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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 



 24

Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 



 4

fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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)yy(

)yŷ(
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2
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j,ij,i

−

−

−

=Γ
∑

∑
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  

 

 

 

 

 



 21

 

 

)( pP
dt

dP
Ω−= µ         PNS ⋅=  

upNRN RRNGPnewStrans
dt

dR
Ω−Ω−⋅⋅−⋅=  

NG
dt

dN
NN ⋅Ω−= )(  

)()( _max wphot TfIf ⋅⋅= µµ  

)()()()( _ SfRfTfIfGrowNG wprodN ⋅⋅⋅⋅=  















<<

≥

−

−

≤

= kc

k

ck

c

c

III

II

II

II

II

If

1

0

)(
 

20

20

−
⋅=

T

ccc II θ            
20

20
−

⋅=
T

kkk II θ  

 

( )








>

≤
=

photoptwphotm

photoptwphot

w

TTk

TTk
Tf

phot

__

__0

_ β

α

 

 

 
photstt

photopt

wphotopt

T

TT
_

_

_













 −
=α

  photstt

photoptphot

photoptw

TT

TT
_

_max_

_















−

−
=β

           

 

( )








>

≤
=

prodoptwprodm

prodoptwprod

w

TTk

TTk
Tf

prod

__

__0

_
δ

γ

 

 
prodstt

prodopt

wprodopt

T

TT
_

_

_













 −
=γ

      prodstt

prodoptprod

prodoptw

TT

TT
_

_max_

_















−

−
=δ

      










>

≤







−

=

σ

σ
σ

S

S
S

Sf

0

1
)(

2

 

)(_ TdecfLossPP ⋅=Ω  

20)(_ −= T

LTdecf θ  

µ⋅= transktrans  

ε+
=

R

R
Rf )(  

Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 

 

 



 17

 

 

 

 

T

J-94 F M A M J J A S O N D J-95 F
0

5

10

15

20

25

30

35

[°
C

]

 
Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 



 3

should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 

)1n(

)yy(

)yŷ(

j,i

2
jj,i

j,i

2
j,ij,i

−

−

−

=Γ
∑

∑
    (3) 

where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 



 4

fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 



 11

one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  

 

 



 19

 
 
 
 
 

J-94 J-95 J-96 J-97 J-98 J-99 J-00 J-01 J-02
0

200

400

600

800

1000

1200

[N
o

. 
m

-2
]

0

1

2

3

4

5

[g
 C

]

 ---- Shoot density  Single shoot biomassa

 

 

J-94 J-95 J-96 J-97 J-98 J-99 J-00 J-01 J-02
0

100

200

300

400

500

  
[g

 C
 m

-2
 ]

b

 

 

Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 



 6

cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 

)1n(

)yy(

)yŷ(

j,i

2
jj,i

j,i

2
j,ij,i

−

−

−

=Γ
∑

∑
    (3) 

where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 

 

  

A-02 

 
M J J A S O N D J F M A-03 

-6 

-4 

-2 

0 

2 

4 

6 

[°C] 

  ε i =0.00 
  ε i =0.00 

(b) 

 

Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 



 5

multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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)yŷ(

j,i

2
jj,i

j,i

2
j,ij,i

−

−

−

=Γ
∑

∑
    (3) 

where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 



 6

cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 

)1n(

)yy(

)yŷ(
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 



 10

always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 

 
 
 

 



 20

J-94 J-95 J-96 J-97 J-98 J-99 J-00 J-01 J-02
0.0

0.2

0.4

0.6

0.8

1.0

 

Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 



 24

Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 



 10

always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Testing the robustness of primary production models in shallow coastal areas: a case study 

 

Pastres, R(1)*, Brigolin D.(1), Petrizzo A.(1), Zucchetta M.(2),  

 
(1)Dipartimento di Chimica Fisica, Università Ca’ Foscari, Venezia, Italy 
(2)Dipartimento di Scienze Ambientali, Università Ca’ Foscari, Venezia, Italy 

*Corresponding author: Dipartimento di Chimica Fisica, Dorsoduro 2137, 30123 Venezia, 

Italy. e-mail:pastres@unive.it 

 

Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 

)1n(

)yy(

)yŷ(

j,i

2
jj,i

j,i

2
j,ij,i

−

−

−

=Γ
∑

∑
    (3) 

where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 



 12

sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 

)1n(

)yy(

)yŷ(

j,i

2
jj,i

j,i

2
j,ij,i

−

−

−

=Γ
∑

∑
    (3) 

where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
 
 

 



 1

Testing the robustness of primary production models in shallow coastal areas: a case study 

