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Searching for Fractal

Structure in

Agricultural Futures

Markets

MARCO CORAZZA
A. G. MALLIARIS
CARLA NARDELLI

The four parameters of the Pareto stable probability distribution for six
agricultural futures are estimated. The behavior of these estimates for
different time-scaled distributions is consistent with the conjecture that
the stochastic processes generating these agricultural futures returns are
characterized by a fractal structure. In particular, it is empirically verified
that the six futures returns satisfy the property of statistical self-similarity.
Moreover, the same time series is analyzed by using the so-called rescaled
range analysis. This analysis is able to detect both the fractal structure
and the presence of long-term dependence within the observations. The
Hurst exponent with the use of two methods, the classical and modified
rescaled analysis, is estimated and tested. Finally, with the use of Man-
delbrot’s result on the existence of a link between the characteristic ex-
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ponent of a stable distribution and the Hurst exponent, further empirical
confirmation is found that the processes generating agricultural futures
returns are fractal.

INTRODUCTION

Despite the early contributions of Working (1934) about the random be-
havior of futures prices, financial economists have studied systematically
the behavior of asset pricing only during the past three decades. Asset
pricing is assumed to mean the dynamic, period-by-period, change in the
price level of an asset, such as the closing price of a given stock or the
settlement price of a certain futures contract. The exhaustive literature
on the random walk behavior of asset prices is known as market efficiency.
Despite the existence of several puzzling and conflicting results, in gen-
eral, and in futures markets in particular, the theory of efficient markets
remains a central pillar of modern financial economics.

Samuelson (1965) developed the efficient market hypothesis to ra-
tionalize the random walk behavior, whereby the current price, P(t), fully
reflects all relevant information. Because the flow of such information
between now and the next period cannot be anticipated, efficient market
price changes are serially uncorrelated. In other words, the randomness
in price changes originates in the random flow of unanticipated
information.

During the past 20 years, the theory of market efficiency has been
refined analytically, mathematically and statistically; the concept of in-
formation has been made more precise; and the notion of random walk
has been generalized to martingales and Itô processes. Numerous so-
phisticated statistical tests were employed to test the theory. Moreover, a
very large literature has been developed concerning the statistical distri-
bution of the changes in spot or futures prices: Are they log-normal, or
are they leptokurtic and if leptokurtic, how fat are the tails?

The actual distribution of spot or futures price changes or returns is
an issue of great importance to financial economists. In an efficient mar-
ket it follows that such returns are random. Furthermore, these random
returns are postulated to be normally distributed. The theoretical foun-
dations underlying these studies are not always clear. Grossman and Stig-
litz (1980) addressed several important analytical issues of the theory of
efficient markets. They argued that the notion of market efficiency is
inconsistent with the reality of costly arbitrage. They developed a simple
model with a constant absolute risk-aversion utility function and showed
that costless information is both necessary and sufficient for prices to
fully reflect all available information. Efficient markets theorists realize
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that costless information is a sufficient condition for market efficiency.
However, they are not always clear that it is also a necessary condition.
The cost of acquiring and acting on new information means that prices
in a competitive market need not follow a random walk. Tomek (1994)
explained well how persistence in price behavior can occur in rational
markets.

It is not surprising to find that along with numerous studies confirm-
ing market efficiency, there are numerous studies rejecting it, and that
there is no agreement concerning the statistical distribution functions of
price changes. Nevertheless, the most convenient and widely acceptable
paradigm postulates that returns are normally distributed, which means
that asset prices follow log-normal distributions. Both modern portfolio
theory and the Black–Scholes methodology of pricing derivative assets
are founded on such a paradigm.

Although market efficiency remains the central theory of financial
economics, numerous studies question its twin foundations: random walk
and log-normal distribution of asset prices. Notice, however, that it is not
enough to reject randomness or log-normality. To make scientific pro-
gress, alternatives to randomness and log-normality must be specified.

The purpose of this paper is to investigate these twin issues of ran-
domness and log-normality by empirically examining the behavior of six
agricultural futures prices.

It is shown that returns are neither log-normally distributed nor sta-
tistically independent.

The classical approach of time-series analysis concerning financial
markets [initiated by Bachelier (1900)] investigates the distribution of
security price increments. Most models are based on the hypothesis of a
normal distribution for the variation of such prices; that is,

2P(t ` dt) 1 P(t) ; N(l dt, r dt) (1)

As a result of the empirical work of Osborne (1959), such normal distri-
butions were replaced by the notion that asset prices are independent and
log-normally distributed as

2log[P(t ` dt)] 1 log[P(t)] 4 log[P(t ` dt)/P(t)] ; N(l dt, r dt) (2)

This idea had an important impact on financial theory. The Black–Scholes
option pricing model is one of its most celebrated results. However, as
the following review describes, several studies showed that (2) does not
hold empirically, primarily because of reasons such as fatter tails, the
instability in the variance level (accounting for the relatively many out-
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liers), and issues of asymmetry. The Pareto–Lévy stable distribution family
is proposed as a way of correcting for these realities.

HYPOTHESIS

This study’s hypothesis rejects the null hypothesis that the distribution
of agricultural futures prices is log-normal, as was postulated by Helms
and Martell (1985). Then the four parameters of the characteristic func-
tion of the stable random variable are estimated with the use of U.S.
agricultural futures data. The behavior of the values of the estimates for
different time-scaled distributions leads to the formulation of the hy-
pothesis: The stochastic-process underlying futures returns are charac-
terized by a fractal structure, as proposed by Peters (1989, 1991a, 1991b
and 1994) and Walter (1990).

