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Abstract. We consider a firm that sells seasonal goods. The firm
seeks to reach a fixed level of goodwill at the end of the selling period,
with the minimum total expenditure in promotional activities. We con-
sider the linear optimal control problem faced by the firm which can
only control the communication expenditure rate; communication is
performed by means of advertising and sales promotion. Goodwill and
sales levels are considered as state variables and word-of-mouth effect
and saturation aversion are taken into account. The optimal control
problem is addressed by means of the classical Pontryagin Maximum
Principle and the solution can be easily found solving, in some cases
numerically, a system of two non linear equations. Moreover, a para-
metric analysis is performed to understand how the total expenditure
in communication should be divided between advertising and sales pro-
motion.
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1. Introduction

The problem of planning media schedules and communication mix expenditure
over time has received growing attention in the recent past and a number of ag-
gregate advertising response models have been proposed in literature since the
pioneering works of Vidale and Wolfe [13] and Nerlove and Arrow [9]. The key
idea of Nerlove and Arrow was to take into account explicitly the goodwill level
reached by a firm or product; the goodwill depends on the expenditure in adver-
tising and is subject to a decay due to the forgetting effect. More precisely the
dynamics in the model of Nerlove and Arrow is described by the linear differential
equation

Ȧ(t) = a(t) − δA(t),

where A(t) is the goodwill level at time t, a(t) is the advertising spending rate at
time t and δ is the goodwill decay rate. A number of generalizations of the model,
with suitably defined profit functions to be maximized, can be found in literature
(see e.g. Feichtinger et al. [4]).

Here we consider a firm that sells seasonal goods and seeks for the optimal
communication plan over a finite time horizon: this leads to a linear optimal
control model.

Similar models were recently proposed by Favaretto and Viscolani [3], Buratto
and Favaretto [2], Funari and Viscolani [5].

In particular in [3] an optimal control model for production, advertising and
selling of seasonal goods is considered, where production and advertising take place
in a first time period while in a second consecutive time period the firm can sell
the good, continuing the advertising activity.

In our model we focus on the interaction of different promotional activities dur-
ing the selling period. In fact we take into account not only advertising expenditure
but also other important features of the communication mix, like sales promotion
and word-of-mouth. Moreover we include in the model a market saturation effect.

We assume that the aim of the firm is to reach at the end of the selling period
a level of goodwill previously defined by the management: this can be useful,
for example, when reaching high levels of goodwill allows to exploit hysteresis
properties of the response function [6, 7] so that it is possible to keep the level of
goodwill with low economical effort. At the same time we assume that the firm
requires to sell its whole inventory.

To reach its targets the firm spends in promotional activities but since, as it
is well known, “many brands are overspending in advertising” ([1], p. 357), a
careful minimization of costs is required and the firm tries to minimize the total
expenditure in communication.

To be more precise, we assume that the communication expenditure rate is the
only control allowed to the firm and that communication is performed by means
of advertising and sales promotion.

In the linear optimal control model stated in Section 2, goodwill dynamics
depends not only on advertising effort but also on sales level due to the effect of
word-of-mouth.
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High levels of goodwill improve sales, of course, but selling activity depends di-
rectly also on sales promotion and on sales level itself. In particular, the increasing
level of goods already sold will reduce sales speed due to the progressive saturation
of the market (see also [5]).

Sales level changes instead, depend directly on sales promotions efforts and on
the reached sales level and takes into account congestion aversion.

Some technical assumptions will be discussed in Section 3 while the structure
of optimal controls will be studied in Section 4.

In Section 5 we will look for admissible optimal controls. As it will be shown,
the optimal control can easily be found solving a system of two non linear equa-
tions. Moreover the structure of the optimal control depends on how the combined
effect of market saturation and goodwill decay is contrasted by the positive effect
of goodwill and word-of-mouth. At the end of the section we also propose an
algorithm to solve an instance of the problem.

Section 6 contains the analysis of the dependence of the optimal communication
mix from the required initial goodwill level and from the final levels of goodwill
and sales. In the same section we analyze how the total cost of the optimal
promotional activities varies depending on the ratio between advertising costs and
sales promotion efforts and provide a numerical example.

Finally, Section 7 contains some remarks on the economic interpretation and
on the main shortcomings of the model.

Let us remark that the readers with small interest in proofs, which are rather
technical, may omit them still getting a clear idea of the model and of the results
obtained. The beginnings and ends of the proofs are marked by “Proof” and “�”,
respectively.