 

Pastres, R(1)*, Brigolin D.(1), Petrizzo A.(1), Zucchetta M.(2),  

 
(1)Dipartimento di Chimica Fisica, Università Ca’ Foscari, Venezia, Italy 
(2)Dipartimento di Scienze Ambientali, Università Ca’ Foscari, Venezia, Italy 

*Corresponding author: Dipartimento di Chimica Fisica, Dorsoduro 2137, 30123 Venezia, 

Italy. e-mail:pastres@unive.it 

 

Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 



 9

estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 



 6

cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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)yŷ(
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
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Testing the robustness of primary production models in shallow coastal areas: a case study 

 

Pastres, R(1)*, Brigolin D.(1), Petrizzo A.(1), Zucchetta M.(2),  

 
(1)Dipartimento di Chimica Fisica, Università Ca’ Foscari, Venezia, Italy 
(2)Dipartimento di Scienze Ambientali, Università Ca’ Foscari, Venezia, Italy 

*Corresponding author: Dipartimento di Chimica Fisica, Dorsoduro 2137, 30123 Venezia, 

Italy. e-mail:pastres@unive.it 

 

Abstract 

 

In this paper we investigate the robustness of a dynamic model, which describes the dynamic 

of the seagrass Zostera marina, with respect to the inter-annual variability of the two main 

forcing functions of primary production models in eutrophicated environments. The model 

was previously applied to simulate the seasonal evolution of this species in the Lagoon of 

Venice during a specific year and calibrated against time series of field data. In the this paper, 

we present and discuss the results which were obtained by forcing the model using time series 

of site-specific daily values concerning the solar radiation intensity and water temperature. 

The latter was estimated by means of a regression model, whose input variable was a site-

specific time series of the air temperature. The regression model was calibrated using a year-

long time series of hourly observations. The Zostera marina model was first partially 

recalibrated against the same data set that was used in the original paper. Subsequently, the 

model was forced using a seven-year long time series of the driving functions, in order to 

check the reliability of its long-term predictions. Even though the calibration gave satisfactory 

results, the multi-annual trends of the output variables were found to be in contrast with the 

observed evolution of the seagrass biomasses. Since detailed information about the air 

temperature and solar radiation are often available, these findings suggest that the testing of 

the ecological consistency of the evolution of primary production models in the long term 

would provide additional confidence in their results, particularly in those cases in which the 

scarcity of field data does not allow one to perform a formal corroboration/validation of these 

models. 

 

 

Keywords: model robustness, Zostera marina, Lagoon of Venice 
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1. Introduction 

 

According to (Beck, 1987) dynamic models can be thought of as “archives of hypothesis”, 

since the model structure and our “a priori” estimates of the parameters, forcing functions, 

and initial and boundary conditions summarize our theoretical knowledge and hypotheses 

about the dynamic of a given system and its interactions with the surroundings. The 

“calibration” procedure establishes a relationship between the “theory” and a given set of 

observations, since it leads to the estimation of a subset of parameters, which can be thought 

of as the “unobserved components” (Young, 1998) of the dynamic system, by fitting the 

model output to a specific set of output data. From this point of view, the trajectory of a 

calibrated dynamic model can be considered as the result of the integration of general 

principles with specific empirical information concerning the sampling site where the model 

was applied. In order to increase the confidence in the model output, the modelling practice 

suggests that the model should be corroborated/validated by comparing its output with sets of 

data other then those used for calibrating it. However, in many instances, particularly in the 

field of ecological and environmental modelling, the lack of data does not allow for the 

execution of a formal corroboration/validation of the model. Nonetheless, the literature offers 

several examples (Wortmann et. al., 1998, Bearlin et. al., 1999) in which calibrated models 

are proposed for further applications, based on the implicit assumption that their results would 

be, at least, qualitatively sound, if they were forced with time series of input functions which 

were not too different from those used in the calibration. 

