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Abstract

The Traveling Salesman Problem with Time Windows has important applications
in routing and scheduling and has been extensively studied in literature. In the paper, a
mathematical formulation of the temporal–Traveling Salesman Problem with Time Windows
is presented and a meta-heuristic based on Ant Colony System is proposed and imple-
mented. Computational experience on a benchmark problem is reported and a case study
is analyzed, where interesting results are obtained.
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1. Introduction

The Traveling Salesman Problem with Time Windows (TSPTW) con-
sists in finding the minimum length circuit to be travelled by a vehicle,
which must visit a set of nodes exactly once. The service at each node must
begin within a specific time window. If the vehicle arrives too early, it has
to wait until the window opens, while if it arrives too late the service is
not possible [4].
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The objective of the problem is usually to minimize the total length
of the tour. In this paper, the classical formulation of TSPTW is considered
[4] and a variant of the problem is proposed, called temporal-TSPTW. The
difference between the two problems consists in the objective functions. In
the temporal-TSPTW, the total weighted time, traveling and waiting time,
has to be minimized.

The TSPTW has been solved in literature both by exact algorithms [7],
[8], [12] and heuristics [11], [13].

In this paper, a meta-heuristics based on Ant Colony System is pro-
posed and implemented for both the Traveling Salesman Problem with
Time Windows (SACS) and the temporal-Traveling Salesman Problem with
Time Windows (TACS). Computational experience is presented solving
instances of a benchmark proposed in literature [12], [14]. The instances
of the benchmark have been tested for both SACS and TACS as will be
discussed in the following. Moreover, a case study is also analyzed.

In section 2 the Traveling Salesman Problem with Time Windows is
formulated also for the temporal variant. Section 3 deals with the approach
of Ant Colony System while section 4 gives the description of the meta-
heuristic proposed. Computational experience is presented in section 5
and in section 6. Finally, conclusions and hints for future research are
reported in section 7.

2. The problem

Consider a logistic distribution problem having the following fea-
tures.

• A unique vehicle has to serve a set of customers exactly once during
a period [0, T] .

• Each customer may require to be served within a specific time
window during the period [0, T] .

• A minimum cost path must be determined.

The problem can be formulated as a classical Traveling Salesman
Problem with Time Windows (TSPTW).

Consider a set of customers N = {1, 2, . . . , n} to be visited and the
additional single depot. Next, duplicate the depot into an origin depot, o ,
and a destination depot, d [4].
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Let G = (V, E) be a graph where V is the set of nodes and E
is the set of not oriented edges. More precisely, V = N ∪ {o, d} and
E = ({o} × N) ∪ ({d} × N) ∪ (N × N) , where {o} × N is the set of edges
connecting the customers and the starting depot, ({d} × N) is the set of
edges connecting the customers and the ending depot and N × N is the
set of edges connecting the customers. The starting and the ending depots
are represented with different nodes even if they are in the same location.

To each customer i ∈ N , a strong time window [ei , li] ⊆ [0, T] and a
weight si , representing the service time to customer i , are associated.

To each edge (i, j) ∈ E , two weights ci, j and ti, j, representing respec-
tively the cost of travel from node i to node j and the time required to
travel from node i to node j , are associated.

Let Ti be a variable indicating the instant of time in which the service
at the customer i ∈ N begins, and xi, j be a binary variable having the
following meaning:

xi, j =





1, if the vehicle visits the customer

j immediately after the customer i,
∀ i, j ∈ N .

