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An analysis of the effects of continuous

dividends on the exercise of American options

Antonella Basso, Martina Nardon, and Paolo Pianca⋆

Dipartimento di Matematica Applicata
Università Ca’ Foscari di Venezia
Dorsoduro 3825/E
30123 Venezia - Italy

Abstract. The main aim of this contribution is to analyze the early exercise fea-
tures of American-style put options in the presence of a continuously paid dividend
yield. In particular, the attention will be focused on the study of the optimal exer-
cise policy, which enables to analyze the behavior of the optimal exercise time and
the probability to exercise the option prior to maturity or at the expiration date.
Moreover, we will study also the way the early exercise premium of an American
option is influenced by the model parameters.
The optimal exercise boundary is instrumental for the early exercise of American-

style options. Unfortunately, an analytic formula for this time dependent optimal
boundary is not known. To compute an accurate approximation of the optimal ex-
ercise boundary we apply a numerical procedure proposed by [Carr, 1998] based on
a technique called randomization.
Then a two-step simulation approach is proposed: the numerical approximation

of the optimal exercise boundary obtained with Carr’s procedure computed in the
first step is embodied in a Monte Carlo simulation method to estimate the desired
features of the option. The two-step procedure proposed is applied to a wide sim-
ulation analysis in order to investigate the early exercise convenience of American
put options and the effects of continuous dividends on the early exercise.
In addition, we analyze how the discrete monitoring bias induced by a Monte

Carlo simulation approach affects the early exercise features of American options.

Keywords. Option pricing, American options, continuous dividend, optimal exer-
cise boundary, Monte Carlo simulation

J.E.L. classification: G13.
M.S.C. classification: 60G40, 60J60, 65C20.

1 Introduction

Most options written on individual equities, and many others on stock

indexes and foreign currencies, are American-style options and thus
grant the holder of the option the right to exercise the contract at any

⋆ Partially supported by M.U.R.S.T., Research program of national interest “Mod-
els for the management of financial, insurance and operations risks”.
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time until the option’s expiration date. This is the case, for example,

of the options of the official Italian derivatives market IDEM written
on individual stocks.

Furthermore, most of all these options are written on assets that

pay some dividends, either at discrete times or continuously. On the
other hand, the presence of dividends complicates the analysis of the

American option features still further.

The main aim of this contribution is to analyze the early exercise
features of American-style put options in the presence of a continuously

paid dividend yield. The case of options on underlying assets that pay
a continuous dividend yield is well known to the literature but it is

by far less studied than the discrete dividend case. This second case
includes the stock options but in the former we found, for example,

the options on indexes or currencies.

In particular, the attention will be focused on the study of the

optimal exercise policy, which enables to analyze the behavior of the
optimal exercise time and the probability to exercise the option prior
to maturity or at the expiration date.

The early exercise premium of an American option represents the
premium given to the American option holder over the value of the

European option with the same characteristics, for the possibility of
early exercising the option. Besides the optimal exercise policy for the

holder of an American option, we will study also the way this premium
is influenced by the model parameters.

The convenience of the early exercise of an American option de-

pends on the comparison between the current price of the underlying
security and a critical value. The function which associates to each

point in time this critical value is known as optimal or early exercise
boundary. The knowledge of the optimal exercise boundary is crucial

to the comprehension of the early exercise feature of American-style
options. Unfortunately, an analytic formula for this time dependent

optimal boundary is not known.

Different numerical approaches have been proposed in the liter-
ature to obtain an approximate boundary. In particular, a number

of contributions try to define an approximation of the optimal exer-
cise boundary in order to calculate the fair value of an American op-

tion. Among these, we found [Huang, Subrahmanyam and Yu, 1996],
[Omberg, 1987], [Kim, 1990], [Jacka, 1991], [Carr, Jarrow and Myneni,

1992], [Myneni, 1992], [Allegretto et al., 1995], [Broadie and Detemple,
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1996], [Carr, 1998], [Ju, 1998], [AitShalia and Lai, 1999] and [Ait Shalia

and Lai, 2001], [Little, Pant and Hou, 2000], [Sullivan, 2000], [Bunch
and Johnson,2000].
In this contribution, in order to compute an accurate approxima-

tion of the optimal exercise boundary we apply a numerical procedure
proposed by [Carr, 1998], based on a particular technique called ran-

domization, which has proved robust, accurate and computationally
efficient and is able to handle the case of a continuous dividend yield.

Once computed, the optimal exercise boundary represents a time
dependent barrier which allows to define an optimal stopping rule for

early exercise of American options. This stopping rule can be used in
a Monte Carlo simulation procedure to determine not only the op-

tion value but also an estimate of the optimal stopping time and the
probability that the option is exercised prior to or at maturity.
Hence, a two-step simulation approach is proposed: the numerical

approximation of the optimal exercise boundary obtained with Carr’s
procedure, computed in the first step, is embodied in a Monte Carlo

simulation method to estimate the desired features of the option.
This two-step procedure is applied to a wide simulation analysis

in order to investigate the early exercise convenience of American put
options and the effects of continuous dividends on early exercise.

The paper is organized as follows. Section 2 introduces the main
properties of the early exercise boundary. Section 3 presents Carr’s

randomization approach. In section 4 we discuss and test through a
wide empirical research the accuracy of the approximated boundary
obtained with Carr’s procedure. In section 5 we study the behavior

of the early exercise premium with respect to the values of the model
parameters. In section 6 we present a simulation analysis on the effects

of continuous dividends on early exercise of American put options. In
section 7 we analyze how the discrete monitoring bias induced by a

Monte Carlo simulation approach affects the early exercise features of
American options. Finally, section 8 presents some conclusions.

2 The early exercise boundary

Let the dynamics of the price St of the underlying asset be governed
by the following risk neutralized diffusion process with constant para-
meters

dSt = St[(r − δ)dt+ σdWt], S0 > 0, (1)
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where Wt is a standard Wiener process, r > 0 represents the continu-

ously compounded risk-free interest rate, δ is the continuous dividend
yield payed by the asset and σ is the volatility of the asset returns.