2. Formulation of the problem

As mentioned in the previous section, we propose a linear optimal control prob-
lem to model the dynamics of selling and communication activities of a firm. Of
course, linearity is a strong assumption but, since we consider a firm that sells
seasonal goods, the time period in which the dynamics evolves is limited and short
enough so that a linear model can be considered a sufficiently good approximation
of reality.

Since the selling period is short we also assume that the marginal effects of
communication activities are constant and positive both with respect to the sales
and to the goodwill of the firm. The total expenditure rate in communication is
bounded and divided a priori by the management into two parts, one for adver-
tising and one for sales promotion.

The motion equation we consider for the goodwill generalizes the one proposed
by Nerlove and Arrow [9] and is given by

Ȧ(t) = βx(t) − δAA(t) + γAρa(t)
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where

A(t) = goodwill level at time t;
x(t) = sales level at time t;
a(t) = communication expenditure rate at time t;
δA = goodwill decay parameter, δA > 0;
γA = advertising productivity in terms of goodwill, γA > 0;
ρ = weight of the total expenditure rate devoted to advertising (in short: ad-

vertising weight), ρ ∈ [0, 1];

and β is the word-of-mouth productivity in terms of goodwill. Thus the word-of-
mouth effect increases the goodwill rate whenever β > 0 while a negative word-of-
mouth effect corresponds to β < 0 3. In the following we will restrict our attention
to the case of a favorable word-of-mouth, i.e. β > 0 4.

The sales level dynamics will be defined by the equation

ẋ(t) = −αx(t) + δxA(t) + γx(1 − ρ)a(t)

where

δx = goodwill productivity in terms of sales, δx > 0;
γx = promotion productivity in terms of sales, γx > 0;

and α > 0 is a saturation aversion parameter: in fact this way the sales rate
decreases as the sales increase, modeling the market saturation effect. Factor
(1 − ρ) is the part of the total expenditure rate devoted to sales promotion.

During the selling period the firm requires to reach a fixed goodwill level Ã
starting from the initial level A and to sell the total inventory m.

In order to simplify the notation, in the following we put εx = γx(1 − ρ),
εA = γAρ and a = a(t), x = x(t), A = A(t).

This way the following optimal control problem can be formulated

P : minimize
∫ t2

t1

a(t) dt,

subject to ẋ = −αx + δxA + εxa

Ȧ = βx − δAA + εAa

x(t1) = 0 x(t2) = m

A(t1) = A A(t2) = Ã

a ∈ [0, a]

where [t1, t2] is the selling period and a > 0 is the upper bound for the communi-
cation expenditure rate.

3The role of parameter β is rather similar to the seller’s reputation in Spremann’s model [12].
4This is only done in order to restrict the number of sub-cases to consider; negative values of

word-of-mouth are of course possible in practice, e.g. when selling a low quality product which
is initially perceived by the market, due to unfair advertising, as a high quality product.
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3. Preliminary assumptions

We will assume that problem P satisfies the general position condition (GPC) [11],
which guarantees the uniqueness of the solution, if any.

In order to study GPC for P , let us consider the matrices

A =


0 0 0

0 −α δx

0 β −δA


 , B =


−1

εx

εA


 .

Since the determinant of matrix

(B AB A2B)
is

D = (αδA − βδx)(δxε2A − βε2x + (δA − α)εAεx)

by applying GPC we obtain

Proposition 3.1. If D 6= 0 and an admissible control of problem P exists then
there is a unique piecewise constant optimal control of the problem.

Assumption. We assume that the hypothesis of the preceding proposition holds,
i.e. D 6= 0.

The “regularity” of the problem required by this assumption is considered quite
natural in optimal control since in practical problems non-zero coefficients are
known only with some approximation.

Remark that our assumption requires in particular that αδA − βδx 6= 0 and
we will see that αδA −βδx = 0 is a threshold for the qualitative properties of the
optimal control of problem P .

Another assumption that we will adopt throughout the paper is that the control
is continuous from the left and continuous at the end points of the interval; this
technical hypothesis is usual in optimal control (see e.g. [11], p. 73).

4. Types of optimal control

The system of motion equations of problem P can be rewritten as

Ẋ = QX + B(a), (1)

where

X = X(t) =
(

x(t)
A(t)

)
, Q =

(−α δx

β −δA

)
, B(a) = B(a(t)) = a(t)

(
εx

εA

)
.
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To apply the Pontryagin’s Maximum Principle [10] we need to compute the eigen-
values of −QT which are

λ1 =
α + δA − √

(α − δA)2 + 4βδx

2
, λ2 =

α + δA +
√

(α − δA)2 + 4βδx

2
·

Remark that, since we assumed β > 0, we have λ1, λ2 ∈ <, moreover λ2 > 0,
λ2 > λ1, and the sign of λ1 coincides with the sign of αδA − βδx

5.
Due to the GPC assumption and since the eigenvalues are real, the optimal

control is “bang-bang” and the number of switches in the optimal control cannot
be more than two [11].