0, otherwise,

The model can be formulated as follows

min ∑
i∈N∪{o}

∑
j∈N∪{d}\{i}

ci, j · xi, j (1)

subject to

∑
j∈N

xi, j = 1, ∀ i ∈ N , (2)

∑
i∈N

xi, j = 1, ∀ j ∈ N , (3)

∑
j∈N

xo, j = 1 , (4)

∑
i∈N

xi,d = 1 , (5)

(Tj − Ti − ti, j − si) · xi, j ≥ 0 , ∀ i ∈ N ∪ {o}, j ∈ ∪{d} , (6)

ei ≤ Ti ≤ li , ∀ i ∈ N ∪ {o} ∪ {d} , (7)
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xi, j ∈ {0, 1} , ∀ i ∈ N ∪ {o}, j ∈ N ∪ {d} (8)

xi,o = xd,i = 0 , ∀ i ∈ N ∪ {o}, j ∈ N ∪ {d} . (9)

Constraint (2) requires the vehicle to leave each node exactly once
and constraint (3) requires the vehicle to arrive at each node exactly
once. Constraint (4) requires the vehicle to leave the depot only once
and constraint (5) requires the vehicle to arrive at the depot only once.
Constraints (4), (5), (6) and (9) eliminate subtours [4, p. 55], stating that it
is impossible to come back to the same node. Constraint (7) ensures the
schedule feasibility with respect to time windows. Binary conditions on
the variables are expressed by the last constraints (8) and (9).

The objective (1) minimizes the routing cost.

The constraint (6) can be linearized as suggested in [4, p. 56].

A variant of the problem (1)-(9) is to consider a different objective
function taking into account the costs deriving from the waiting times
which can occur when the vehicle arrives at the customer before the
opening of the time window.

Let Wi , Wi ≥ 0, i ∈ N , and Ci , i ∈ N , be the waiting time and a
weight associated to the node i , respectively.

The new objective function can be written as

min ∑
i∈N∪{o}

∑
j∈N∪{o}\{i}

ti, j · xi, j + ∑
i∈N

CiWi . (10)

Moreover, the constraint (6) becomes

(Tj−Ti−ti, j−Wj−si) · xi, j = 0, ∀ i∈N ∪ {o}, j ∈ N ∪ {d} (11)

and the constraints

Wi ≥ 0 , ∀ i ∈ N (12)

have to be added.

Let’s call this new problem temporal-TSPTW. It is easy to see that it
becomes the TSPTW, if Ci = 0, ∀ i ∈ N and ti, j = ci, j , ∀ i, j ∈ E [4, p. 55],
while it becomes the variant formulated by Desrsosiers et al. in [4, pp. 56-
57], if Ci = 1, ∀ i ∈ N . The parameter Ci may express the importance
of the customer i , i ∈ N . This parameter allows to weight in a different
way the waiting time at the different customers. In fact if a customer i
is very important the corresponding value of Ci is lower compared with



AN ANT COLONY SYSTEM APPROACH 39

the values of the parameters associated to the other customers, since it is
worth while to wait to serve him as soon as possible.

3. Ant Colony System

Ant Colony System (ACS) studies a set of artificial ants cooperating to
the solution of an optimization problem obtained exchanging information
via pheromone deposited on graph edges [6].

Real ants are able to find the shortest path from a food source to their
nest exploiting pheromone trail deposited by previous ants, developing
what can be interpreted as collective learning. The trail of pheromone
accumulates faster on the shortest path, so that eventually all ants will
be going through it.

The first problem to which this method has been applied is the TSP
[5], [6], [15] and recently an algorithm has been proposed also for the
VRP [1], [2] and VRPTW [10]. This method has been applied to solve the
TSPTW only under stochastic assumption [9].

The aim of this paper is to propose an algorithm to solve both TSPTW
and temporal-TSPTW formulated in the previous section using the Ant
Colony System.

According to the literature, two weights are associated to each edge: a
desirability measure τ(i, j) , called pheromone, which is modified at each
run by artificial ants, and a heuristic measure τ(i, j) , the meaning of which
is related to the kind of the analyzed problem.

At the beginning, f ants are located in the depot. Each ant generates a
complete tour by choosing the nodes according to a probabilistic transition
rule. Ants prefer to move to nodes connected by shortest edges with high
amount of pheromone. When the ants move the level of pheromone, on
the edges used, is modified (local updating rule). Once all the ants have
completed their tours, a global pheromone updating rule is applied. Then
the whole process, is repeated.