Let us consider an American style put option and let t = 0 be the
current time, t = T the option maturity and X the strike price.

It is known that at each time t ∈ [0, T ] there exists a critical price
Bt of the underlying asset which separates the exercise region of prices
from the continuation region at a given time t ∈ [0, T ]. Indeed, if
the current price of the underlying asset is sufficiently low, it will be
advantageous to exercise the option immediately, taking advantage of

the early exercise feature of American options. The critical price Bt
is the asset price below which it is optimal to exercise the American

put option; however, Bt can be characterized in different equivalently
ways (see [Bunch and Johnson, 2000]).

Hence, the set of critical exercise prices, one for each time 0 ≤ t ≤
T , define a function B of time t, with t ∈ [0, T ], which is called early
exercise boundary or optimal exercise boundary

B : [0, T ]→ R+. (2)

Formally, the early exercise boundary can be defined as the op-
timal solution of a problem of first passage through a boundary; see

for example [Carr, 1998] and [Bunch and Johnson, 2000].
Therefore, if the early exercise boundary could be calculated, we

would have an optimal stopping rule to decide the exercise strategy
for the option. Unfortunately, the function B is not known a priori,

but must be determined as part of the solution to the option valuation
problem.

The main properties of the optimal exercise boundary B are dis-
cussed in [Basso, Nardon and Pianca, 2002b]; for the case r > 0, which
is the most interesting from a financial point of view, they can be sum-

marized as follows:

1. B is continuously differentiable on the interval [0, T );

2. B is nondecreasing in t (and therefore nonincreasing in time to
maturity τ = T − t);

3. BT = X ; near expiration we have

lim
t→T
Bt =

{

X if δ ≤ r
r
δ
X if δ > r;

(3)
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4. B does not depend on the current price of the underlying asset,

S0;

5. B is linearly homogeneous in X .

Moreover, for a finitely-lived American put option the following

bounds hold

B∞ ≤ Bt ≤ X, (4)

where B∞ denotes the boundary value of a perpetual American put

(which is constant over time; see [Kim, 1990])

B∞ =
θ

θ − 1X, (5)

with

θ =
−(r − δ − σ2/2)−

√

(r − δ − σ2/2)2 + 2σ2r
σ2

. (6)

In the non dividend paying case (δ = 0) the expression for B∞ simpli-

fies in B∞ = [γ/(1+ γ)]X , with γ = 2r/σ2.

A graphical analysis of the behavior of the optimal exercise bound-
ary as the model parameters σ, r and δ vary can be found in [Basso,

Nardon and Pianca, 2002b]. The exercise boundary seems to decrease
when σ raises, increase with r and diminish with δ.

Some symmetry properties between American call and put options
allow to extend the results obtained for the American puts also to

American calls; these symmetry results involve not only the price of
American calls and puts but also the optimal exercise boundaries of
such options. For a comprehensive treatment of the symmetry proper-

ties of American options see [Detemple, 2001].

In particular, it is possible to state the following symmetry relation

between the current price P0 of an American put option with strike
price X written on an asset with current price S0 and the price C0 of

an American call option with the same maturity and strike price S0,
written on an auxiliary asset with current price X (note the exchange

of roles in the two options between S0 and X , on the one hand and r
and δ, on the other hand)

P0(S0, X, r, δ) = C0(X, S0, δ, r). (7)
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Moreover, the corresponding optimal exercise boundaries BPt and

BCt of the American put and call options above defined are connected
by the following symmetry relation

BPt (X, r, δ) =
S0X

BCt (S0, δ, r)
t ∈ [0, T ]. (8)

The linear homogeneity of the boundary with respect to the exer-

cise price allows to write the call/put symmetry relation between the
boundaries (8) in the following equivalent form which is more com-

monly used (see for example [Carr, 1998] and [Carr and Chesney, 1996])

BPt (X, r, δ) =
X2

BCt (X, δ, r)
. (9)

The call/put symmetry relation between the boundaries (8) or (9)
allows to extend the properties 1-5 to the optimal exercise boundary of

a call option by making the proper changes; for example, the boundary
of a call option is nonincreasing in time.

3 Carr’s randomization approach

As we have seen, an analytic formula for the optimal exercise bound-

ary B is not known. However, some numerical approaches have been
proposed in the literature that enable to approximate this function;

for a review see [Basso, Nardon and Pianca, 2002a].
In this contribution we use a numerical procedure proposed by

[Carr, 1998] with the aim of computing an approximation of the price
of an American put option. Carr’s approach uses a staircase approx-

imation of the boundary and, together with the current option price,
provides a good approximation of the initial critical stock price. By

looking for the initial critical stock prices at different times to matur-
ity it is possible to obtain a good approximation of the boundary on

a grid.
Carr’s approach has proved very robust and precise in determin-

ing an approximation of the optimal exercise boundary for American

put options written on assets which pay no dividends, as shown in
[Basso, Nardon and Pianca, 2002a]. Moreover, it can be extended to

options which pay a continuous dividend yield. Thus, we have chosen
this method to approximate the early exercise boundary also in the

case of a dividend paying asset, with the aim of studying the effects of
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the payment of a continuously paid dividend yield on the exercise of

American put options.
In the rest of this section we briefly recall Carr’s method, which is

based on a particular technique called randomization.

According to Carr’s definition, randomization is a procedure for
solving a valuation problem which is made up of the following three

steps:

1. let the value of one of the model parameters be randomized by

assuming a plausible probability distribution for it;
2. compute the expected value of the dependent variable (which is
unknown in the fixed parameter model) with respect to the prob-

ability distribution assumed for the randomized parameter;
3. let the variance of the distribution governing the parameter ap-
proach zero, holding the mean of the distribution constant at the

fixed parameter value.

The randomization approach can be applied to an option valuation
problem in different ways, according to the parameter chosen for the

randomization and the probability distribution assumed for it. In par-
ticular, Carr randomizes the expiration date of the option and assumes

for it either an exponential distribution or a gamma distribution with
mean equal the fixed maturity T of the option under examination.

