T2, the set S of basic edit op-

erations, and the cost of such operations C ¼ cs; s 2 S, we call an edit path from T1 to
T2 a sequence s1; . . . ; sn of basic edit operations that transform T1 into T2. The length
of such path is l ¼ cs1 þ � � � þ csn ; the minimum length edit path from T1 to T2 is the

path from T1 to T2 with minimum length. The length of the minimum length path
is the tree edit distance.

With our measure assigned to each edge of the tree, i.e., branch of the skeleton, we

define the cost of matching two edges as the difference of the total length ratio mea-

sure along the branches. The cost of eliminating an edge is equivalent to the cost of

matching it to an edge with zero weight, i.e., one along which the total length ratio is

zero.

5.1. Stability under deformation

As demonstrated earlier in the paper, we know that the length ratio measure

should be stable to any local shape deformation, including those that exhibit an in-

stability in shock length. This kind of behavior at local deformations is what has led

to the idea that the skeleton is an unstable representation of shape.

To demonstrate the stability of the skeletal representation when augmented with

the length ratio measurement, we have generated a sequence of images of a rectangle

with a protrusion on one side (Fig. 6). The size of the protrusion is gradually reduced



Fig. 6. A ‘‘disappearing’’ protrusion which causes instability in shock-length, but not in our measure.
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throughout the sequence, until it is completely eliminated in the final image. In Fig. 7

we plot the global value of the length ratio measure for the shock branch generated

by the protrusion. It is clear that the value of the length ratio measure decreases
monotonically and quite smoothly until it becomes zero when the protrusion

disappears.

5.2. Changes in skeleton topology

In a second set of experiments we have aimed to assess the ability of the length

ratio measure to distinguish between structurally similar shapes. To do this we se-

lected two shapes that were perceptually different, but which possessed skeletons
with a very similar topology. We, then, generated an image sequence in which the

two shapes were morphed into one-another. Here the original shapes are the start

and end frames of the sequence. At each frame in the sequence we calculated the dis-

tance between the start and end shapes.

We have repeated this experiment with two morphing sequences. The first se-

quence involved morphing a sand shark into a swordfish, while the second morphed

a donkey into a hare (see Fig. 8).

To determine the difference between two shapes, we make use of hand-picked
correspondences between skeletal branches. The distance between the complete

skeletons is defined as the Euclidean distance between the normalized

weights of matched edges (skeletal branches). In other words, the distance is

DðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðeAi � eBi Þ
2

q
where eAi and eBi are the normalized weights on the
Fig. 7. The measure of the skeleton segment generated by a protrusion.



Fig. 8. Morphing sequences and their corresponding skeletons. (A) Sand shark to swordfish sequence and

(B) donkey to hare sequence.
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corresponding edges indexed by i on the shapes denoted by A and B. The normalized

weights are computed by dividing the raw weights by the sum of the weights of each

tree.

We apply this normalized length ratio measure to ensure scale invariance. We

note that two identical shapes scaled to different proportions would have different
ratios due to the scale difference. However, the measure along equivalent branches

of the two shapes would vary by a constant scale factor, namely the ratio of the

lengths of the borders. Since the sum of the weights of the edges of a tree is equal

to the total length of the border, dividing the weights in each branch by this quantity

we have reduced the two measurements to the same scale. In this way the relevant

quantity is not the absolute magnitude for a branch, but the magnitude ratio with

other branches.

For each morphing sequence, in Fig. 9 we plot the distance between each frame in
the sequence and the start and end frames. The monotonicity of the distance is ev-

ident throughout the sequences. This is a proof of capacity of our length ratio mea-

sure to disambiguate between shapes with topologically similar skeletons.
Fig. 9. Distances from first and last frame of the morphing sequences. (A) Distances in fish morphing se-

quence and (B) distances in donkey to hare morphing sequence.
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To further assess the ability to discriminate between similar shapes, we selected a

set of topologically similar shapes from a database of images of tools. As in the case

of the previous experiments, the correspondences are hand-picked and the normal-

ized Euclidean distance of the corresponding branch weights is used to measure

the similarity of the skeletons. In the first column of Fig. 10 we show the selected
shapes. To their right are the remaining shapes sorted by increasing normalized dis-

tance. Each shape is annotated by the value of the normalized distance.