ACS ends when one of the following conditions becomes true: a
fixed number of solutions has been generated, a fixed computational time
has elapsed or a fixed number of iterations with no improvement of the
objective function has been performed.

The state transition rule shows how ant k in node i chooses node j
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to move to. Let q0 be a fixed parameter (0 ≤ q0 ≤ 1) and q be a random
number uniformly distributed in [0, 1] .

If q ≤ q0 the ant k in node i chooses node j such that

j = arg max
u∈Jk(i)

{[τ(i, u)] · [η(i, u)]β} , (13)

where

β is a parameter which determines the relative importance of pheromone
versus distance;

τ(i, u) is the level of pheromone associated to the edge (i, u) ;

η(i, u) is a function of the distance between i and u ;

Jk(i) is the set of nodes which can be visited by the ant k leaving from i .

If q > q0 , the choice of the ant k in node i is random. The ant k in
node i chooses to move in node j using the following probabilistic rule:

pk(i, j) =





[τ(i, j)] · [η(, j)]β

∑
u∈Jk(i)

[τ(i, u)] · [η(i, u)]β
, if j ∈ Jk(i) ,

0, otherwise.

(14)

It means that, if q is greater than qo, the nodes have different
probabilities to be chosen which are proportional to their desirability.

If q is greater than q0 , this process is called exploration, otherwise it is
called exploitation.

When f hamiltonian circuits are determined, the pheromone level is
modified on all edges by a global modification. In this context, only the
ant that has found the shortest route deposits pheromone on the edges it
went through, so that the choices of the following agents will be positively
affected by those of the ant which has obtained the best solution.

4. The description of the meta-heuristic

The algorithms proposed to solve the problems formulated in sec-
tion 2 are similar to the one proposed for TSP in [6] and differ from one
another only for the evaluation of the objective function. They will be
called respectively SACS (Spatial Ant Colony System) and TACS (Temporal
Ant Colony System).

In the following, the algorithm TACS is described.
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The first step of the procedure finds a feasible solution by an algo-
rithm based on nearest neighbor [14]. This algorithm has been chosen
because of its low complexity, even if it does not guarantee all nodes to
be inserted in the tour: it may happen, owing to particular time windows,
that some nodes are not included. Since the aim of this step is just
providing a rough estimation of the cost of the tour, needed to fix the initial
level of pheromone on edges, this problem has been faced by computing
the average length of an edge used in the partial solution and adding to
the total cost the length of as many edges as are the nodes not yet visited.

Let ψgb be the current best solution (globally best).

The second step requires that a colony of ants is activated to find the
shortest route.

The guideline of how a colony of ants works can be summarized in
the following way: analyzing each node with respect to the constraints
imposed by the model, each ant builds a list of feasible movements and
chooses the one indicated by the probabilistic rule described in section 3.
As explained before considering the first step, it is not guaranteed that
all the nodes can be easily inserted in the tour; exploiting collective
learning to reach this result, following Gambardella et al. [10], the best
tour is, firstly, the one that reaches the highest number of nodes. Global
pheromone update is made using the best solution found in this way.

In Figures 1 and 2 the algorithm is depicted.

4.1 Set of feasible customers and time windows constraint

Let Ni be the set of feasible customers if the last node visited is i . Ni

will be the set of all not visited customers j such that Ti + ti, j + si ≤ l j . In
this case, j is reachable before its time window closes.