The following proposition explains how the sign of λ1 determines the type of
optimal control:

Proposition 4.1. If αδA < βδx (i.e. λ1 < 0) then the optimal communication
policy can only be of type

a∗ =




a, t ∈ [t1, τ1)
0, t ∈ (τ1, τ2)
a, t ∈ (τ2, t2]

(2)

with switch times τ1, τ2 such that t1 ≤ τ1 ≤ τ2 ≤ t2; if αδA > βδx (i.e. λ1 > 0)
the optimal communication policy can only be of type

a∗ =




0, t ∈ [t1, τ1)
a, t ∈ (τ1, τ2)
0, t ∈ (τ2, t2]

(3)

with t1 ≤ τ1 ≤ τ2 ≤ t2.

Proof. By means of Pontryagin’s Maximum Principle it is easy to show that the
number of switches coincides with the number of zeroes of the so called switching
function

Fu1,u2(t) = u1eλ1t + u2eλ2t − 1, t ∈ [t1, t2],
where u1, u2 are arbitrary constants.

For every τ1 < τ2 it is immediate to show that the linear system{
u1eλ1τ1 + u2eλ2τ1 = 1
u1eλ1τ2 + u2eλ2τ2 = 1

has a unique solution (u1, u2), therefore, if we consider t1 < τ1 < τ2 < t2, then the
switching function Fu1,u2(t) has exactly two roots in (t1, t2). Moreover it is easy
to show that u1 > 0.

5This implies that, under GPC assumption, λ1 6= 0; the special case in which λ1 = 0 is
considered, under some more restrictive hypotheses, in [3].
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Let λ1 < 0. Then, since u1 > 0, limt→−∞ Fu1,u2(t) = +∞, therefore Fu1,u2(t1)
> 0 and the optimal control is (2). Remark that in this case all possible kinds of
optimal control a∗ can be written in the unified form (2) also if t1 ≤ τ1 ≤ τ2 ≤ t2.
Let λ1 > 0; then

lim
t→−∞Fu1,u2(t) = −1 < 0,

hence Fu1,u2(t1) < 0 and the optimal control is (3). In this case all possible kinds of
optimal control a∗ can be written in the unified form (3) also if t1 ≤ τ1 ≤ τ2 ≤ t2.

�
From Proposition 4.1 we have:

Corollary 4.1. If problem P has some admissible control then one and only one
of the following communication policies a∗ is optimal:
“ALTERNATE a − 0 − a communication”: some τ1, τ2 exist such that

a∗ =




a, t ∈ [t1, τ1)
0, t ∈ (τ1, τ2)
a, t ∈ (τ2, t2];

“ALTERNATE 0 − a − 0 communication”: some τ1, τ2 exist such that

a∗ =




0, t ∈ [t1, τ1)
a, t ∈ (τ1, τ2)
0, t ∈ (τ2, t2];

“EARLY communication”: some τ1 exists such that

a∗ =

{
a, t ∈ [t1, τ1)
0, t ∈ (τ1, t2];

“LATE communication”: some τ1 exists such that

a∗ =

{
0, t ∈ [t1, τ1)
a, t ∈ (τ1, t2];

“MAXIMUM communication”: a∗ = a ∀t ∈ [t1, t2];
“NO communication”: a∗ = 0 ∀t ∈ [t1, t2].

5. Admissible optimal controls

In order to find admissible optimal controls we have to consider system (1) with
t belonging to some interval [ t′, t′′ ] ⊆ [t1, t2] and the control a constant and either
equal to zero or equal to a, as stated in Proposition 4.1.
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A matrix of eigenvectors of matrix Q of system (1) is

S =
(

δx δx

α − λ1 α − λ2

)
.

Remark that S is nonsingular since λ1 6= λ2. Let us define

Λ =
(

λ1 0
0 λ2

)
= −S−1QS,

which is a nonsingular matrix due to the GPC assumption, and

D(t) = etΛΛ−1S−1B(a) =
a

δx(λ2 − λ1)


 [(λ2 − α)εx + δxεA]eλ1t/λ1

−[(λ1 − α)εx + δxεA]eλ2t/λ2


 . (4)

Then the solution of (1) on the interval [ t′, t′′ ] can be written as

X =

{
Se(t′−t)ΛS−1X(t′), if a(t) = 0
Se−tΛ{et′ΛS−1X(t′) − D(t′) + D(t)}, if a(t) = a.