More precisely, Carr assumes that the maturity of the randomized
American put is determined by a waiting time which depends on the
arrivals of a standard Poisson process and is supposed independent of

the underlying stock price process and uncorrelated with any market
factor.

When the randomized American option is assumed to mature at
the first jump of a Poisson process with intensity λ = 1/T , the random

maturity T̃ is exponentially distributed with expected value equal to
the actual maturity T .

Since the exponential distribution has a memoryless property, the
early exercise boundary of this randomized American option turns out

to be independent of time; hence the search for the optimal bound-
ary can be carried out by taking into account only time stationary
boundaries. More precisely, the fair value of the randomized American

put with an exponential distributed maturity is the solution of the
following first passage problem through a constant barrier

P0 = sup
H

IE
[

e−rtH (X − StH )+
]

, (10)
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where tH is the first passage time through the constant barrier H

tH = inf{{t ∈ [0, T ] : St ≤ H} ∪ {T̃}}; (11)

here it is assumed that S0 is in the continuation region, so that S0 is
greater than the unknown optimal exercise boundary.
When the underlying security does not pay any dividend (δ = 0)

the optimal (constant) exercise boundary is given by

H∗ = X

(

π1RrT

π2 − Rπ1

)
1

η+ε

, (12)

where R = 1/(1 + rT ), η = 1/2 − r/σ2, ε =
√

η2 + 2/(Rσ2T ), π1 =

(ε−η)/(2ε), π2 = (ε−η+1)/(2ε) (see [Carr, 1998]). The barrier value
H∗ provides an approximation for the current value of the critical

price, B0.
The assumption of an exponentially distributed maturity leads to

simple formulae for the put option price and the current critical price,
but these approximations are often too coarse to be used in practice.

To improve the method, [Carr, 1998] proposes to use for the ran-
dom option maturity a distribution with a smaller variance, while keep-

ing the mean equal to the actual maturity T . To this aim Carr assumes
that the randomized option matures at the na-th jump of a standard
Poisson process with intensity λ = na/T . Hence the random maturity

is gamma distributed with mean T and variance T 2/na.
In such a case the exercise boundary of the randomized put takes

the form of a staircase and the price of the randomized American put
and the initial critical stock price can be determined using a dynamic

programming algorithm.
If the underlying security does not pay any dividend, the staircase

values of the critical prices of this randomized put can be determined
recursively, for m = 1, . . . , na, as follows

Hm = X

(

π1RXr∆

c(m) −A(m)
)

1

η+ε

(13)

where ∆ = T/na, R = 1/(1 + r∆), ε =
√

η2 + 2/(Rσ2∆) and η, π1
and π2 are defined as before,

c(m) =

m−1
∑

i=0

(

m− 1 + i
m− 1

)

X
[

πm2 (1− π2)i − Rmπm1 (1− π)i
]

, (14)
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A(1) = 0 and for m ≥ 2

A(m) =

m
∑

j=2

(

X

Hm−j+1

)η+ε j−1
∑

k=0

(

2ε ln
(Hm−j+1

X

))k

k!
·

·
j−k−1
∑

i=0

(

j − 1 + i
j − 1

)

πj1(1− π1)k+iRjXr∆. (15)

As we said in advance, the randomization approach can be ex-

tended to American options on dividend paying assets ([Carr, 1998]).
When the underlying asset pays a continuous dividend yield, the stair-

case values of the critical prices of the randomized American put option
are still determined recursively for m = 1, . . . , na but in this case each
staircase critical value must be determined numerically by solving an

algebraic equation. For m = 1, . . . , na, Hm is implicitly defined by the
following equation

c(m) − A(m) =
(

X

Hm

)η+ε
[

π1RXr− π2DHmδ
]

∆, (16)

where now η = 1/2− (r − δ)/σ2, D = 1/(1 + δ∆),

c(m) =

m−1
∑

i=0

(

m− 1 + i
m− 1

)

[

Dmπm2 (1− π2)i −Rmπm1 (1− π1)i
]

X, (17)

A(1) = 0, and for m ≥ 2,

A(m) =

m
∑

j=2

(

X

Hm−j+1

)η+ε j−1
∑

k=0

(

2ε ln
(Hm−j+1

X

))k

k!
·

·
j−k−1
∑

i=0

(

j − 1 + i
j − 1

)

[

πj1(1− π1)k+iRjXr−

− πj2(1− π2)k+iDjHm−j+1δ
]

∆. (18)

By setting δ = 0 in equations (16)-(18) we obtain the explicit

solution (13)-(15). The critical value Hm obtained with equation (15)
can be used as an initial guess for an iterative solution of equations

(16)-(18).
Hna is the critical price at time t = 0 of the randomized put; this

value provides an approximation for the value of the initial critical
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price B0 of a put option with (fixed) maturity T . The critical prices

for the other times t > 0 can be obtained with the same procedure, by
considering a randomized put with maturity T − t, in turn. Actually,
the boundary B can be calculated on a grid which discretizes the time

interval [0, T ] by choosing n equally spaced points of amplitude ∆t =
T/n and computing the boundary approximations in correspondence

with the times 0, ∆t, 2∆t, . . . , T .

4 The accuracy of the randomization boundary

In the previous section we have summarized the randomization ap-
proach proposed by Carr. Nevertheless, in the application of the al-

gorithm a point becomes important: which is the best choice for the
number na of Poisson arrivals?

The variance of the random maturity, T 2/na, decreases as the num-

ber of arrivals na taken into account increases and tends to zero as na
tends to infinity. Thus, by increasing the number of arrivals na we
expect to improve the accuracy of the solution; however, this entails

higher computational costs.

In order to speed up the convergence of the results to the true

values, Carr suggests to use the Richardson extrapolation technique.