4.2 Evaluation of η

The value of η(i, j) , i, j ∈ N ∪ {o, d} , represents not only the inverse
of the time needed to go from node i to node j , but also the urgency
of serving customer j , given by the time interval between the present
moment and the one in which his time windows closes; moreover, the
number of times in which the node j has not been inserted in the previous
routes is taken into account.
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Figure 1
The algorithm

/* Main Procedure */

1. /* Initialization */

/* ψgb is the best current solution,

|N| is the number of nodes of the graph,

LNN is the total travel time of the tour obtained by nearest neighbour,

Lψgb is the total travel time of the best tour found */

Initialize variables

Initialize ψgb

Start nearest neighbor

τ(i, j) =
1

|N| · LNN
, ∀ (i, j) ∈ E

2. /* Main Loop */

Repeat

For each ant k

call TourBuildingProcedure

/* ψk, Lk are current solution and current travel time */

If #visited customers(ψk) > #visited customers(ψgb)

or (#visited customers(ψk)

= #visited customers(ψgb) and Lk < Lψgb ) Then

ψgb := ψk

End if

End for each

If #visited customers(ψgb) = 0 Then

End

Else

/* Global pheromone updating */

If (i, j) is an edge in the current best solution Then

τ(i, j) := (1−α) · τ(i, j) +α(Lψgb )
−1

Else

τ(i, j) := (1−α) · τ(i, j)

End if

End if

Until a stop criterion is met
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Figure 2
The tour building procedure

/* Tour BuildingProcedure for the ant k */

Initialize ψk

Repeat

1. /* Definition of compatible customers */

For each not visited node j

If Ti + ti, j + si ≤ l j Then

j is compatible

η(i, j) =
1

max{1, δ j(l j − now)− IN3
j }

End if

End for each

If there are compatible customers Then

2. /* Choice of the node to visit */

Draw q

If q ≤ q0 Then

exploitation

Else

exploration

End if

Insert j in ψk

3. /* Local pheromone updating */

τ(i, j) := (1− ρ) · τ(i, j) + ρ∆τ(i, j)

End if

Until no compatible customers are found

For each node j /∈ ψk

IN j = IN j + 1

End for each

More precisely,

η(i, j) =
1

max{1, δ j(l j − now)− IN3
j }

(15)
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where

now is the current time,

δ j = max{now + ti j, e j} -now is the width of the time interval elapsing
before the beginning of the service to customer j ,

IN j is the number of times node j has not been inserted in a tour [10],

γ is a scale factor introduced to have homogeneous quantities.

The formula (15) for η(i, j) is the same as the one proposed by
Gambardella et al. in [10], apart from the raising to the third power of IN j ,
which is introduced to privilege the choice of customers difficult to visit,
and the presence of the coefficient γ . In the following γ is considered
equal to 1.

4.3 Pheromone updating rules

Pheromone updating rules are the following:

• local updating rule

τ(i, j) := (1− ρ) · τ(i, j) + ρ∆τ(i, j),

with

ρ parameter such that 0 < ρ < 1,

∆τ(i, j) fixed equal to the initial level of pheromone [6];

• global updating rule

τ(i, j) := (1−α) · τ(i, j) +α∆τ(i, j) ,

with ∆τ(i, j) =





(Lψgb)
−1, if (i, j) ∈ ψgb

0 , otherwise,
α pheromone decay parameter, 0 < α < 1;

Lψgb length of the globally best tour ψgb .

The local updating rule does not modify the pheromone trail until a
global update has been performed. Moreover, this modification allows the
ants to choose different paths in the following iterations.

5. Computational results

The algorithm just described was coded in Visual Basic and run on a
Athlon XP 1600, 1.39 GHz.
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Preliminary tests have been performed for different values of
α, β, ρ and q0 . The values tested were α ∈ {0.1, 0.5, 0.7, 0.9} , β ∈
{0.5, 1, 5, 10, 20} , ρ ∈ {0.3, 0.5, 0.7, 0.8, 0.9} and q0 ∈ {0.8, 0.85, 0.9, 0.95}
and all the combinations were checked. The analysis indicates that
satisfactory results can be obtained by setting:

α = 0, 1 ,

β = 5,

ρ = 0, 9 ,

q0 = 0, 9 ,

f = 30 ,

maximum number of iterations = 10000, maximum

computational time allowed = 60 sec,

maximum number of iterations without improvement = 55 .