The concept of robustness can be defined in several ways (see for example, 

www.discuss.santafe.edu/robustness): according to Gribble (2001), it is the ability of a system 

to continue to operate correctly across a wide range of operation conditions. As far as primary 

production models in coastal areas are concerned, the water temperature and solar radiation 

intensity can certainly be considered the two fundamental forcing functions affecting 

photosynthetic rates. These factors become even more important as regards eutrophic basins, 

where the photosynthetic rates are seldom reduced by a lack of the dissolved inorganic forms 

of N and P. Since these driving functions are explicitly taken into account by the large 

majority of primary production models, one can expect that the results of these models, once 

they had been calibrated against time series of field data, should be robust, at least, with 

respect to the inter-annual variability of the water temperature and the intensity of the solar 

radiation which characterize the calibration site. In this paper, we suggest that further support 
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should be given to the results obtained by means of model calibration/validation, by 

investigating the long-term behaviour of the model trajectory. The multi-annual evolutions of 

the state variables were computed by forcing the model using multi-annual time series of the 

daily or hourly values of the solar radiation intensity and the water temperature. It should be 

stressed here that such an analysis does not require additional field data, but can be performed 

using time series of the solar radiation and air temperature which are often available because 

these parameters are collected routinely by the local automatic weather stations. In fact, these 

data can be used for predicting the water temperature in shallow lakes and coastal lagoons 

with sufficient accuracy since, in these basins, the evolution of this variable is largely 

conditioned by the heat exchanges with the atmosphere (Dejak et al., 1992).  

In this paper, we provide evidence that this simple analysis may give interesting 

results by investigating the long-term behaviour of the trajectories of an ODE model, which 

simulates the dynamic of the seagrass Zostera marina. The model has already been proposed 

(Zharova et al., 2001), and was applied to the simulation of the evolution of the Zostera 

marina shoot and root/rhizome biomass densities in the Lagoon of Venice. The paper 

presented the results of the calibration of some of the key parameters based on time series of 

biomasses that were collected in 1994-95, while the role of the forcing functions was also 

discussed to a certain extent. However, the issues of model validation/corroboration and 

model robustness were not addressed. Therefore, we had to think about other ways of testing 

this model, with a view to include the seagrass dynamics in a 3D transport-reaction model 

(Pastres et al., 2001). In order to accomplish this task, we performed a “virtual forecasting” 

exercise to check the consistency of the biomasses trajectories during the period 1996-2002. 

The execution of this test required the estimation of the forcing functions during the period 

1994-2002. The time series of the solar radiation intensity could be obtained from site-

specific observations. Since direct observations concerning water temperature for the entire 

period were not available, we applied a simple regression model for estimating the water 

temperature time series based on a site-specific time series of hourly air temperature values.  

 

2. Description of the case study 

 

The ecological and morphological roles of seagrass meadows in temperate shallow coastal 

areas are widely recognized (Oshima et al., 1999). From the ecological point of view, together 

with the epiphytic community, they often account for a relevant fraction of the benthic 

primary production in these water basins. Furthermore, they also give shelter to crustaceans, 
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fish, and fish juveniles, (Leber, 1985; Pile et al., 1996) thus allowing for the development of 

highly productive habitats, which are characterized by high biodiversity. From the 

morphological point of view, their presence stabilizes and oxidizes the sediment and, 

therefore, represents an important factor counteracting the erosion and reducing the release of 

ortho-phosphates from the sediment. In the lagoon of Venice, seagrass meadows presently 

account for the most relevant fraction of the total primary production: 2-3 108 Kg of Carbon, 

11.7-17.5 106 Kg of Nitrogen, and 11.5-17.3 105 Kg of phosphorus per year are recycled by 

means of the seagrass meadows (Sfriso and Marcomini, 1999). Regarding the spatial 

distribution and composition of the seagrass meadows in the Lagoon of Venice, Rismondo et 

al. (2003), showed that, in 2002, the most important species was Zostera marina, whose pure 

meadows covered 5% of the total lagoon surface and 40% of the total surface covered by 

seagrass meadow.  

The key role of seagrasses within the Venice Lagoon ecosystem was recognized early 

and prompted the development of two models (Bocci et al., 1997; Zharova et al., 2001). These 

models were purposely calibrated for capturing the main features of the seasonal dynamic of 

Zostera marina, but neither was corroborated/validated against independent sets of data. The 

older model (Bocci et al., 1997) follows the evolution of three state-variables: the density of 

above-ground shoot biomass, S, the density of below-ground biomass, R, which is composed 

by roots and rhizomes, and the concentration of nitrogen in shoot biomass, NS. Therefore, the 

forcing functions of this model are the time series concerning light intensity at the top of the 

seagrass canopy, I, water temperature, Tw, and DIN concentrations in the water column and in 

the interstitial water. However, no references about the sampling site, the sampling methods 

or the source of the data that were used in the calibration were given in this paper.  Therefore, 

we decided to focus on the second model developed by Zharova et al. (2001) 

This model does not take into account the potential limitation of the growth due to the 

lack of intra tissue Nitrogen, based the findings reported in (Murray et al., 1992; Pedersen and 

Borum, 1992). As a result, the evolutions of its three state variables, namely the average shoot 

biomass, P, the below-ground biomass density, R, and the density of the number of shoots, N, 

are forced only by I and Tw. This feature makes this model suitable for the trend analysis that 

was outlined in the introduction. The state equations of the model are given in Table 1 

together with the functional expression, while the parameters that were used in the original 

papers are listed in Appendix. As one can see, the production of new shoots, see eq. 2, is 

inhibited above a certain values of the above ground biomass S, which is obtained by 
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multiplying the average shoot weight, P, by the shoot number, N. This threshold, namely the 

parameter σ, therefore represents a sort of “carrying capacity”.  