The N -point Richardson extrapolation of the initial critical price
B0, B

R
0 , can be computed as a weighted average of the N approximate

initial critical stock prices B
(na)
0 = Hna calculated defining na random

arrivals, with na = 1, . . . , N , and can be written as follows

BR0 =
N
∑

na=1

(−1)N−nanNa
na!(N − na)!

B
(na)
0 . (19)

We have performed some empirical trials in order to study which is

the best implementation of Carr’s method: is it the one with or without
Richardson extrapolation? And which is the best choice of the number

na of Poisson arrivals, on the one hand, and the number N of steps in
the Richardson extrapolation, on the other hand?

The trials carried out compare the approximation of the optimal

exercise boundary obtained with Carr’s method both with and without
Richardson extrapolation for various values of na and N .

In the comparisons carried out, as benchmark which best approx-

imates the (unknown) true optimal exercise boundary we have used
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Table 1. Average distances between Carr’s approximations of the optimal exercise
boundary computed both with and without Richardson extrapolation and the bino-
mial boundary as the number na of jumps vary. The results refer to American put
options with T = 1, X = 100, δ = 0, r ∈ { 0.02, 0.06, 0.10 }, σ ∈ { 0.1, 0.2, 0.3, 0.4 },
and are averaged over the 12 options considered; the standard deviations of the
distances are reported, too.

na JUMP BOUNDARIES EXTRAPOLATED BOUNDARIES
average standard average standard

na distance deviation distance deviation

1 0.8700 0.4688 – –
2 0.5431 0.2780 0.2321 0.1162
3 0.3970 0.1985 0.0808 0.0457
4 0.3129 0.1548 0.0310 0.0182
5 0.2581 0.1270 0.0193 0.0076
6 0.2193 0.1077 0.0187 0.0073
7 0.1905 0.0935 0.0203 0.0077
8 0.1682 0.0827 0.0215 0.0082
9 0.1504 0.0741 0.0223 0.0085
10 0.1359 0.0671 0.0228 0.0088

the boundary obtained with a binomial method with a high number of
time steps. The binomial method used is the improved CRR binomial

procedure proposed by [Basso, Nardon and Pianca, 2002a], which ef-
fectively reduces the fluctuating behavior of a discrete boundary.

In particular, in the experiments reported we have used a 25 000
time step lattice. More precisely, the time interval [0, T ] has been di-

vided into m = 20 000 sub-intervals of length T/m, but we have made
the binomial tree start 5 000 steps before time t = 0 (so that the total

number of steps in the lattice is n = 25 000) in order to have a wide
range of prices already defined since the time at which the option is
evaluated.

In order to measure the accuracy of the boundary approximation
we have calculated a measure of the distance between the approxim-

ated boundary and the boundary obtained with the binomial method.
The distance between these functions has been computed as the norm

of the difference between the pair of functions compared, using the
discrete norm in L1 (see e.g. [Gautschi, 1997])

dist (Bbin, BCarr) =

n−1
∑

i=0

∣

∣

∣
Bbini −BCarri

∣

∣

∣
, (20)
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Table 2. Average distances between Carr’s approximations of the optimal exer-
cise boundary computed both with and without Richardson extrapolation and the
binomial boundary as the number na of jumps and the number N of extrapolated
points vary. The results refer to American put options with T = 1, X = 100,
δ ∈ {0.00, 0.02, 0.06, 0.10}, r ∈ { 0.02, 0.06, 0.10 }, σ ∈ { 0.1, 0.2, 0.3, 0.4 }. Columns
2 and 3 show the average and the standard deviation obtained for the 12 cases
with zero dividends, columns 4 and 5 indicate the average and the standard devi-
ation obtained for the 36 cases with positive dividends and the last two columns
report the overall mean and standard deviation computed over all the 48 options
considered.

δ = 0 δ > 0 OVERALL MEAN
average standard average standard average standard
distance deviation distance deviation distance deviation

na na JUMP BOUNDARIES
1 0.8700 0.4688 0.8881 0.8578 0.8836 0.7743
2 0.5431 0.2780 0.5649 0.5479 0.5594 0.4917
3 0.3970 0.1985 1.1571 1.0634 0.9630 0.9785

N EXTRAP. BOUNDARIES
2 0.2321 0.1162 0.2506 0.2423 0.2460 0.2166
3 0.0808 0.0457 5.0888 4.2960 3.8101 4.3028

where Bbin and BCarr denote the boundary obtained with the binomial
and Carr’s methods, respectively. In the tables which summarize the

results we have reported the distance divided by the number n of points
in time

1
n dist (B

bin, BCarr) = 1n
∑n−1
i=0

∣

∣Bbini −BCarri

∣

∣ , (21)

which corresponds to use a weighted norm with constant weights equal
to 1/n. This quantity is the average point error and is easy to inter-

pret; moreover, it allows a comparison between trials which rely on a
different number of time intervals.

In the trials carried out the early exercise boundaries have been

computed in a grid of n+1 equally spaced points in the interval [0, T ],
with n = 250 and T = 1.

Tables 1 and 2 compare the average distances between Carr’s ap-

proximations of the optimal exercise boundary computed both with
and without Richardson extrapolation and the binomial boundary as

the number na of jumps and the number N of extrapolated points vary.
The results refer to American put options with T = 1, X = 100, δ ∈
{0.00, 0.02, 0.06, 0.10}, r ∈ { 0.02, 0.06, 0.10 }, σ ∈ { 0.1, 0.2, 0.3, 0.4 }.
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Table 1 reports the average distances and the standard deviations of

these distances computed over the options written on non dividend
paying assets while table 2 reports the same results computed over all
the 48 options considered.

An analysis of the results of tables 1 and 2 indicates that, while the

accuracy of the boundary approximation is very stable for the non di-
vidend paying case, even when the number of jumps is high, when the

underlying asset pays a positive dividend yield the boundary approx-
imation becomes unstable as soon as the number of jumps is greater
than two; for a number of jumps greater than three the numerical

procedures of the algorithms rarely gets a result.