It is clear that similar shapes are usually closest to one-another. However, there

are problems due to a high sensitivity to occlusion. This can be seen in the high rel-

ative importance given to the articulation angle. This is due to the fact that, in the

pliers images, articulation occludes part of the nose of pliers. While sensitivity to oc-

clusion is, without a doubt, a drawback of the measure, we have to take into account

that skeletal representation in general are highly sensitive to occlusion.
The reason that the monkey wrench is recorded as being more similar to the pli-

ers than the second monkey wrench is due to sensitivity to articulation and the
Fig. 10. Some tools and the normalized distance between them.
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‘‘closeness’’ of the head to the handles. Since the second monkey wrench is almost

closed, the skeleton branches of the handles have a reduced overall weight. Thus,

the process of normalizing the edge weights reduces the significance of the small

yet salient head when it is compared to the remainder of the shape.

5.3. Clustering shock-graphs

The third set of experiments aims to establish the usefulness of the shape sim-

ilarity measures as tool for clustering the shock-graphs associated with 2D shapes

falling into distinct shape categories. We have compared the results obtained when

the skeleton is both weighted with our measure, and when it is unweighted. In

these experiments, we have used a database of shapes with very different topolo-

gies. Hence, there is no simple way to locate the correspondences between the
skeletal branches. For this reason the correspondences were automatically ex-

tracted using a minimum edit distance graph-matching method [3]. Graph-edit dis-

tance allows the similarity between different graph structures to be measured. The

idea underpinning the method is that it is possible to identify a set of basic edit

operations on nodes and edges of a structure, and to associate with these opera-

tions a cost. The edit distance between two structures is found by searching for

the sequence of edit operations that will make the two graphs isomorphic with

one-another and which have minimum cost. In our application the available op-
erations are node addition and removal. The cost of adding or removing a node

with weight w is w, while the cost of matching two nodes with weights w and w0,

respectively, is jw� w0j. To calculate the distance, we use the algorithm presented

in [39].

Given the topological diversity of the shape skeletons, we have used a more pow-

erful representation than the simple one used for the previous experiments. For this

purpose we have a shock-graph representation in which we split skeletal branches at

extrema of the radius of the bitangent circle.
The silhouettes used to generate the shock-graphs used in our experiments are

shown in Fig. 11. There are 25 different shapes. These include brushes, tools, spec-

tacles, various animals, and human hands. The figure is annotated with the pairwise

similarity of the shapes. For the shapes indexed i and j, the similarity measure is de-

fined to be
Si;j ¼ 1� 1

2
di;j;
where di;j is the edit distance between shapes i and j.
For comparison purposes, Fig. 12 reports the similarity of the unweighted shock-

trees. In this case the similarity between ti and tj is
Si;j ¼
1

2

jtij þ jtjj � di;j
2

1

jtij

�
þ 1

jtjj

�
;

where jtj is the number of nodes in tree t and di; j is the unattributed edit-distance

between tree ti and tree tj.



Fig. 11. Pairwise similarities between shapes for the weighted shock-trees.
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In Figs. 13 and 14 we show the six best-matched shapes for each object from the

database. The top rows of the figures show the shapes considered. The remaining
rows, from top to bottom, show the six best-matched shapes ordered according to

similarity. Hence, the further down each column, the poorer the match to the shape

in the top position. Fig. 13 shows the matches obtained when we associate the shape-

measure to the shock-trees. In each case the first matched shape is the object under



Fig. 12. Pairwise similarities between shapes for the unweighted shock-trees.
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study. From the third row down errors begin to emerge. For instance, a monkey

wrench (object 6) matches to a hammer (object 11), and a horse (object 22) matches
to a hand (object 25). Although there are six such errors in the third row (objects 6,

10, 11, 14, 16, and 22), several of those are associated with small differences in sim-

ilarity. This is the case with object 6, where a monkey wrench is matched to a ham-

mer. In both objects the dominant feature is the long handle. Additionally, for four



Fig. 13. Top six matches for each shape for the weighted shock-trees.