(5)

At this point we can write the dynamics of the system depending on the optimal
control. Moreover, exploiting continuity of the optimal trajectories, we can specify
the conditions on switch times that allow to have an optimal control, as given in
Proposition 5.1. To simplify notation we define the vector

G = et2ΛS−1X(t2) − et1ΛS−1X(t1). (6)

Proposition 5.1. The optimal trajectory for problem P is:
a.

X∗ =




Se−tΛ{et1ΛS−1X(t1) − D(t1) + D(t)}, t ∈ [t1, τ1]
Se−tΛ{et1ΛS−1X(t1) − D(t1) + D(τ1)}, t ∈ [τ1, τ2]
Se−tΛ{et2ΛS−1X(t2) − D(t2) + D(t)}, t ∈ [τ2, t2]

(7)

with τ1, τ2 such that t1 ≤ τ1 ≤ τ2 ≤ t1 and

D(τ1) − D(τ2) = G + D(t1) − D(t2), (8)

if the optimal control is “alternate a− 0− a communication” or “early com-
munication” (τ2 = t2) or “maximum communication” (τ1 = τ2 = t2);

b.

X∗ =




Se(t1−t)ΛS−1X(t1), t ∈ [t1, τ1]
Se−tΛ{et1ΛS−1X(t1) − D(τ1) + D(t)}, t ∈ [τ1, τ2]
Se(t2−t)ΛS−1X(t2), t ∈ [τ2, t2]

(9)
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with τ1, τ2 such that t1 ≤ τ1 ≤ τ2 ≤ t1 and

D(τ2) − D(τ1) = G, (10)

if the optimal control is “alternate 0 − a − 0 communication” or “late com-
munication” (τ2 = t2) or “no communication” (τ1 = τ2 = t2).

Proof. Let us consider “alternate a − 0 − a communication”. If t ∈ [t1, τ1), then
(see (5)) X = Se−tΛ{et1ΛS−1X(t1) − D(t1) + D(t)} while if t ∈ (τ1, τ2), then
X = Se(τ1−t)ΛS−1X(τ1). Therefore, by means of the continuity of X in τ1

X = Se−tΛ{et1ΛS−1X(t1) − D(t1) + D(τ1)} , t ∈ [τ1, τ2).

Finally let t ∈ (τ2, t2]. Then X = Se−tΛ{eτ2ΛS−1X(τ2)−D(τ2)+D(t)}, i.e., using
continuity in τ2,

X = Se−tΛ{et1ΛS−1X(t1) − D(t1) + D(τ1) − D(τ2) + D(t)}·

In order to fulfill final conditions, τ1 and τ2 must satisfy

X(t2) = Se−t2Λ{et1ΛS−1X(t1) − D(t1) + D(τ1) − D(τ2) + D(t2)},

i.e. (8). Hence also (7) holds.
The other statements of the proposition can be obtained in a similar way. �

An algorithm to solve problem P

By means of Proposition 5.1 we can outline how any instance of problem P can be
solved. To this aim let us first remark that if τ2 = t2 then equation (8) becomes

D(τ1) = G + D(t1) (11)

while (10) can be written as

D(τ1) = −G + D(t2). (12)

Moreover, if τ1 = τ2 = t2 then (8) becomes

G = D(t2) − D(t1) (13)

and (10) can be written as

G = (0, 0)T . (14)

Now it is possible to describe an algorithm to solve problem P .
First compute λ1. If λ1 < 0 then check conditions (13) and (14). If one of

them is satisfied we have maximum or no communication, respectively, and the
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algorithm stops. Otherwise the systems of two equations (11, 12) and (8) must be
considered. If one of them has solution belonging to the interval [t1, t2] then the
corresponding optimal control is determined, otherwise problem P has no solution:
this way the problem is completely solved.

Remark that while systems (11) and (12) can be explicitly solved, system (8)
must be solved numerically. Anyway, since at most one of them has solution, not
necessarily all of them must be solved.

If λ1 > 0 then the procedure is the same but one has to consider system (10)
instead of (8).

6. Parametric analysis

In this section we will first study how optimal communication policies vary
depending on the boundary conditions and then we will show how to determine
the optimal value of the advertising weight ρ.

6.1. Optimal controls structure and boundary conditions

We will look now for a graphic representation of the sets of boundary values of
total inventory m, initial and final goodwill levels A and Ã, for which the structure
of the optimal control is of the same kind.