As a consequence, for the non dividend paying case we may well use
a high number of jumps in order to reduce the approximation error.

In this case we may see from table 1 that the use of the Richardson
extrapolation procedure effectively reduces this error. However, it is
not convenient to apply the Richardson extrapolation with a number

of points greater than 6, as the approximation error tends to increase
above this value. In particular, when extrapolating on the basis of too

points the results tend to be less stable. The best choices turn out to
be 5 or 6 extrapolation points, so in the rest of the empirical research

we have applied Carr’s approach in conjunction with an extrapolation
procedure with N = 5 extrapolated points.

On the other hand, the best choice for the case with a positive
dividend yield turns out to be Carr’s approach with a 2-points extra-

polation procedure, and this is our choice for this case in the rest of
the empirical analysis. Of course, the low number of jumps and extra-

polated points used in the computations entails that in the dividend
paying case we will get higher approximation errors.

[Basso, Nardon and Pianca, 2002a] presents a detailed analysis of
the performance of Carr’s approximation of the optimal exercise bound-

ary in the absence of dividends. However, the results of tables 1 and 2
indicate that the performance of the method changes in the presence

of dividends; in particular, we expect the approximation of the bound-
ary to be less accurate. In order to test the goodness of the boundary

approximation in the presence of a positive dividend yield we have
carried out a wide empirical analysis.

We have randomly generated 7 200 option valuation problems with
a Monte Carlo procedure. More precisely, we have let the parameters

(δ, r, σ) vary in the set [0.005, 0.12]× [0.005, 0.12]× [0.1, 0.4], have par-
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Table 3. Average distance and standard deviation of the distance between Carr’s
approximation of the boundary and the binomial boundary, as the maturity T
varies. The results refer to American put options with X = 100 and are computed
over all the 7 200 option valuation problems randomly generated for each maturity
in columns 2-3, while they are separated into the zero dividend case and the positive
dividend yield case in columns 4-5 and 6-7.

δ ∈ [0.0, 0.12] δ = 0 δ > 0
T average st.dev. of average st.dev. of average st.dev. of

distance distance distance distance distance distance

1/12 0.1905 0.3041 0.0223 0.0120 0.2314 0.3349
1/4 0.1850 0.2920 0.0193 0.0073 0.2214 0.3201
1/2 0.1844 0.2640 0.0185 0.0054 0.2222 0.2854
3/4 0.1844 0.2385 0.0186 0.0050 0.2252 0.2539
1 0.1855 0.2179 0.0189 0.0052 0.2272 0.2278

Table 4. Average distance between Carr’s approximation of the boundary and the
binomial boundary, as δ, r and σ vary in the intervals indicated, for American put
options with maturity T = 1 and X = 100. The results refer to 200 randomly
generated problems in each subinterval.

δ
r 0 [0.005, 0.04] [0.04, 0.08] [0.08, 0.12]

σ ∈ [0.1,0.2]
[0.005, 0.04] 0.0128 0.2238 0.0474 0.0063
[0.04, 0.08] 0.0137 0.1895 0.2102 0.0691
[0.08, 0.12] 0.0162 0.1579 0.1983 0.1876

σ ∈ [0.2,0.3]
[0.005, 0.04] 0.0201 0.4257 0.1508 0.0144
[0.04, 0.08] 0.0173 0.2524 0.3334 0.2176
[0.08, 0.12] 0.0220 0.2811 0.2560 0.2538

σ ∈ [0.3,0.4]
[0.005, 0.04] 0.0269 0.6396 0.2634 0.0269
[0.04, 0.08] 0.0205 0.2790 0.4120 0.3573
[0.08, 0.12] 0.0207 0.2827 0.4271 0.3461

titioned the parameter space with a 3× 3× 3 grid into 27 rectangular
subsets and have randomly generated 200 (δ, r, σ) triples from each

subset, for a total of 5 400 option valuation problems with a positive
dividend yield. In addition, we have randomly generated 1 800 option

valuation problems with zero dividend by setting δ = 0 and letting the
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parameters (r, σ) vary in the set [0.005, 0.12]× [0.1, 0.4] with the same
generation rule.

For each generated problem, 5 different maturities have been con-

sidered: 1, 3, 6, 9, 12 months. The optimal exercise boundaries have
been computed in a grid of n+1, with n = 250, equally spaced points

in the interval [0, 1], so that the monitoring interval is approximately
one working day.

Tables 3 and 4 summarize the main results of these trials. In par-

ticular, Table 3 reports, for the 5 maturities analyzed, the average dis-
tance (21) between the binomial boundary used as benchmark and the

approximated boundary obtained with Carr’s method and the stand-
ard deviation of this distance. We may observe that the accuracy of
Carr’s approximation of the boundary does not vary with time to

maturity. Moreover, as it can be seen, in the presence of a positive
dividend yield the distance between the approximated and the bench-

mark boundary is on average 10 times the distance we observe with
zero dividend. On the whole, the boundary approximation may be

considered as sufficient for practical purposes, since it entails an ap-
proximation error of about 2% of the exercise price.

Table 4 reports the average distance obtained for T = 1 year separ-

ately for the different parameter intervals. It can be observed that the
approximation error increases with the volatility σ while a clear pat-

tern does not seem to emerge with respect to the values of the interest
rate r and the dividend yield δ > 0.

5 The behavior of the early exercise premium

Let us denote by Pt and pt the values at time t of an American and
a European put option with analogous characteristics. Then the early

exercise premium of the American put option

et = Pt − pt ≥ 0 (22)

represents the advantage that the American option has over the Euro-
pean contract and measures the advantage of being able to exercise

the option at any time until maturity.

The early exercise premium can be written using different rep-
resentations (see for example [Elliott and Kopp, 1999], [Kwok, 1998]

and [Myneni, 1992]); [Kim, 1990], [Jacka, 1991] and [Carr, Jarrow and
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Fig. 1. Relative early exercise premium of American put options as σ and
X/S vary. Each result is the average computed over δ and r, with δ ∈
{0.00, 0.02, 0.04, 0.06, 0.08, 0.10} and r ∈ {0.02, 0.04, 0.06, 0.08, 0.10}, while S0 =
100 and T = 1.