Fig. 14. Top six matches for each shape for the unweighted shock-trees.
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of the objects the correct matches appear in the fourth (object 6, 16), fifth (object 14),

or sixth (object 22) position. It is only the two hammers that pose a real problem.

This is due to the fact that the handle, the main feature on both objects, shows var-

iation in its differential properties. Specifically, object 10 bulges on the grip, creating

a type one shock that splits the handle, whereas the handle of object 11 generates a
single shock segment. The problem could be solved by allowing the edit distance cal-

culation to merge segments, but this is beyond the scope of this paper.

Fig. 14 displays the top matches obtained using unattributed shock-trees. Here

too the top match is again always a perfect fit. However, the performance degrades
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more quickly as we descend the rows of the table. In fact, the first error emerge in the

second row of the figure.

To visualize the pairwise relationships between the different shapes, we have per-

formed multidimensional scaling on the set of pairwise similarities. Multidimensional

scaling is awell-known statistical technique for visualizing datawhich exists in the form
of pairwise similarities rather than ordinal values. Stated simply, the method involves

embedding the objects associated with the pairwise distances in a low-dimensional

space. This is done by performing principal components analysis on thematrix of pair-

wise similarities, and projecting the original objects into the resulting eigenspace. The

objects are visualized by displaying their positions in the space spanned by the leading

eigenvectors. Themethod has beenwidely exploited for data analysis in the psychology

literature. A comprehensive review can be found in the recent book of Cox and Cox

[14]. Details of the procedure can be found in Appendix A.
The projections of the edit distances onto the 2D space spanned by the two lead-

ing eigenvectors are shown in Figs. 15 (when the skeleton is weight with the edit dis-

tance) and 16 (when it is not). When the skeleton is weighted with the measure

(Fig. 15), then the MDS projection reveals some class structure emerging. However,

the full shape-structure is not captured by the two leading eigenvectors. For instance,

the hands, the fishes, the tools, and the brushes all appear close to each other. How-

ever, there is no clear delineation of the shape-classes. When the skeleton is not

weighted using the measure (Fig. 16) then the grouping of the shapes is even poorer,
with only the spectacles forming a well-separated group.

Encouraged by these results, we have performed a detailed pairwise clustering of

the pattern of similarities. Here we use the method recently described by Robles-
Fig. 15. First and second principal components of the edit distances of the shapes for the weighted shock-

trees.



Fig. 16. First and second principal components of the edit distances of the shapes for the unweighted

shock-trees.
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Kelly and Hancock [28]. Details of the clustering algorithm are outside the scope of

this paper. However, the method uses an iterative log-likelihood algorithm to iden-

tify the pairwise clusters via matrix factorization. The initial and final matrices of

pairwise distance are shown in Fig. 17 for the measure-weighted skeleton and

Fig. 18 for the unweighted skeleton. In the case of the weighted skeleton the initial

pairwise similarity matrix shows a strong separation of the shape-groups, which is

further re-enforced by the iterative clustering method. Based on the block structure

of the final matrix of pairwise distances, we identify eight clusters. In the order of
importance, they are
Fig. 17. (A) Initial similarity matrix for the weighted tree edit distances; (B) final similarity matrix for the

weighted tree edit distances.



Fig. 18. (A) Initial similarity matrix for the unweighted tree edit distances; (B) final similarity matrix for

the unweighted tree edit distances.
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In other words, the hands, tools, spectacles, and animals form clusters. However,

there are shapes which leak between these clusters. The problems encountered above

are due to the fact that certain shapes straddle the true shape-classes and cause clus-

ter-merging. When a pruned set of 16 shapes is used, then the following set of clus-

ters emerges:

This is a much better set of clusters, that reflect the true shape-classes in the data.
We have repeated these clustering experiments with the unweighted skeletons.