 

3. Methods 

 

The investigation of the long-term dynamic of the Zostera marina biomass required the 

execution of two preliminary phases, namely the estimation of the forcing functions and the 

partial recalibration of the model. In the first step, the time series of solar radiation intensity, 

I0, and air temperature, Ta, which were collected on an hourly basis at the weather station 

shown in Figure 1, were used for estimating the time series of the input functions such as the 

daily average incident light at the top of the seagrass canopy, I, and the daily average water 

temperature, Tw. In the second step, the model was recalibrated, to fit the time series of the 

above and below ground biomass densities and shoot number density which were collected at 

the sampling site shown in Figure 1 and presented in Sfriso an Marcomini (1997, 1999). It 

was necessary to recalibrate the model, which had actually been applied in order to simulate 

the same set of observations because in Zharova et al. (2001) the input functions had been 

obtained by interpolating the light intensity and water temperature data which were measured 

every fortnight at the biomass sampling site. The recalibrated model was then run by using the 

seven-year long time series of estimated I and Tw as inputs.  

 

3.1 Estimation of the forcing functions  

 

The time series of the daily intensities of the solar radiation at the top of the seagrass canopy, 

I(tk), and of the daily average water temperatures, Tw(tk), were estimated for the period 

1/1/1994-31/12/2002. The first input series was estimated by using the following equation: 

 I(tk) = I0(tk) exp (-EXT z)     (1) 

In Eq. 2, tk represents a given day, I0(tk) is the average daily light intensity, which was 

computed on the basis of the hourly observations recorded at the weather station in Figure1, 

EXT, is the average extinction coefficient and z is the average depth of the water column. The 

values of these two parameters were given in (Zharova et al., 2001). 

The estimation of the daily water temperatures was less straightforward since the real-

time monitoring of this and other water quality parameters by means of automatic probes in 

the Lagoon of Venice started only in 2002. A preliminary analysis of these data, which were 

kindly provided by the Venice Water Authority Anti-Pollution Bureau, showed that the lag-0 
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cross-correlation between the water temperature and air temperature time series which was 

collected at the weather station was highly significant. This finding suggested that the water 

temperature could be estimated by using a linear model: 

 Tw(tk) = β0 +β1 Ta(tk)        (2) 

in which Ta(tk) and Tw(tk) represent, respectively, the average air and water temperature on 

day tk. The regression model was applied stepwise. First, we calibrated the two parameters by 

using a year-long time series of input and output data and subsequently checked the 

distribution of the residuals. Based on the results of the analysis of the residuals, the whole set 

of data was split into two sub-sets and the calibration procedure was repeated. As a result, we 

obtained two couples of regression parameters, which were used for computing the seven-

year long time series of water temperature. 

 

3.2 Model calibration  

 

The model briefly described in the second section was first partially re-calibrated against the 

time series of the above ground and below ground biomass densities and of shoot density 

which were collected on a monthly basis from February 1994 to January 1995 in a shallow 

area of the southern sub-basin of the Lagoon of Venice. These data were sampled within the 

framework of a comprehensive field study (Sfriso and Marcomini 1997, 1999). The sampling 

plan included the monitoring of the macronutrients, Nitrogen and Phosphorus, in the water 

column and in the interstitial water, as well as the measurement of the water temperature and 

the intensity of the solar radiation at the surface and at the bottom of the water column. These 

data were used for estimating the extinction coefficient, EXT, and the time series of forcing 

functions that were used in the original paper. Regarding Zostera marina biomass, each 

observation of the time series represents the average of six replicates, which were taken from 

the same 15x15m square.  

The time series of the solar radiation intensity and the water temperature were 

estimated in accordance with the procedures outlined above on the basis of the meteorological 

data concerning the same period.  These series were different from those used for forcing the 

model in (Zharova et al., 2001). Based on this consideration, we decided to calibrate the 

optimal temperatures, Topt_phot, Topt_prod, since the results reported in that paper showed that the 

model is more sensitive to water temperature than to incident light. Furthermore, a 

preliminary analysis of the model output indicated that the original value of parameter σ was 

too low, probably as a result of a printing mistake. Therefore, this parameter was added to the 
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recalibration set. In order to compare the results of the model with those presented in the 

original paper, we also estimated the forcing functions using a spline interpolation of the field 

data, as suggested in (Zharova et al., 2001) and recalibrated the parameter σ also in this case. 