Following Gendreau et al. [12], test problems were taken from the
literature, namely single vehicle decomposition of Solomon’s VRPTW
instances in [14]. The travel costs and travel times between cities i and
j correspond to the Euclidean distance separating them, using suitable
coefficients to have homogeneous quantity. Results obtained both for
TSPTW and temporal-TSPTW, setting Ci = 1, ∀ i ∈ N , are compared with
the ones reported by Gendreau et al. [12], who use an exact algorithm to
solve TSPTW. As far as we know, in literature it is not possible to find
results related to a benchmark for temporal-TSPTW. This is the reason why
in Table 2 some results are presented which evaluate the objective function
of temporal-TSPTW corresponding to the solution obtained by Gendreau
et al. [12] for TSPTW. These results have been chosen as benchmark also
because the two objective functions, (1) and (10), differ only from a term
taking into account the total waiting time, while the other term coincides
since ti, j = ci, j is assumed.

In the following Table 1 the values of an optimal solution obtained by
Gendreau et al. [12] and the values of the best solution obtained by SACS
are reported.

In the last column the relative error of SACS is reported. As it can
be seen, in more than one half of the cases SACS algorithm has found the
optimal solution.
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Table 1
Results of TSPTW

Instance Number Optimal solution Solution value RSACS

of nodes value reported by of SACS

Gendreau et al.

RC201-1 26 378.62 378.62 0

RC201-2 29 374.70 374.70 0

RC201-4 20 232.54 232.54 0

RC202-1 26 246.22 256.59 0,0421

RC202-2 23 206.53 214.13 0,0368

RC202-3 28 341.77 341. 77 0

RC202-4 26 367.85 410.56 0,1161

RC205-1 27 251.65 313.54; 254.62 0,2459; 0,0118

RC205-2 23 271.22 343.29 0,2657

RC205-3 29 436.64 436.64 0

RC205-4 25 361.24 361.24 0

In the following Table 2 comparisons between results of temporal-
TSPTW are reported.

As it can be seen, in all cases except one, RC205-1, the solutions
found by TACS algorithm are better than those deduced from Gendreau
et al. results. For what concerns instance RC205-1, two solution values are
reported, the second better than the first one. Such result was obtained
postponing the beginning of the time window of the following five nodes:
98, 47, 14, 12, 5. The initial time ei of such nodes was set equal to 187,
the initial instant of service of the first customer, node 69, in the solution
presented by Gendreau et al. [12]. It may be that the first solution found
was a local minimum; in fact also increasing the number of the ants of the
colony it was not possible to jump out of it

The average relative improvement is 2,01%, considering the best
value for instance RC205-1. In particular the solutions proposed reduce
the average total waiting time of about 57% and increase the average total
travel time of about 46%.
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Table 2
Results of temporal-TSPTW

Instance Solution value deduced Solution value

from Gendreau et al.’s results of TACS

RC201-1 821.43 821.02

RC201-2 866.62 850.48

RC201-4 715.95 699.61

RC202-1 861.32 850.48

RC202-2 726.39 702.28

RC202-3 854.12 853.71

RC202-4 775.04 771.48

RC205-1 683.73 834.62; 656.84

RC205-2 914.12 899.24

RC205-3 944.66 908.79

RC205-4 704.41 684.21

The instance RC201-3 has not been considered because the solution
presented by Gendreau et al. is not feasible: the time window of customer
62 is violated. In fact, the service at customer 62 starts at the instant 294,
while his time window closes at the instant 287.

The instances of problem RC207 presented by Gendreau et al. [12]
have not been considered because the time window of customer 6 (in-
stance RC207-2) is violated: the service starts at the instant 799,49 while
his time window closes at the instant 646. The violation is very consistent,
moreover also the run of the other instances RC207 have shown that
sometimes it is not possible to find a feasible solution. The most probable
motivation is that the clusters reported in Gendreau et al. [12] are not
correct.