Myneni, 1992] provide the following integral representation

et = rX

∫ T

t

e−r(u−t)N (−d2(St, Bu, u− t)) du−

− δSt
∫ T

t

e−δ(u−t)N (−d1(St, Bu, u− t)) du (23)

where N (·) is the cumulative distribution function of the standard
normal random variable,

d1(St, Bu, u− t) =
log St/Bu + (r− δ + σ2/2)(u− t)

σ
√
u− t (24)

and

d2(St, Bu, u− t) = d1 − σ
√
u− t. (25)

Equation (23), as the other representations proposed in the lit-
erature, does not enable to calculate the early exercise premium of

American options in closed form. We have used a binomial method
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Fig. 2. Relative early exercise premium of American put options as δ and
r vary. Each result is the average computed over σ and X/S, with X/S ∈
{0.8, 0.9, 1.0, 1.1, 1.2} and σ ∈ {0.1, 0.2, 0.3}, while S0 = 100 and T = 1.

with 25 000 steps in order to analyze the behavior of the early exercise
premium of a put option with respect to the various model parameters.

To this aim we have carried out a set of trials by evaluating 450
American put options with maturity T = 1 written over assets with

S0 = 100, δ ∈ {0.00, 0.02, 0.04, 0.06, 0.08, 0.10}, r ∈ {0.02, 0.04, 0.06,
0.08, 0.10},moneynessX/S ∈ {0.8, 0.9, 1.0, 1.1, 1.2} and σ ∈ {0.1, 0.2, 0.3}.
Figures 1 and 2 show the behavior of the relative early exercise

premium, defined as the ratio between the early exercise premium and

the value of the European option with analogous features

erel =
e0
p0
=
P0 − p0
p0

. (26)

The relative early exercise premium increases with the interest rate r
and with the moneyness ratio X/S and decreases as the volatility σ

increases, while it does not always exhibit a monotone behavior with
respect to the value of the dividend yield δ.

For a recent econometric study of the early exercise of American
put in the Swedish equity option market see [Engstrom and Norden,

2000].
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6 A simulation analysis of the effects of continuous

dividends on early exercise

The financial literature has often taken up the subject of the effects

of the payment of one or more discrete dividends on the early ex-
ercise of American-style options. On this subject see, for example,

[Geske and Shastri, 1985], [Omberg, 1987] and [Meyer, 2002], who study
the cases of cash payments of either a known size (independent on the

value of the asset) or a known dividend rate (in which the amount of
the dividend is proportional to the asset price); for an empirical test
of the rationality of the early exercise decision of American options

written on equities of the Sweden market both with and without a
cash dividend see also [Overdahl and Martin, 1994].

American options written on indexes or foreign currencies, however,
rather fall within the category of options written on an underlying asset

which pays a continuous dividend yield. Therefore, it is interesting also
the investigation of the effects of the payment of a positive dividend

yield on the early exercise of American options.
To this aim, we have carried out a wide empirical analysis by means

of a two-step procedure. In the first step we have computed an approx-
imation of the optimal exercise boundary using the Carr’s randomiz-
ation approach presented in the previous sections. In the second step

we have embodied the optimal exercise boundary thus obtained in a
Monte Carlo simulation procedure.

Actually, the optimal exercise boundary can be regarded as a time
dependent barrier which enables to define a stopping rule in order

to check the convenience of early exercise of American options. This
stopping rule can be embodied in a Monte Carlo simulation method

by exploiting the fact that the forward procedure of a simulation
method allows to determine an estimate of the first passage times tB in

the various simulated paths (see [Basso, Nardon and Pianca, 2002b]).
This method enables to determine, besides the option value, also the

optimal exercise time, the probability that the option is exercised and
the probability of early exercise.
The main advantage of this approach is that the knowledge of the

optimal exercise boundary allows to implement a simple forwardMonte
Carlo procedure which avoids the complications inherent in other sim-

ulation approaches proposed for the valuation of American options;
for a review of such approaches see [Boyle, Broadie and Glasserman,

2001].
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Table 5. Simulation based estimates of the optimal exercise time of American put
options with T = 1 as σ, X/S, r, and δ vary. Each result is the average computed
over r and δ in the first part of the table and over σ and X/S in the second part;
100 000 paths have been simulated for each option. t̂∗(·) denotes the mean exercise
time averaged over all the parameters but the one within parentheses.

Average optimal exercise times computed over δ and r

X/S

σ 0.8 0.9 1.0 1.1 1.2 t̂∗(σ)

0.1 0.9586 0.9032 0.7479 0.4505 0.3308 0.6782
0.2 0.9286 0.8786 0.7987 0.6746 0.5018 0.7565
0.3 0.9085 0.8678 0.8129 0.7424 0.6536 0.7970

t̂∗(X/S) 0.9319 0.8832 0.7865 0.6225 0.4954

Average optimal exercise times computed over X/S and σ

δ
r 0.00 0.02 0.04 0.06 0.08 0.10 t̂∗(r)

0.02 0.6882 0.8223 0.9975 1.0000 1.0000 1.0000 0.9180
0.04 0.6074 0.6705 0.7729 0.9720 0.9971 0.9996 0.8366
0.06 0.5548 0.5928 0.6554 0.7482 0.9340 0.9858 0.7452
0.08 0.5093 0.5399 0.5838 0.6431 0.7274 0.8927 0.6493
0.10 0.4759 0.4979 0.5333 0.5753 0.6309 0.7096 0.5705

t̂∗(δ) 0.5671 0.6247 0.7086 0.7877 0.8579 0.9175

The simulation analysis regards 450 different options with maturity
T = 1 and the following parameter setting: δ ∈ { 0, 0.02, 0.04, 0.06, 0.08,
0.1 }, r ∈ { 0.02, 0.04, 0.06, 0.08, 0.1 }, σ ∈ { 0.1, 0.2, 0.3 }, X/S ∈ { 0.8,
0.9, 1, 1.1, 1.2 }. The simulation estimates are based on the generation
of 100 000 simulated paths with n = 250 (daily) time steps.