The I and Tw field data were interpolated using a Matlab routine. The calibrations were carried 

out by minimizing the goal function (Pastres et al., 2002): 
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)yŷ(

j,i

2
jj,i

j,i

2
j,ij,i

−

−

−

=Γ
∑

∑
    (3) 

where i is the number of observations and j the state variable index. 

The ODE system presented in Table 1 was integrated numerically using a Runge-Kutta 

fourth-order method (Press et al., 1987). Field observations of shoot number density and 

above and below ground biomass densities in February 1994 were taken as initial conditions. 

The minimum of the goal function (3) was sought by scanning the parameter space, since only 

three parameters were recalibrated. 

 

3. Results 

 

The regression model (2) was calibrated using the air temperature data measured at the 

weather sampling stations of the Italian National Research Council from April 1st 2002 to 

March 31st 2003 as input and the water temperature data which were collected during the 

same period by the Venice Water Authority as output. The input data can be downloaded at 

the website www.ibm.ve.cnr.it, while those concerning the output were kindly provided by the 

Venice Water Authority. Calibration results of the regression model for the period April 1st 

2002 – March 31st 2003 are summarized in the first row of Table 2 and in Figure 2a, which 

presents the smoothed time series of the residuals, which was computed by using a centred 

moving average over the period of a fortnight. As one can see, even though the coefficient of 

determination was high, the residuals showed that this model systematically under-estimated 

the data during summertime and early autumn and over-estimated them throughout the rest of 

the year. Therefore, the water temperature data were fitted by using two sets of parameters: 

the first set, 1/7/2002-15/11/2002, was calibrated against the summer-early autumn data and 

the second one, 1/4/2002-30/6/2002 and 15/6/2002-31/3/2003, against the remaining 

observations. The results of this second attempt are summarized in the second and third row 

of Table 2, which give the average values of the parameters thus obtained and the coefficient 
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of determination, R2, the average and the average sum of squares of the residuals, which were 

computed using the two models. As a visual inspection of Figure 1b shows, the time series of 

the residuals thus obtained did not show any systematic deviations from the mean. 

Furthermore, the mean distance between the model and the observations, i.e., the square root 

of the average sum of squares of the residuals, were about 1.3 °C in summer-autumn and 

1.4°C in winter-spring.  

The results of the calibration of the Zostera marina model are summarized in Table 3 

and illustrated in Figure 3 and Figure 4a-d. The two time series of water temperature used in 

the recalibrations are displayed in Figure 3. As one can see, the interpolated temperatures 

were, in general, slightly higher than the average temperatures which were computed using 

the regression model (2). Table3 gives the values of the recalibrated parameters, the reference 

values reported in (Zharova, 2001) and the coefficients of determination concerning each state 

variable. Figure 4a-d shows the time series of the field data and the outputs of the model 

which were obtained by using as input functions the interpolation of the I and Tw field data 

and the time series computed as detailed above. In spite of these differences, however, the 

trajectories here obtained were remarkably similar and, as it was found in the original paper, 

successfully simulated the evolution of two out of three state variables, namely P and R. 

These findings suggest that the model is highly sensitive to the water temperature, since the 

two input time series were slightly different, as Figure 3 shows. 

 The evolutions of the average shoot biomass, of the shoot number density, and of the 

above ground Zostera marina biomass density during 1994-2001 are displayed in Figure 5. 

The trends were computed using a centred moving average. A visual inspection of the trends 

immediately reveals a striking and somewhat unexpected feature. In fact, the trend of the 

number of shoots density N, showed a marked decrease, which was mirrored by the increase 

in the trend of the average shoot weight, P. The above ground biomass, S, being their product, 

increased from 1994 to 1997 and then decreased down to levels similar to those which 

characterized the first year. The seasonal fluctuations always showed two peaks, but their 

height and shape were markedly different from year to year.  

 

 

4. Discussion 

 

The specific results of the partial recalibration and those of the subsequent analysis of the 

trend of Zostera marina biomasses depend on the time series of input functions, which were 
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estimated on the basis of site specific, high frequency data. Therefore, the question of the 

reliability of these inputs should be addressed. Regarding the estimation of the light intensity 

at the top of the seagrass canopy, the measurements of light intensity collected at the weather 

station represent reliable estimates of the incident light at the surface of the water column 

because of the short distance between the weather station and the biomass sampling site. 