We will use the conditions on τ1 and τ2 given in Proposition 5.1. More precisely:
if λ1 < 0 then, in “alternate a− 0− a communication” case, some τ1 and τ2 must
exist such that t1 < τ1 < τ2 < t2 and (see (8) and (4))

(eτ1Λ − eτ2Λ)Λ−1S−1B(a) = G + (et1Λ − et2Λ)Λ−1S−1B(a); (15)

while if λ1 > 0 then, in “alternate 0− a− 0 communication” case, some τ1 and τ2

exist such that t1 < τ1 < τ2 < t2 and (see (10) and (4))

(eτ2Λ − eτ1Λ)Λ−1S−1B(a) = G. (16)

The space in which we will give the representation of the types of optimal control
of problem P will be obtained transforming the space of parameters m, A, Ã in a
suitable two dimensional space.

In order to define this transformation let(
d1

d2

)
= S−1B(a),

(
g1

g2

)
= G.

It is easy to show that, under GPC assumption, di 6= 0, i = 1, 2, therefore we can
also define

ki =
gi

di
, hi = ki +

1
λi

(
eλit1 − eλit2

)
, i = 1, 2. (17)
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This way equation (15) can be rewritten as

1
λi

(
eλiτ1 − eλiτ2

)
= hi, i = 1, 2 (18)

and (16) becomes

1
λi

(
eλiτ2 − eλiτ1

)
= ki, i = 1, 2. (19)

We consider now the space of k1, k2, which means that we will not work in the
three-dimensional space of A, m and Ã, but “in terms” of the boundary conditions
since k1 and k2 depend linearly on A, m and Ã.

To determine the set of couples (k1, k2) for which problem P has an admissible
control, let us define

f−(k1, k2) =
1
λ1

ln(eλ1t2 − λ1k1) − 1
λ2

ln(eλ2t2 − λ2k2), (20)

and

f+(k1, k2) =
1
λ1

ln(eλ1t1 + λ1k1) − 1
λ2

ln(eλ2t1 + λ2k2). (21)

The following lemma holds:

Lemma 6.1. If λ1 6= 0 and the optimal control is “alternate communication”
(a−0−a or 0−a−0) then k1, k2 must satisfy f−(k1, k2) < 0 and f+(k1, k2) < 0.

Proof. Consider the case λ1 < 0 and define the auxiliary functions

H+ : [τ2, t2] → < ; H+(t) =
1
λ1

ln(eλ1t + λ1h1) − 1
λ2

ln(eλ2t + λ2h2);

H− : [t1, τ1] → < ; H−(t) =
1
λ1

ln(eλ1t − λ1h1) − 1
λ2

ln(eλ2t − λ2h2).

Remark that H−(t1) = f−(k1, k2) and H+(t2) = f+(k1, k2).
In “alternate a − 0 − a communication” some τ1 and τ2 exist such that t1

< τ1 < τ2 < t2 and (18) holds. Hence H−(τ1) = f−(k1, k2) = 0 and H+(τ2)
= f+(k1, k2) = 0.

Further, since τ1 < τ2 then hi < 0, i = 1, 2 and Ḣ−(t) > 0 in the whole domain
of H−. Since t1 < τ1 we have f−(k1, k2) = H−(t1) < 0. In a similar way one
obtains that f+(k1, k2) = H+(t2) < 0.

Now consider the case λ1 > 0 and define the functions

K+ : [t1, τ1] → < ; K+(t) =
1
λ1

ln(eλ1t + λ1k1) − 1
λ2

ln(eλ2t + λ2k2),

K− : [τ2, t2] → < ; K−(t) =
1
λ1

ln(eλ1t − λ1k1) − 1
λ2

ln(eλ2t − λ2k2).



120 I. BYKADOROV, A. ELLERO AND E. MORETTI

In this case K−(t2) = f−(k1, k2) and K+(t1) = f+(k1, k2).
In “alternate 0 − a − 0 communication” some τ1 and τ2 exist such that t1

< τ1 < τ2 < t2 and (19) are satisfied. Hence K+(τ1) = 0 and K−(τ2) = 0.
Further, since τ1 < τ2, one has ki > 0, i = 1, 2.

Moreover, if K̇+(t) = 0 then

K̈+(t) =
(λ1 − λ2)λ1k1e

λ1t

(eλ1t + λ1k1)2
< 0.

Therefore function K+ has no stationary minimum points and has no more than
one stationary maximum point. Moreover, since

K+(t) =
1
λ1

ln(1 + λ1k1e−λ1t) − 1
λ2

ln(1 + λ2k2e−λ2t)

one has limt→+∞ K+(t) = 0 and, if K̇+(t) = 0 then

K+(t) =
λ2 − λ1

λ1λ2
ln(1 + λ1k1e−λ1t) > 0.