Here the initial pairwise similarity matrix contains less structure than in the weighted

case, and iteration of the clustering algorithm results in a noisier set of final cluster

membership indicators (Fig. 12). In particular, the clusters extracted from
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unweighted shock-trees do not appear to correlate well with the shape classes in the

database. The ordered clusters are listed below:

Clearly there is a considerable merging of and leakage between clusters. As

illustrated below, even reducing the size of the database does not improve the

classification:

6. Conclusions

In this paper we presented a shape-measure defined on the skeleton. This quantity

has been used in the literature as a branch relevance measure during skeleton extrac-

tion and pruning. We show that the measure has greater informational utility, and

can be used to augment the purely structural information residing in a skeleton in

order to perform shape indexation and matching tasks. We show that the shape-

measure has a number of interesting properties that allow it to distinguish between

structurally similar shapes. In particular, the measure (a) changes smoothly through
topological transitions of the skeleton, (b) is able to distinguish between ligature and

non-ligature points and to weight them accordingly, and (c) it exhibits invariance un-

der ‘‘bending.’’ What makes the use of this measure particularly appealing is the fact

that it can be calculated with no added effort when the skeleton is computed using

the Hamilton–Jacobi method of Siddiqi et al. [34].

We have performed some experiments which verify the usefulness of the proposed

shape-measure. These showed that the distance increases monotonically as shapes

undergo smooth deformation. Moreover, the shape-measure can be used to cluster
perceptually similar shapes. We acknowledge that the method has been evaluated

on a relatively small set of shapes, and that large-scale experiments are needed.

Our future plans involve investigating whether the measure can be used to identify

small but perceptually salient features. Moreover, we are currently studying the ef-

fects of curvature in the computation of Hamilton–Jacobi skeleton and how curva-

ture impacts on the computation of the measure.
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Appendix A. Multidimensional scaling

Multidimensional scaling (MDS) [13] is a procedure which allows data specified in

terms of a matrix of pairwise distances to be embedded in a Euclidean space. The clas-

sical multidimensional scaling method was proposed by Torgenson [38] and Gower
[17]. Shepard and Kruskal [22] developed a different scaling technique called ordinal

scaling. Here we intend to use the method to embed shock-trees in a low-dimensional

space.

Suppose that di1;i2 is the edit-distance between the shock-trees indexed i1 and i2.
The first step of MDS is to calculate a matrix T whose element with row r and col-

umn c is given by
Trc ¼ � 1

2
½d2

rc � d̂2
r: � d̂2

:c þ d̂2
:: �; ðA:1Þ
where
d̂r: ¼
1

N

XN
c¼1

drc ðA:2Þ
is the average dissimilarity value over the rth row, d̂:c is the similarly defined average

value over the cth column and
d̂:: ¼
1

N 2

XN
r¼1

XN
c¼1

dr;c ðA:3Þ
is the average similarity value over all rows and columns of the similarity matrix T .
We subject the matrix T to an eigenvector analysis to obtain a matrix of embedding

coordinatesX . If the rank of T is k; k6N , thenwewill have k non-zero eigenvalues.We

arrange these k non-zero eigenvalues in descending order, i.e., k1 P k2 P � � � P kk > 0.
The corresponding ordered eigenvectors are denoted by~eiwhere ki is the ith eigenvalue.
The embedding coordinate system for the shock-trees is
X ¼ ½~f 1;
~f 2; . . . ;~f k�; ðA:4Þ
where ~f i ¼
ffiffiffiffi
ki

p
~ei are the scaled eigenvectors. For the shock-tree indexed i, the

embedded vector of coordinates is
~xi ¼ ðXi;1;Xi;2;Xi;3ÞT: ðA:5Þ
References

[1] C. Arcelli, G. Sanniti di Baja, A width-independent fast thinning algorithm, IEEE Trans. PAMI 7 (4)

(1985) 463–474.

[2] C. Arcelli, G. Sanniti di Baja, Ridge points in Euclidean distance maps, Pattern Recogn. Lett. 13

(1992) 237–243.

[3] A. Torsello, E.R. Hancock, Computing approximate tree edit distance using relaxation labelling,

Pattern Recogn. Lett. 24 (2003) 1089–1097.