Since quantitative information about short-term and long-term variation of the turbidity at the 

sampling site were not available, the intensity of solar radiation at the top of the canopy had to 

be computed by using the light extinction coefficient given in (Zharova et al., 2003), which 

was estimated on the basis of the data collected in 1994-95. This choice certainly represent a 

source of uncertainty, since the marked increase in the fishing of Tapes philippinarum over 

the last decade (Pranovi et al., 2004) is likely to have caused an increase in the turbidity of the 

Lagoon from 1994-2001 and, therefore, an increase in the light extinction coefficient. This 

could have led to an overestimation of light intensity on the canopy and, in turn, of the 

photosynthetic production. However, even a marked increase in the extinction coefficient 

cannot account for the marked decrease in the shoot number density since the collapse of the 

shoot number would only be accelerated by a further decrease in their specific growth rate as 

a consequence of the increase in the turbidity.  

Regarding water temperature, the results summarized in Figure 2 and Table 2 

demonstrate that the linear regression between the air and water temperature in the Lagoon of 

Venice is very strong due to the shallowness of the water column and to the relatively small 

influence of the heat exchanges with the Adriatic sea. The need of using two sets of 

regression coefficients, one in winter-spring and the other in summer-autumn, is justified by 

the analysis of the time series of the residuals but also find explanation in the physical 

processes which takes place in a shallow lagoon, such as the lagoon of Venice. During the 

cold seasons, the tidal mixing with the seawater, warmer than the air, mitigates the 

temperature in the shallow areas of the lagoon. Therefore, the average daily water temperature 

observed in the lagoon in these periods is higher than the corresponding air temperature. The 

difference between the average daily air and water temperature becomes very small during 

summer and early autumn when the water column receive and store large inputs of solar 

energy. The results of the calibration are consistent with this picture since, in both cases, the 

intercepts were positive, which means that, on the average, the water temperature was higher 

then the air at low values of the input variable. However, the slopes were lower than one and 

very similar, which means that the difference between input and output decreased along with 

the increase in the input variable. The fact that the average daily water temperature was 
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always slightly higher that the air should not surprise since the daily fluctuation of the air 

temperature are much larger than those of the water as a more detailed analysis of the hourly 

values may show. For example, in the first fifteen days of August 2002 the hourly air 

temperature ranged from 16.9 to 26.7 °C, while the water ones ranged from 21.9 to 27.9, the 

average values being respectively 21.9 and 25.0 °C.  A further support to the approach here 

adopted is given by the results displayed in Figure 3. As one can see, the average daily values 

of the water temperature reproduced the pattern of the field data and, correctly, 

underestimated them: these were collected during day time, when the water temperature is in 

general higher than its daily average because of the input of solar radiation.  

Overall, the two recalibrations results were satisfactory and showed that the model 

correctly simulated the dynamic of two out of three state variables, namely P and R, when it 

was forced using the two water temperature series presented in Figure 3. However, the 

outcome of the recalibration exercise strongly suggests that the model is very sensitive to the 

evolution of water temperature. In fact, the two trajectories were remarkably similar as were 

the two values of the parameter σ. This first finding indicates that the value of σ given in the 

original paper is not correct, probably because of a printing mistake. However, the optimal 

temperatures, Topt_ph and Topt_prod, which were estimated by forcing the model using the 

forcing function computed using Eq. 1 and Eq. 2 were markedly lower than the reference 

ones, in spite of the slight difference in the input functions, represented in Figure 3. In 

particular, the shift in the parameters indicates that the position of the biomass peaks is largely 

determined by the evolution of water temperature (see Figure 4a). This hypothesis is 

reinforced by the results presented in Figure 6, which shows the monthly average values of 

the functions f(Tw) and f(I) during the period 1994-2002. As one can see, the solar radiation 

intensity limits the photosynthetic rate only during a short period in winter time, while the 

presence of the two biomass peaks in Figure 4 and of the seasonal fluctuations which can be 

observed in Figure 5 are clearly due to the seasonal fluctuation of water temperature. Figure 4 

also shows that the model accurately simulated the seasonal evolutions of the below ground 

biomass density, which was very similar to that of the above ground one. In fact, above and 

below biomass peaks occurred almost simultaneously, the only difference being the heights of 

the peaks. This feature is shared by the field data, at least as far as the summer peak is 

concerned, and therefore, the results suggest that the transfer of biomass from above to below 

ground was correctly modelled. The evolution of the density of shoot number, however, did 

not match the observations as closely as in the case of the other two state variables Figure 4d, 

but, likewise the data, were characterized by the presence of a summer peak and an autumn 
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one. Since similar results were also obtained in (Zharova et al., 2001), this finding suggests 

that this state variable dynamic was not correctly modelled. 