Hence f+(k1, k2) = K+(t1) < 0. By the same way one obtains that f−(k1, k2)
= K−(t2) < 0. �

It is now possible to state the following proposition:

Proposition 6.1. If f+(k1, k2) > 0 or f−(k1, k2) > 0 then there is no feasible
control for problem P ; otherwise the optimal control of P is:

“alternate a − 0 − a communication” if f+(k1, k2) < 0, f−(k1, k2) < 0 and
λ1 < 0;

“alternate 0 − a − 0 communication” if f+(k1, k2) < 0, f−(k1, k2) < 0 and
λ1 > 0;

“early communication” if f+(k1, k2) = 0 and f−(k1, k2) < 0;
“late communication” if f+(k1, k2) < 0 and f−(k1, k2) = 0;
“maximum communication” if f+(k1, k2) = 0, f−(k1, k2) = 0 and h1 = h2 = 0;
“no communication” if f+(k1, k2) = 0, f−(k1, k2) = 0 and k1 = k2 = 0.

Proof. The two “alternate communication” cases follow from Lemma 6.1. In the
“early communication” case we have, from Proposition 5.1, that the solution is
the same as in “alternate a − 0 − a communication” after putting τ2 = t2. This
implies that f+(k1, k2) = 0 while f−(k1, k2) < 0 as in the alternate case.

Similar considerations can be done for the “late communication”, “maximum
communication” and “no communication” cases.

Finally, since these are all the admissible communication types, see
Corollary 4.1, if f+(k1, k2) > 0 or f+(k1, k2) > 0 then there is no feasible con-
trol for P . �
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From Proposition 6.1 we have that the set

V1 = {(k1, k2) | f+(k1, k2) < 0, f−(k1, k2) < 0}

is the region in the space of k1 and k2 in which the optimal control of problem P is
alternate communication, “alternate a−0−a communication” if λ1 < 0, “alternate
0 − a − 0 communication” if λ1 > 0.

The sets corresponding to the other kinds of communication are

V2 = {(k1, k2) | f+(k1, k2) = 0, f−(k1, k2) < 0} early communication curve,

V3 = {(k1, k2) | f+(k1, k2) < 0, f−(k1, k2) = 0} late communication curve,

V4 =
{(

1
λ1

(eλ1t2 − eλ1t1),
1
λ2

(eλ2t2 − eλ2t1)
)}

maximum communication point,

V5 = {(0, 0)} no communication point.

The above defined sets, Vi, i = 1, ..., 5, depend only on the values of λ1, λ2 and t1,
t2. This means that given the coefficients of matrix Q, i.e. saturation aversion,
word-of-mouth productivity, goodwill decay and goodwill productivity, the sets
Vi, i = 1, ..., 5, are completely determined.

The following example suggests that if a feasible control of problem P exists,
then it will probably be an alternate communication:

Example 6.1. Consider the following values of the parameters of problem P :
δA (goodwill decay parameter) = 0.1;
γA (advertising productivity in terms of goodwill) = 0.6;
ρ (weight of the total expenditure rate devoted to advertising) = 0.42;
β (word-of-mouth productivity in terms of goodwill) = 0.3;
δx (goodwill productivity in terms of sales) = 1.0;
γx (promotion productivity in terms of sales) = 1.0;
α (saturation aversion parameter) = 1.0;
a (maximal expenditure rate in communication) = 10.0.

Suppose that t1 = 0 and t2 = 1 and consider the following boundary values:
A (initial goodwill level) = 1.0;
Ã (final goodwill level) = 1.3;
m (total inventory to be sold) = 1.0.

In this case the matrix −QT in system (1) is

−QT =
(

α −β
−δx δA

)
=

(
1.0 −0.3
−1.0 0.1

)

whose eigenvalues are
λ1 ≈ −0.159, λ2 ≈ 1.259.

Since we have that αδA < βδx, i.e. λ1 < 0, then (see Prop. 4.1) the optimal
control of P can only be of type “a − 0 − a communication”. The functions f−
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and f+ (see (20) and (21)) that define the sets Vi are in this case

f−(k1, k2) ≈ 1
−0.159

ln(e−0.159 + 0.159 k1) − 1
1.259

ln(e1.259 − 1.259 k2)

and
f+(k1, k2) ≈ 1

−0.159
ln(1 − 0.159 k1) − 1

1.259
ln(1 + 1.259 k2).

The (feasible part of) curves f−(k1, k2) = 0 and f+(k1, k2) = 0 and the corre-
sponding sets Vi are represented in Figure 1.