The average CPU time is about one second for every instance.

Another interesting remark is that in all the runs the stop criterion
met is the number of iterations without improvements which have the
following meaning: either the solution found is optimal, or it is not
possible to jump out of a local minimum.
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In Appendix 2 the solution of the instances of the benchmark are
reported.

6. The case study

As a case study, a firm is considered which distributes door-to-door a
wide number of food products in almost all regions of Italy.

The head office assigns each customer to one of the branch of the
firm and decides how to split each of these areas in subareas that can be
served by one agent. Each agent in this way deals always with the same
customers, reaching higher levels of efficiency.

The selling strategy consists in visiting the customers and proposing
them the goods in that moment available to the agent, without the need
of placing any order. Agents receive a commission proportional to their
volume of business.

The aim of the application of the algorithm to this case is to find an
efficient way for visiting a predetermined set of customers respecting their
time windows in the shortest time.

6.1 The instance

The instance solved considers 64 customers, the data of which are
reported in Table 4 (see Appendix 1), which shows the cartesian coordi-
nates referred to a suitable metric system and the time window of each
customer. The node-depot is the one called 0. The matrix of Euclidean
distances is weighted by coefficient 2 to have a better approximation of the
real distances, taking into account the fact that the roads are not straight
lines. In any case the value 2 for the correction coefficient seems to be very
conservative.

Each agent chooses by himself the starting time of his own tour,
so the node-depot is considered available from 6:30 till 22:30; for all the
customers that did not request a time window, the firm indicates the
interval between 8:30 and 20:30.

Each vehicle has a speed of 20 Km/h, and each service requires 5
minutes.

The solution obtained is reported and compared with the result
reached by the firm in Table 3.
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It can be seen that the firm proposes a tour that requires 10 hours
and 37 minutes, and cannot visit three customers owing to the late arrival
time. Moreover, 8 time windows are violated, which means that the time
constraints of about 30% of visited customers are not satisfied.

On the other hand, TACS algorithm gives a solution that respects all
the time windows and includes all the customers, requiring a travel time
of 10 hours and 23 minutes. Taking into account that the distances and
travel time are overestimated, the relative improvement of the solution
proposed with respect to the one chosen by the firm, can be considered
highly satisfactory.

Computational time requested to reach the final result is 5 seconds.

7. Conclusions

It has to be pointed out that in all the considered instances the number
of ants used is 30, which is high with respect to the number of nodes. In
fact, the larger is the number of ants, the greater is the effect of the local
updating rule of the pheromone and, then, the greater is the number of
explored solutions. In this way, it may be that it is easier to jump out of a
local minimum, even if of course this is not assured as it can be shown in
the instance RC205-1. On the other hand, the fact that it is possible to fall
in a local minimum is a typical problem of many meta-heuristics.

Since also the number of ants is one of the chosen parameters, it
would be very interesting to perform a sensitivity analysis as in [3] to
establish which are the values of parameters to fix. As an example, it
would be very interesting to understand how the stop criteria should be
chosen to guarantee a satisfactory solution.

Another very important decision is related to the construction of
the data of the instance, that especially in real cases may be not so
straightforward. In fact, it may be difficult to define the spatial distance
between two nodes using real roads and in the same way to define the
temporal distance between two nodes taking into account for example
traffic and so on.

As it can be seen, the computational time is always very low; even
if the size of the instances considered is generally small, nevertheless the
computational performance can be considered very satisfactory.
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Table 3
Results reached by the firm and by the algorithm