From the methodological point of view, the main result of the trend analysis is the 

discovery that the structure of an apparently “good” model may hide some undesirable 

features. These features could hardly be noticed when calibrating the model but were easily 

revealed by the visual inspection of the multi-annual trends of the average shoot biomass P, 

and of the density of shoot number, N. In fact during the period 1994-2002, the first state 

variable showed an eleven-fold increase in its level while the second one showed a 

corresponding eight-fold decrease, as can be seen in Figure 5. As a result, the level 

concerning the above ground biomass S=PxN at the end of the period is similar to the one that 

characterized the calibration year, 1994. Such results are not consistent with the observations, 

particularly as far as the average shoot biomass is concerned since a maximum value of 0.31 g 

C was estimated on the basis of the available data. This finding points to a fault in the 

structure of the model, which, combined with the high sensitivity of the trajectories to the 

inter-annual fluctuation of the water temperature may have originated the trends presented in 

Figure 5. A more detailed analysis of Figure 5 shows that the marked decrease in the trend of 

N occurred in the year 1997, which was also characterized by the highest biomass peak. 

During that year, because of the inter-annual fluctuation of the water temperature, the above 

ground biomass remained well above the threshold, σ, for approximately 63 days straight 

horizontal line in Figure 5. During this period, the growth of new shoots was inhibited leading 

to the marked decrease that can be clearly seen in Figure 5. On the other side, the dynamic of 

P is not controlled by any factors other than the intensity of solar radiation and the water 

temperature since in this model the photosynthetic rate is not reduced at high biomass values. 

Since the first factor counts very little, as Figure 6 shows, the trend concerning P is 

determined by the value of the parameters µmax and ΩP and by the interannual variability of 

water temperature. This formulation is a potential source of instability in the absence of other 

controls such as predation or nutrients availability. 

 

5. Conclusion 

 

The results presented in the paper suggest that the investigation of the long-term evolution of 

primary production models under realistic scenarios of forcing functions can easily reveal 

structural instability that may not be noticed in the calibration phase. In fact, the results of the 

recalibration showed that the model fitted the field data, but also indicated that it is very 
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sensitive to small variations in the time series of the water temperature. The results of the 

trend analysis further supported this finding and clearly showed the presence of potential 

sources of instability in the model structure. These findings suggest that testing the robustness 

of primary production model in respect to realistic inter-annual variations of their main 

forcings, such as solar radiation intensity and water temperature, may add confidence in the 

results of the calibration. In fact, the calibration does not take into account the wealth of semi-

quantitative information about the system dynamic which are somewhat “in the middle” 

between the theoretical knowledge, represented by the model structure, and the very specific 

information content of a single, real-world, case-study. As a result, in some instances, this 

process may lead to successful results, even in presence of some faults in the model structure. 

The checking process here proposed does not require additional biomass field data and, in the 

absence of observed time series of these two inputs can be carried out using time series of 

related variables, as illustrated in this paper. As an alternative, synthetic yet realistic scenarios 

of input functions could also be generated by perturbing the available data using MonteCarlo 

methods. Therefore, it provides a simple and inexpensive way of analysing the consistency of 

the long-term behaviour of primary production models in respect to the interannual 

fluctuations of non-manageable forcing functions. In the case study presented and discussed 

here, the long-tem simulation results highlighted the lack of control in the model structure 

since there was no real feedback between the evolution of the biomass and the biomass itself 

and the availability of other resources, such as nutrients. Therefore, the dynamic was entirely 

driven by the non-manageable main input, i.e., water temperature. As a result, the calibration 

lead to "balance" the positive and negative terms through the estimation of the maximum 

growth, but the inter-annual variability of the non-manageable drove the system out of 

control. 
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Figure 2a. Smoothed time series of the residuals concerning the application of the regression model to the whole 