In the Monte Carlo simulation procedure the optimal exercise time
t∗ is estimated by the average passage time through the boundary B

of the simulated trajectories, computed over the paths which lead to
the option exercise

t̂∗ =
1

|E|
∑

k∈E

tkB , (27)
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Table 6. Relative exercise frequencies in the simulation trials carried out as σ,
X/S, r, and δ vary. Each result is the average computed over σ and X/S; 100 000
paths have been simulated for each option. p̂(·) and p̂a(·) denote the relative exercise
frequencies and the relative early exercise frequencies, respectively, averaged over
all the parameters but the one within parentheses.

Average relative exercise frequencies

δ
r 0.00 0.02 0.04 0.06 0.08 0.10 p̂(r)

0.02 0.5089 0.5220 0.5520 0.5827 0.6130 0.6433 0.5703
0.04 0.5057 0.5129 0.5251 0.5516 0.5826 0.6134 0.5485
0.06 0.4990 0.5098 0.5159 0.5272 0.5516 0.5832 0.5311
0.08 0.4955 0.5038 0.5119 0.5201 0.5292 0.5520 0.5188
0.10 0.4904 0.5001 0.5069 0.5146 0.5248 0.5320 0.5115

p̂(δ) 0.4999 0.5097 0.5223 0.5392 0.5602 0.5848

Average relative early exercise frequencies

δ
r 0.00 0.02 0.04 0.06 0.08 0.10 p̂a(r)

0.02 0.4732 0.4496 0.0114 0.0003 0.0000 0.0000 0.1557
0.04 0.4799 0.4831 0.4610 0.0847 0.0133 0.0024 0.2541
0.06 0.4793 0.4872 0.4920 0.4677 0.1736 0.0488 0.3581
0.08 0.4801 0.4861 0.4922 0.5004 0.4735 0.2507 0.4472
0.10 0.4780 0.4860 0.4911 0.4971 0.5084 0.4791 0.4899

p̂a(δ) 0.4781 0.4784 0.3895 0.3101 0.2337 0.1562

where E denotes the set of simulated paths in which the option has
been exercised and tkB is the first passage time through B for the k-th
trajectory.

In the empirical analysis the probability to exercise the option is

estimated by the relative frequency of exercise p̂ = |E|/N , where N
denotes the number of simulated paths. Analogously, the probability to
exercise before maturity is estimated by the relative frequency of early

exercise p̂a = |A|/N , where A is the set of the trajectories in which
the option has been exercised before maturity (A = { k : tkB < T }).
The simulation results are presented in tables 5-6. Moreover, figures

3-5 show the behavior of the put option price, the optimal exercise time
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Fig. 3. Simulation based estimates of the price of American put options with T = 1
as δ and r vary; S0 = 100. Each result is the average computed over X/S ∈
{0.8, 0.9, 1.0, 1.1, 1.2} and σ ∈ {0.1, 0.2, 0.3}; 100 000 paths have been simulated for
each option.

and the relative frequency of early exercise with respect to the values
of the dividend yield δ and the interest rate r.

Table 5 summarizes the results concerning the optimal exercise
times. In order to investigate the behavior of the exercise time as the

parameter values vary table 5 reports the outcomes for different aggreg-
ation levels. The first part of the table exhibits the marginal averages

of the mean exercise time t̂∗ computed with respect to the values of δ
and r, as the value of X/S and σ vary; for example the first element

in the matrix (0.9586) is the mean value of t̂∗ obtained when σ = 0.1,
X/S = 0.8 and the resulting exercise times are averaged over all the
values of r and δ. The second part of table 5 reports the marginal

averages of t̂∗ computed with respect to X/S and σ, as the value of
δ and r vary. In addition, the table shows the marginal averages of t̂∗

computed over all the parameters but one (for example t̂∗(X/S) is the
marginal average computed with respect to σ, r and δ).

As can be seen from table 5, the average optimal exercise time
decreases when the moneyness increases. On the contrary, this time

is decreasing with respect to the volatility for the lowest moneyness
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Fig. 4. Simulation based estimates of the optimal exercise time of American put
options with T = 1 as δ and r vary. Each result is the average computed over X/S ∈
{0.8, 0.9, 1.0, 1.1, 1.2} and σ ∈ {0.1, 0.2, 0.3}; 100 000 paths have been simulated for
each option.

ratios but it is increasing with the volatility for the highest values of
the moneyness. Moreover, the optimal exercise time is decreasing with

respect to the risk-free interest rate r and increasing with the dividend
yield δ.

Table 6 presents the outcomes regarding the relative frequencies
of exercise p̂ (first part of the table) and those of early exercise p̂a

(second part of the table), averaged over X/S and σ, as the value of δ
and r vary; of course, the difference p̂− p̂a gives the relative frequency
of exercise at maturity. p̂(·) and p̂a(·) denote the marginal averages of
p̂ and p̂a, respectively, computed over all the parameters but one.

From table 6 we may observe that while the overall exercise fre-
quency p̂ increases with the value of the dividend yield δ and decreases
as the interest rate r increases, the early exercise frequency p̂a behaves

differently. Actually, the early exercise frequency exhibits a particular
behavior with respect to δ and r: it is on average about 50% for all

the cases with δ ≤ r while it is markedly lower for the cases with δ > r
(just the cases in which the overall exercise frequency is higher). This

behavior is well depicted in figure 4.
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Fig. 5. Average relative early exercise frequency of American put options with
T = 1 in the simulation trials carried out as δ and r vary. Each result is the average
computed over X/S ∈ {0.8, 0.9, 1.0, 1.1, 1.2} and σ ∈ {0.1, 0.2, 0.3}; 100 000 paths
have been simulated for each option.