Firm’s result TACS’s result

Node Arrival Node Arrival Node Arrival Node Arrival
0 10.04 33 15.33 0 9.23 37 14.45
1 10.08 34 15.39 6 9.30 38 15.00
2 10.23 35 15.56 13 9.35 39 15.06
3 10.32 36 16.02 11 9.41 40 15.12
4 10.41 37 16.08 62 9.48 61 15.18
5 10.48 38 16.23 17 9.55 4 15.23
6 11.55 39 16.29 10 10.00 60 15.29
7 11.03 40 16.37 12 10.05 5 15.34
8 11.12 41 16.48 16 10.12 19 15.40
9 11.19 42 17.04 8 10.30 2 15.45
10 11.25 43 17.19 9 10.36 3 15.52
11 11.30 44 17.25 15 10.42 54 15.58
12 11.36 45 17.56 1 10.54 7 16.05
13 11.42 46 18.02 18 11.30 27 16.11
14 11.49 47 18.08 21 12.00 42 16.17
15 11.55 48 18.13 20 12.05 57 16.25
16 12.01 49 18.28 28 12.30 52 16.32
17 12.10 50 18.33 22 12.36 41 16.38
18 12.16 51 18.39 24 13.00 36 16.45
19 13.00 52 18.50 26 13.06 50 16.51
20 13.06 53 19.08 25 13.12 49 16.56
21 13.12 54 19.35 14 13.17 35 17.01
22 13.20 55 19.44 58 13.23 30 17.09
23 13.43 56 19.50 55 13.28 29 17.14
24 14.00 57 19.55 46 13.42 63 17.22
25 14.08 58 20.01 47 13.47 44 17.31
26 14.14 59 20.07 23 13.52 43 17.37
27 14.27 60 20.15 48 13.57 56 18.00
28 14.38 61 20.21 45 14.03 53 18.13
29 14.53 62 not visited 34 14.09 33 18.20
30 14.59 63 not visited 51 14.19 59 18.34
31 15.10 64 not visited 31 14.30 64 19.00
32 15.17 32 14.36
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8. Appendix 1

Table 4
Relevant data about the customers

Node x coord. y coord. e j l j Node x coord. y coord. e j l j

0 3550 150 8:30 20:30 33 410 4925 6:30 22:30
1 2950 360 8:30 13:30 34 575 4990 8:30 20:30
2 2720 2090 8:30 20:30 35 1520 3220 8:30 20:30
3 2515 1525 8:30 20:30 36 1655 3300 8:30 20:30
4 2390 2240 8:30 20:30 37 1615 3370 8:30 20:30
5 2500 1970 8:30 20:30 38 2765 2160 15:00 16:00
6 2290 2285 9:30 10:30 39 2525 2065 15:00 16:00
7 2220 1820 8:30 20:30 40 2650 2500 15:00 16:00
8 2120 2535 10:30 11:30 41 2270 3425 8:30 20:30
9 2160 2350 10:30 11:30 42 1700 1630 8:30 20:30

10 2065 2210 8:30 13:30 43 960 155 15:30 20:30
11 2040 2270 8:30 13:30 44 915 230 8:30 20:30
12 2015 2120 8:30 13:30 45 730 4675 8:30 20:30
13 2125 2290 8:30 13:30 46 905 4720 8:30 20:30
14 2210 2600 8:30 20:30 47 925 4690 8:30 20:30
15 2330 2695 11:00 15:00 48 830 4710 8:30 20:30
16 2480 2700 8:30 13:30 49 1560 3320 8:30 20:30
17 2110 2200 8:30 13:30 50 1625 3240 8:30 20:30
18 2190 2410 11:30 12:30 51 1570 3400 8:30 20:30
19 2650 2035 13:30 20:30 52 2370 3020 8:30 20:30
20 2650 1890 12:00 16:00 53 810 4650 17:00 20:30
21 2700 1770 12:00 13:00 54 2860 1740 8:30 20:30
22 2740 2260 8:30 20:30 55 2200 2225 8:30 20:30
23 865 4660 8:30 20:30 56 2220 2310 18:00 19:00
24 1920 3010 13:00 14:00 57 2245 2240 8:30 20:30
25 2360 2730 8:30 20:30 58 2185 2270 8:30 20:30
26 2250 2860 8:30 20:30 59 2070 2480 18:30 19:30
27 2095 1480 8:30 20:30 60 2395 2125 8:30 20:30
28 2560 2340 12:30 13:30 61 2360 2290 8:30 20:30
29 820 2420 8:30 20:30 62 2710 2125 8:30 20:30
30 920 2420 8:30 20:30 63 465 1765 8:30 20:30
31 90 2950 14:30 15:30 64 170 2730 19:00 20:00
32 425 3085 14:30 15:30