April 2002-April 2003 time series of air and water temperature. 
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Figure 2b. Time series of the residuals obtained by calibrating the regression model against the summer-autumn 

and the winter-spring data. 
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Figure 3. Time series of water temperature estimated by interpolating the field data (continuous line) and the 
regression model (dotted line). 
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Figure 4a, b, c, d. Comparison between the field data and the outputs which were obtained by recalibrating the 
model and using the two sets of driving functions: I and Tw interpolated values, continuous line, I and Tw 
computed by means of Eq.(1) and (2), dotted line.  
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Figure 5.  Long term evolution and trend of the density of shoot number, average shoot weight, (a) above ground 
biomass density S (b). The straight line in (b) represents the threshold σ. 
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Figure 6. Trends of the average monthly values of the functions which limit the shoot biomass growth in relation 

to the water temperature f_phot(Tw) (dotted line) and intensity of solar radiation f(I).  
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Table 1. State equations and functional expressions of the Zostera marina model (Zharova et. al. 2001). 
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 β0 δβ0 β1 δβ1 2R  iε  Ni

2
ε  

Apr.2002-Apr.2003   2.05 0.2 0.96 0.01 0.95 0.00 2.57 

Summer-Autumn 

(1/7/2002-15/11/2002) 

4.29 0.49 0.89 0.02 0.92 0.00 1.63 

Winter-Spring 2.44 0.19 0.87 0.02 0.94 0.00 1.87 

Table 2. Results of the calibration of the water temperature model. 
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Forcing functions Parameter Calibrated Ref. R2 P   R2 S R2 R R2 N   

Spline interpolation 
of in situ I and Tw 
measurements 

 

σ        gCm-2 
 

281.0 
 
50.0 0.70 0.83 0.66 0.30 

Average daily 
values computed 
using Eq. 1 and 2 

Topt_ph       °C 17.3 21.0 

0.59 0.84 0.77 0.27 Topt_prod   °C 20.0  23.0 

σ        gCm-2 322.7 50.0 
        
Table 3. Results of the calibration of Zostera marina model. 
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Appendix A 

 

 

 

 

 
 
Parameter 
 

 
Description Value and unit 

 

 
Reference 
 

 

 
 

 

 

µmax Maximum shoot specific growth rate 0.043  day-1 Zharova et al.. 2001 

GrowN Maximum new shoots specific growth rate   0.028  day-1 Zharova et al.. 2001 
ΩN 

Speficic shoot number loss rate 7.2 10-3  day-1 Zharova et al.. 2001 
LossP Speficic shoot biomass loss rate at Tw=20°C 0.018 day-1 Zharova et al.. 2001 

ΩR Speficic below ground biomass loss rate 0.009  day-1 Zharova et al.. 2001 
ktrans Shoots to roots biomass transfer coefficient 0.21 Zharova et al.. 2001 

Rup Uprooting coefficient 0.002  g  C  Zharova et al.. 2001 

Pnew New shoot weight 0.0024  g C Zharova et al.. 2001 

σ Carrying capacity parameter 50 g C m-2 Zharova et al.. 2001 

ε Half-saturated constant for below-ground biomass 0.0047  g C m-2 Zharova et al.. 2001 

Ik20 Saturation light intensity at 20°C 25.5  E m-2 day-1 Zharova et al.. 2001 

Ic20 Compensation light intensity at 20°C 2.4  E m-2 day- Zharova et al.. 2001 

θk  Temperature coefficient for light saturation intensity 1.04 Zharova et al.. 2001 

θc Temperature coefficient for light compensation intensity 1.17 Zharova et al.. 2001 

z Depth of the water column 0.7  m Zharova et al.. 2001 

EXT Light extinction coefficient        0.8  m-1 Zharova et al.. 2001 

K0_phot Value of fphot(Tw) at Tw = 0 °C  0.01  day-1 Zharova et al.. 2001 

Km_phot Value of fphot(Tw) at Tw = Tmax  1x10-5  day-1 Zharova et al.. 2001 

Topt_phot Optimal temperature for photosynthesis 21  °C Zharova et al.. 2001 

Tmax_phot Temperature threshold for photosynthesis inhibition 34  °C Zharova et al.. 2001 

stt_phot Shape coefficient in fPhot 2 Zharova et al.. 2001 

Ko_prod Value of fprodt(Tw) at Tw = 0 °C 0.0005  day-1 Zharova et al.. 2001 

Km_prod Value of fprod(Tw) at Tw = Tmax 0.00001  day-1 Zharova et al.. 2001 

Topt_prod Optimal temperature for newshoot production 23  °C Zharova et al.. 2001 

Tmax_prod Temperature threshold for inhibition  of new shoots production 25  °C Zharova et al.. 2001 

stt_prod Shape coefficient in fprod 2.5 Zharova et al.. 2001 

θL 
Arrhenius coefficient 1.05 Zharova et al.. 2001 

    

    

 
 
Table A1. Parameters used in the Zostera marina model. 
 
 

 