The reasons of this feature are related to the behavior of the bound-
ary B near expiration (see limit (3)): when δ > r, B is not continuous

at maturity since its left limit is lower that the strike price X . This
means that when the ratio r/δ decreases, the probability of early ex-

ercise diminishes while at the same time the probability of exercise at
maturity increases.

7 Discrete monitoring bias of the simulation method

We have seen in the previous section that the forward procedure of

a simulation method allows to determine an estimate of the first pas-
sage times tB in the various simulated paths. However, the estimate
of the first passage times obtained in such a way will be affected by

a bias due to discrete monitoring. This bias is connected to the fact
that we can only monitor the prices at discrete points in time: by

proceeding in discrete time we neglect what happens between two ad-
jacent points; in particular, we do not test continuously if the op-

timal stopping boundary is touched. Of course, this bias vanishes
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when the monitoring interval ∆t tends to 0. For a discussion of the

problem of discrete monitoring bias in path-dependent derivatives see
[Broadie, Glasserman and Kuo, 1997], [Broadie, Glasserman and Kuo,
1999] and [Basso and Pianca, 2000]).

We have carried out a set of simulation trials with the aim of study-
ing the effects of the discrete monitoring bias which affects the two-step

simulation method proposed on the early exercise features (exercise
time and probability to exercise before maturity) of an American put

option. In addition, we have analyzed also the effects of the bias on
the price and the probability of exercise of an American put option.

Table 7 presents the main results by highlighting the influence of the
value of the dividend yield.

Table 7 reports, as the monitoring step varies, the behavior of the
simulation estimate P̂ of the option price, its relative error with re-

spect to the American option price computed with the CRR binomial
method with 25 000 steps, the simulation estimates of the optimal ex-

ercise time t̂∗, the average early exercise time t̂a, defined by restricting
the computation of the first passage time average to the paths in the
set A of the trajectories in which the option has been exercised before
maturity

t̂a =
1

|A|
∑

k∈A

tkB, (28)

the relative exercise frequency p̂, the relative early exercise frequency
p̂a and the relative frequency of exercise at maturity p̂T = p̂− p̂a. The
discrete monitoring steps taken into consideration correspond roughly
to monthly, weekly, daily and infra-daily (5 points a day) frequencies.

As it can be observed, when the number of monitoring steps in-
creases the relative error of the option price decreases but much more

relevant are the effects on the exercise time and the exercise probabil-
ities. The estimation of the optimal exercise time diminishes heavily as
the number of steps increases while at the same time the average early

exercise time slightly rises. On the other hand, still most remarkable
are the effects on the exercise probabilities: whereas the overall relat-

ive exercise frequency barely rises, we may note that the early exercise
frequency undergoes a considerable increase while at the same time

the frequency of exercise at maturity drops.



An analysis of the effects of continuous dividends 65

Table 7. Simulation results for American put options as the number n of monitor-
ing steps vary, for different values of δ, X = S0 = 100, r = 0.06, σ = 0.2 and T = 1.
100 000 paths have been simulated for each problem. The values in italics within
parenthesis denote the standard deviation. Pam is the American option price com-
puted with a binomial method with 25 000 steps, Peur the price of the analogous
European option.

n P̂ relative t̂∗ t̂∗a p̂ p̂a p̂T

(st. dev.) error (st. dev.)

δ = 0.00
10 5.6688 0.0224 0.7327 0.6039 0.4453 0.3005 0.1448
(0.0614 ) (0.0012 )

50 5.7615 0.0064 0.6625 0.6082 0.4613 0.3974 0.0639
(0.0568 ) (0.0012 )

250 5.7868 0.0021 0.6329 0.6086 0.4706 0.4414 0.0292
(0.0544 ) (0.0012 )

1250 5.7893 0.0017 0.6209 0.6119 0.4754 0.4644 0.0110
(0.0533 ) (0.0012 )

Pam 5.7989
Peur 5.1660

δ = 0.02
10 6.2325 0.0155 0.7761 0.6432 0.4745 0.2977 0.1768
(0.0614 ) (0.0011 )

50 6.2981 0.0051 0.7126 0.6560 0.4848 0.4050 0.0798
(0.0579 ) (0.0011 )

250 6.3206 0.0016 0.6866 0.6616 0.4916 0.4554 0.0362
(0.0560 ) (0.0011 )

1250 6.3204 0.0016 0.6759 0.6669 0.4948 0.4815 0.0133
(0.0552 ) (0.0011 )

Pam 6.3304
Peur 5.8851

δ = 0.08
10 8.3845 0.0029 0.9714 0.7710 0.5790 0.0722 0.5068
(0.0628 ) (0.0004 )

50 8.3917 0.0021 0.9590 0.7898 0.5790 0.1129 0.4662
(0.0626 ) (0.0004 )

250 8.3938 0.0018 0.9535 0.7927 0.5790 0.1299 0.4491
(0.0624 ) (0.0005 )

1250 8.3912 0.0021 0.9511 0.7923 0.5790 0.1364 0.4426
(0.0624 ) (0.0005 )

Pam 8.4090
Peur 8.3968
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8 Conclusions

In this paper we have studied the exercise features of American put

options written on assets which pay a continuous dividend yield and
analyzed the effects of dividends on the early exercise. To this aim we

have used a two-step procedure.
In the first step we have obtained an approximation of the op-

timal exercise boundary using the randomization approach proposed
by [Carr, 1998]. The accuracy of this approximated boundary is tested
through a wide computational experience. In the second step we have

embodied the optimal exercise boundary thus computed in a Monte
Carlo simulation procedure.

Then we have studied early exercise and the effects of dividends by
carrying out a wide simulation analysis.

Finally, we have analyzed the effects on the option price and the
early exercise estimation (mainly on the exercise time and the probab-

ility of exercise) of the bias due to the discrete monitoring procedure
implemented in a Monte Carlo simulation approach.

Further investigation, left for future research, concerns the possib-
ility to apply proper corrections to the simulation procedure in order
to reduce or eliminate the discrete monitoring bias.
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