[4] J. August, K. Siddiqi, S. Zucker, Ligature instabilities in the perceptual organization of shape,

Comput. Vision Image Understand. 76 (3) (1999) 231–243.



28 A. Torsello, E.R. Hancock / Computer Vision and Image Understanding 95 (2004) 1–29
[5] J. August, A. Tannenbaum, S.W. Zucker, On the evolution of the skeleton, in: Seventh Internat.

Conf. on Computer Vision, IEEE, IEEE Computer Society, New York, Silver Spring, MD,

September 1999, pp. 315–322.

[6] R. Basri, L. Costa, D. Geiger, D. Jacobs, Determining the similarity of deformable shapes, Vision

Res. 38 (1998) 2365–2385.

[7] S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using shape contexts, IEEE

Trans. Pattern Anal. Mach. Intell. 24 (4) (2002).

[8] H. Blum, Biological shape and visual science (part I), J. Theor. Biol. 38 (1973) 205–287.

[9] H. Blum, R.N. Nagel, Shape description using weighted symmetric axis features, Pattern Recogn. 10

(1978) 167–180.

[10] G. Borgefors, G. Ramella, G. Sanniti di Baja, Multi-scale skeletons via permanence ranking, in:

Advances in Visual Form Analysis, World Scientific, Singapore, 1997, pp. 31–42.

[11] S. Bouix, K. Siddiqi, Divergence-based medial surfaces, in: Computer Vision ECCV 2000, vol. 1,

LNCS, Springer, 2000, pp. 603–618, LNCS, 1842.

[12] C. Carson, S. Belongie, H. Greenspan, J. Malik, Blobworld: color- and texture-based image

segmentation using EM and its application to image querying and classification, IEEE Trans. Pattern

Anal. Mach. Intell. 24 (8) (2002) 1026–1038.

[13] C. Chatfield, A.J. Collins, Introduction to Multivariate Analysis, Chapman & Hall, London, 1980.

[14] T.F. Cox, M.A.A. Cox, Multidimensional Scaling, Chapman & Hall, London, 1994.

[15] P.J. Giblin, B.B. Kimia, On the local form and transitions of symmetry sets, medial axes, and shocks,

in: Seventh Internat. Conf. on Computer Vision, IEEE, IEEE Computer Society, New York, Silver

Spring, MD, September 1999, pp. 385–391.

[16] P. Golland, E.L. Grimson, Fixed topology skeletons, in: Conf. on Computer Vision and Pattern

Recognition, vol. 1, June 2000, pp. 10–17.

[17] J.C. Gower, Some distance properties of latent root and vector methods used in multivariate analysis,

Biometrika 23 (1964) 325–328.

[18] S. Ioffe, D.A. Forsyth, Mixtures of trees for object recognition, in: IEEE Comput. Soc. Conf. on

Computer Vision and Pattern Recognition, vol. II, 2001, pp. 180–185.

[19] B.B. Kimia, K. Siddiqi, Geometric heat equation and nonlinear diffusion of shapes and images,

Comput. Vision Image Understand. 64 (3) (1996) 305–322.

[20] B.B. Kimia, A.R. Tannenbaum, S.W. Zucker, Shapes, shocks, and deformations I, Int. J. Comput.

Vision 15 (1995) 189–224.

[21] P. Klein, S. Tirthapura, D. Sharvit, B.B. Kimia, A tree-edit-distance algorithm for comparing simple,

closed shapes, in: ACM-SIAM Symp. on Discrete Algorithms, 1999.

[22] J.B. Kruskal, R.N. Shepard, Nonmetric methods for scaling and for factor analysis, American

Psychologist 29 (1964) 557–558.

[23] T. Liu, D. Geiger, Approximate tree matching and shape similarity, Int. Conf. Comput. Vision (1999)

456–462.

[24] R.L. Ogniewicz, A multiscale mat from voronoi diagrams: the skeleton-space and its application to

shape description and decomposition, in: Aspects of Visual Form Processing, 2nd Internat. Workshop

on Visual Form, World Scientific, Singapore, 1994, pp. 430–439.