Figure 1. Representation of attainable boundary conditions.

We will come back to this example at the end of Section 6.2.

6.2. Optimal advertising weight

Now observe that, fixing the boundary values m, A, Ã, we obtain, by means
of (19), a couple of coordinates (k1, k2). If they correspond to a point which does
not belong to the set

V =
5⋃

i=1

Vi,

then problem P has no feasible solution. But consider now the case (k1, k2) ∈ V
and let us see what happens keeping the boundary conditions fixed and varying
the parameter ρ. This way we look at the role of the weight that the firm gives to
expenditure in advertising with respect to the total expenditure rate.

It is now convenient to consider the family F of problems obtained fixing all
parameters and boundary values in P except for the advertising weight: we denote
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by Pρ the problem of this family for which the advertising weight is ρ. We also
define ΩP as the set of values of ρ ∈ [0, 1] such that Pρ ∈ F is feasible.

Varying the value of ρ we change the values of k1, k2 since, see (17),

ki =
gi

di
=

gi

biρ + ci
(22)

where b1, c1, b2 and c2 are

b1 =
a((λ2 − α)γx − δxγA)

δx(λ1 − λ2)
, c1 =

a(α − λ2)γx

δx(λ1 − λ2)
, (23)

b2 =
a((α − λ1)γx + δxγA)

δx(λ1 − λ2)
, c2 =

a(λ1 − α)γx

δx(λ1 − λ2)
(24)

as can be easily found by straightforward calculations.
As ρ moves in [0, 1], the couple (k1, k2) ∈ V describes a part of a branch of the

hyperbola (22)6.
If for a given problem Pρ the corresponding point (k1, k2) belongs to V , then

the problem is feasible and it has an optimal control a∗
ρ. For each ρ ∈ ΩP it is

possible to determine the optimal value ν(ρ) of the objective functional of Pρ, and
the following value function is defined:

ν : ΩP → <; ρ → ν(ρ) =
∫ t2

t1

a∗
ρ(t) dt.

It is now possible to determine the value of ρ which minimizes the total expenditure
in communication with fixed boundary conditions, since this means to minimize
the value function ν. To do this we first prove the following proposition:

Proposition 6.2. Given the family of problems F = {Pρ : ρ ∈ ΩP }, and an open
interval I ⊆ ΩP , if

b1λ2

b1ρ + c1
− b2λ1

b2ρ + c2
≤ 0 (≥ 0) ∀ ρ ∈ I (25)

then the total expenditure in communication ν(ρ) is increasing (decreasing), with
respect to the weight of advertising expenditure ρ, in the interval I.

Proof. Consider the case λ1 > 0 with optimal “alternate 0−a−0 communication”;
the total expenditure is ν(ρ) = a(τ2 − τ1) where τ1 and τ2 are defined, see (19),
by the system

(eλiτ2 − eλiτ1) = kiλi, i = 1, 2.

6We recall that, due to GPC assumption, di = biρ + ci 6= 0, i = 1, 2.
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Since k1 and k2 depend from ρ, also τ1 and τ2 are (implicit) functions of ρ. By
the implicit function theorem we obtain

∂τ1

∂ρ
=

1
N

(
k2b2

d2
eλ1τ2 − k1b1

d1
eλ2τ2

)
,

∂τ2

∂ρ
=

1
N

(
k2b2

d2
eλ1τ1 − k1b1

d1
eλ2τ1

)
,

where N = −eλ1τ1+λ2τ2 + eλ1τ2+λ2τ1 < 0. Hence, by straightforward calculations,

∂(τ2 − τ1)
∂ρ

=
k1k2

N

(
b1λ2

d1
− b2λ1

d2

)
=

k1k2

N

(
b1λ2

g1
k1 − b2λ1

g2
k2

)
·

This way, since k1 and k2 are positive,

∂(τ2 − τ1)
∂ρ

≥ 0 ⇐⇒ b1λ2

g1
k1 − b2λ1

g2
k2 ≤ 0,

i.e., see (22),

b1λ2

b1ρ + c1
− b2λ1

b2ρ + c2
≤ 0.

For λ1 < 0 and “alternate a− 0− a communication” the result follows in a similar
way from system (18). �

A result similar to the one given in Proposition 6.2 can be easily proved also
for the non-alternate case, i.e. for ρ belonging to the boundary of ΩP .