Coordinates are expressed in meters with respect to a fictitious origin
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9. Appendix 2

In the following the solution of the instances of the benchmark are
reported

SACS solution for RC201
RC201-1: 0 5 45 2 98 69 82
12 11 15 16 75 87 86 57 99 53 9 10
97 74 13 17 60 100 70
RC201-2: 0 65 14 47 59 52
83 64 19 23 21 18 76 85 84 51 49 22
20 66 56 96 54 37 43 35 93 91 80
RC201-4: 0 72 36 39 42 44
61 88 73 78 79 7 6 8 46 3 4 1 55 68

SACS solution for RC202
RC202-1: 0 91 92 95 63 85 33
28 26 27 29 31 30 62 67 71 72 41 40
43 35 54 93 94 96 80
RC202-2: 0 65 82 14 12 47 15
16 11 88 98 53 73 78 79 7 8 6 46 4 2 55 68
RC202-3: 0 45 5 3 1 42 39 36
37 38 44 61 81 90 99 57 86 87 9 10 97
59 74 13 17 60 100 70
RC202-4: 0 69 64 19 23 48 18
76 51 84 49 22 20 66 56 50 34 32 89
24 25 77 75 58 52 83

SACS solution for RC205
RC205-1: 0 98 47 14 69 11 15
16 12 88 78 73 79 7 6 8 46 5 3 1 4 43
37 35 93 96 80
RC205-2: 0 65 83 52 59 75 64
23 18 21 19 99 57 86 87 9 10 97 13 17
60 100 70
RC205-3: 0 92 95 33 28 27 29
31 30 63 76 85 67 84 22 49 51 50 34
32 26 89 20 24 74 77 58 25 48
RC205-4: 0 2 45 42 39 36 72
71 62 94 61 44 40 38 41 81 90 53 82
66 56 91 54 68 55

TACS solution for RC201
RC201-1: 0 5 45 2 98 69 82
12 11 15 16 75 87 86 57 99 53 9 10
97 74 13 17 60 70 100
RC201-2: 0 65 14 59 83 47
52 64 23 21 19 76 51 85 18 22 49 84
20 56 66 96 54 37 43 35 91 93 80
RC201-4: 0 72 42 36 39 44
61 88 73 78 79 7 6 8 46 3 55 4 1 68

TACS solution for RC202
RC202-1: 0 92 63 33 62 28 27
29 30 71 67 40 41 72 96 94 91 95 85 43
54 35 31 26 93 80
RC202-2: 0 65 14 47 12 15 11
16 88 73 78 53 79 8 7 6 46 2 98 82 55
4 68
RC202-3: 0 42 36 39 45 5 3 1
44 61 38 37 81 90 99 86 87 9 57 10 97
59 74 13 60 17 70 100
RC202-4: 0 69 64 23 19 76 75
18 51 84 22 49 20 66 56 32 34 50 89 24
48 25 77 58 52 83

TACS solution for RC205
RC205-1: 0 98 47 14 12 69 15
11 16 88 73 78 79 8 6 5 7 46 3 1 43 37
96 4 35 93 80
RC205-2: 0 65 83 52 75 59 64
23 19 21 18 99 86 87 9 57 10 97 60 13
17 70 100
RC205-3: 0 92 95 33 28 31 27
29 63 85 30 67 76 51 22 84 49 48 20 50
34 32 26 89 24 74 77 25 58
RC205-4: 0 45 2 42 39 36 72 71
62 94 61 44 40 38 41 81 90 53 82 91 54
56 66 55 68
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