[25] R.L. Ogniewicz, O. K€ubler, Hierarchic voronoi skeletons, Pattern Recogn. 28 (3) (1995) 343–359.

[26] S.J. Osher, J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on

Hamilton–Jacobi formulations, J. Comput. Phys. 79 (1988) 12–49.

[27] M. Pelillo, K. Siddiqi, S.W. Zucker, Matching hierarchical structures using association graphs, IEEE

Trans. Pattern Anal. Mach. Intell. 21 (11) (1999) 1105–1120.

[28] A. Robles-Kelly, E.R. Hancock, A maximum likelihood framework for iterative eigendecomposition,

in: Internat. Conf. on Computer Vision, IEEE Computer Society Press, Silver Spring, MD, 2001, pp.

654–661.

[29] T.S. Sebastian, P.N. Klein, B.B. Kimia, Recognition of shapes by editing shock graphs, in: Internat.

Conf. on Computer Vision, vol. I, 2001, pp. 755–762.

[30] T.S. Sebastian, P.N. Klein, B.B. Kimia, Shock-based indexing into large shape databases, in: Eur.

Conf. on Computer Vision, vol. III, 2002, pp. 731–746.



A. Torsello, E.R. Hancock / Computer Vision and Image Understanding 95 (2004) 1–29 29
[31] D. Shaked, A.M. Bruckstein, Pruning medial axes, Comput. Vision Image Understand. 69 (2) (1998)

156–169.

[32] D. Sharvit, J. Chan, H. Tek, B.B. Kimia, Symmetry-based indexing of image database, J. Vis.

Commun. Image Representation 9 (4) (1998) 366–380.

[33] A. Shokoufandeh, S.J. Dickinson, K. Siddiqi, S.W. Zucker, Indexing using a spectral encoding of

topological structure, Conf. Comput. Vision Pattern Recogn. (1999).

[34] K. Siddiqi, S. Bouix, A. Tannenbaum, S.W. Zucker, The Hamilton–Jacobi skeleton, in: Seventh

Internat. Conf. on Computer Vision, IEEE, IEEE Computer Society, New York, Silver Spring, MD,

September 1999, pp. 828–834.

[35] K. Siddiqi, B.B. Kimia, A shock grammar for recognition, in: Computer Vision and Pattern

Recognition, IEEE Computer Society Press, Silver Spring, MD, 1996, pp. 507–513.

[36] K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, S.W. Zucker, Shock graphs and shape matching, Int. J.

Comput. Vision 35 (1) (1999) 13–32.

[37] S. Tirthapura, D. Sharvit, P. Klein, B.B. Kimia, Indexing based on edit-distance matching of shape

graphs, in: SPIE Internat. Symp. on Voice, Video, and Data Communications, 1998, pp. 25–36.

[38] W.S. Torgerson, Multidimensional scaling. I: theory and method, Psychometrika 17 (1952) 401–419.

[39] A. Torsello, E.R. Hancock, Efficiently computing weighted tree edit distance using relaxation

labeling, in: Energy Minimization Methods in Computer Vision and Pattern Recognition, 2001, pp.

438–453.

[40] A. Torsello, E.R. Hancock, Curvature correction of the Hamilton–Jacobi skeleton, in: IEEE Comput.

Soc. Conf. on Computer Vision and Pattern Recognition, vol. I, 2003, pp. 828–834.

[41] S.C. Zhu, A.L. Yuille, FORMS: a flexible object recognition and modelling system, Int. J. Comput.

Vision 20 (3) (1996) 187–212.


	A skeletal measure of 2D shape similarity
	Introduction
	Motivation
	Contribution

	Skeleton detection
	The Hamilton-Jacobi framework
	Locating the skeleton

	The shape-measure and its properties
	Measure extraction
	Computing the distance between skeletons

	Experimental results
	Stability under deformation
	Changes in skeleton topology
	Clustering shock-graphs

	Conclusions
	Multidimensional scaling
	References