Remark that the equation

b1λ2

g1
k1 − b2λ1

g2
k2 = 0 (26)

corresponds to the case of equality in (25), taking into account (22), and defines
a straight line r in the space of k1 and k2. Therefore, from Proposition 6.2, it
follows that if the intersection point (k∗

1 , k∗
2) of the straight line r and a branch of

the hyperbola defined by (22) belongs to V , then it corresponds to an extremum
point ρ∗ of ν. Since ρ∗ satisfies (25) as an equality, we have

ρ∗ =
1

λ2 − λ1

(
c1

b1
λ1 − c2

b2
λ2

)
. (27)

To show how the above proposition can be used, let us consider again the numerical
Example 6.1.

To obtain the equation of the straight line r it is necessary to compute the values
b1 ≈ 2.406, b2 ≈ −12.406 (see (23) and (24)) and g1, g2, i.e. the components of
the vector G defined by (6). To compute g1 and g2 we have to calculate the inverse
of the matrix S of eigenvectors of matrix Q. We obtain

S−1 =
1

δx(λ1 − λ2)

(
α − λ2 −δx

λ1 − α δx

)
≈ 1

1.418

(−0.259 −1.0
−1.159 1.0

)
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hence

G =
(

g1

g2

)
≈

(
1.163
1.774

)
.

The equation of the straight line r defined by (26) is therefore

2.604 k1 − 1.111 k2 = 0.

To write the equation of the hyperbola defined by (22) we compute also c1 and c2

by means of (23) and (24):

c1 ≈ 1.826, c2 ≈ 8.174.

So the parametric equation of the hyperbola is

k1 =
1.163

2.406 ρ + 1.826
, k2 =

1.774
−12.406 ρ + 8.174

·

In Figure 2 we report the set V , the hyperbola (22), i.e. curve h, and the straight
line r.

Figure 2. Optimal advertising weight.

The point P ∈ V1, which lies on the curve h, corresponds to the given value
ρ=0.42, therefore the corresponding problem P = Pρ is feasible and the optimal
communication is alternate. Solving system (18) we obtain the optimal switching
times τ1 ≈ 0.406 and τ2 ≈ 0.980. The minimum expenditure in this problem is
ν(0.42) = a(t2 − τ2) + a(τ1 − t1) ≈ 4.26.
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Proposition 6.2 tells us that to minimize expenditure it is convenient to
strengthen advertising with respect to sales promotion, i.e. to increase ρ. To
do that we can move from point P to point P∗ given by the intersection of curve
h and straight line r. The corresponding advertising weight ρ∗ is the minimum
point of the value function ν.

By means of (27) we obtain that the optimal distribution of expenditure between
advertising and sales promotion is ρ∗ = 0.5, so the expenditure has to be equally
divided into the two communication forms. Solving system (18) we obtain the
optimal switching times τ∗

1 ≈ 0.196 and τ∗
2 ≈ 0.779. Therefore the minimum of

the total expenditure for the firm, considering the best distribution among the two
considered promotional activities, is ν(ρ∗) = a(t2 − τ∗

2 ) + a(τ∗
1 − t1) ≈ 4.16.

7. Conclusions

The communication expenditure minimization model considered, is rather gen-
eral and takes into consideration at once different generalizations of the classical
Nerlove and Arrow model which can be found in literature. Nevertheless we did
not address some typical marketing issues7.

Although our model responds dynamically to the increasing of communication
expenditure, this happens always at the same rate, since the effect of promotion
on sales (γx) is constant.

The linearity is another strong assumption, but we consider seasonal goods and
the selling period is short therefore the problem we have faced might be considered
an acceptable linear approximation of more realistic models that consider concave
or S-shaped advertising return functions.

To consider only constant parameters is a shortcoming of the model too; for
example we consider the goodwill effect on sales (i.e. the parameter γA) as fixed
but if it would depend on time and on communication efforts (see e.g. Naik
et al. [8]), this would also allow us to take into account wearout effects, and this
way the problem would become non-linear.

Nevertheless the main meaning of the proposed model relies on its simple qual-
itative throughput and on putting together different promotional activities like
advertising, sales promotion and the effect of word-of-mouth.

We have seen in particular that the sign of αδA−βδx determines the type of op-
timal alternate communication. This implies that if saturation aversion and good-
will decay, which can be considered as negative factors for the firm, are “stronger”
than word-of-mouth and goodwill productivity, which are positive for the firm,
then, in alternate communication case, it is more convenient to advertise only in
the middle of the selling period. Otherwise it is convenient to advertise at the
beginning of the selling period and then to refresh the goodwill of the firm at the
end of the period.

7For a summary of the properties that an advertising response model should have, see e.g. [7].
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Analyzing the properties of the optimal value function, we finally studied how
the distribution of efforts between advertising and sales promotion can be improved
in order to minimize the total expenditure in communication (see Prop. 6.2).
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