This hypothesis is analyzed also with the use of the so-called rescaled
range analysis proposed by Hurst (1951) to detect both a possible fractal
structure and long-run dependence in the observations. In particular, the
memory effect emphasizes the existence of a nonzero temporal linear or
nonlinear correlation among the observations, contradicting the usual
hypothesis of their independence by the efficient market hypothesis. The
fractality and the dependence within the observations is measured with
the use of the Hurst exponent.

The Hurst exponent is estimated by two methods: the classical R/S
analysis and the modified R/S̄ one, proposed by Lo (1991), which adjusts
the classical rescaled range statistic mainly for short-term dependence.
Then, the goodness fit of the estimate of the Hurst exponent is checked
with the use of an asymptotic test proposed also by Lo (1991). Finally,
with the use of the Mandelbrot and Taqqu (1979) result on the existence
of a link between the characteristic exponent of the Pareto–Lévy stable
distribution and the Hurst exponent, it is confirmed that the processes
generating the six agricultural futures returns are fractal.

REVIEW OF THE LITERATURE

A brief review of the literature on randomness and log-normality follows.
Only a few key references are discussed, because these ideas are generally
well known.

The two fundamental reviews are Fama (1970) and (1991), and the
book by Guimaraes, Kingsman, and Taylor (1989). These apply to asset
prices in general, rather than to futures prices, in particular. Studies that
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deal with the appropriateness of the random walk or the martingale model
in futures markets include: the investigation of the treasury bill and trea-
sury bond futures markets by Chance (1985), Klemkosky and Lasser
(1985), Cole, Impson, and Reichenstein (1991), and MacDonald and
Hein (1993); the investigation of the agricultural commodities by Big-
man, Goldfarb, and Schechtman (1983), Canarella and Pollard (1985),
Maberly (1985), Bird (1985), Elam and Dixon (1988); the investigation
of the metal futures market by Gross (1988); and the investigation of the
foreign currency markets by Glassman (1987), Saunders and Mahajan
(1988), Harpaz, Krull, and Yagil (1990).

Many of these studies hold positive opinions on market efficiency.
Chance (1985) believes that the treasury bond futures market correctly
anticipates the information contained in the announcement of the rate
of change of the Consumer Price Index. MacDonald and Hein (1993)
comment that the T-bill futures market may not be as inefficient as once
presumed in terms of weak form efficiency, though it does not provide
optimal forecasts. Maberly (1985) demonstrates that, in the grains, the
inference that the market is inefficient for more distant futures contracts
is due to the bias that results from using ordinary least squares to estimate
parameters. Elam and Dixon (1988) attack the inefficiency grain market
argument by conducting several Monte Carlo experiments to find out that
very often the F test tends to wrongly reject the true model. The research
of Canarella and Pollard (1985) suggests that the efficient market hy-
pothesis cannot be rejected for corn, wheat, soybeans, and soybean oil.
Gross (1988) claims that the hypothesis of efficient copper and aluminum
markets cannot be rejected on the evidence of his semistrong efficiency
tests. Saunders and Mahajan (1988) show that the index futures pricing
is efficient.

However, numerous authors offer negative evidence on market effi-
ciency. Bird (1985) discovers that for coffee and sugar the efficient market
hypothesis is invalid, and for cocoa there is some evidence of inefficiency,
but of limited economic significance. Harpaz et al. (1990) perform tests
for efficiency of the USDX futures contracts during the period, 1985–
1988, which result in their rejection of the null hypothesis that the USDX
futures market is efficient during that period.

Finally, quite a few authors, instead of totally supporting or rejecting
the efficient market hypothesis, offer different answers under different
situations. Bigman et al. (1983) believe that the market can be generally
characterized as efficient for the futures contracts on wheat, soybeans,
and corn six weeks before delivery or less. For longer-term futures con-
tracts, their tests reject the efficiency hypothesis. The results of the T-



438 Corazza, Malliaris, and Nardelli

bond market efficiency tests of Klemkosky and Lasser (1985) do not agree
totally with the conclusions drawn from earlier studies. Glassman (1987)
reports evidence of multimarket and joint multimarket inefficiency in for-
eign currency futures markets during some of the 38 contract periods
studied. Much of the inefficiency appeared to be short term in duration
(one week or less). Cole et al. (1991) conclude that the T-bill futures
rates provide rational one- and two-quarters-ahead forecasts of futures
spot rates, which are the forecast horizons that seem to be of most interest
to the public. However, they believe the rationality of four-quarters-ahead
futures forecasts should be rejected.

The various empirical studies that have rejected the theory of market
efficiency have encouraged financial economists to seek alternative ex-
planations for the time-series behavior of asset returns. This literature is
known as the chaotic dynamics approach to asset returns, and several
studies, such as Decoster, Labys, and Mitchell (1992) offer evidence that
futures prices appear to follow low dimensional chaotic dynamics.

Observe that the majority of research concentrates on stock returns.
After the seminal articles by Osborne (1959), Fama (1965), Mandelbrot
(1963), Fama and Roll (1968 and 1971), and Mandelbrot and Taylor
(1967), numerous other articles have followed. These are carefully re-
viewed in Akgiray and Booth (1988). Although most articles reject the
normal distribution in favor of the stable Lévy–Paretian, studies exist that
reject the stable Lévy–Paretian distribution, but not in favor of normality.

Earlier, Stevenson and Bear (1970) and Dusak (1973) offered evi-
dence in support of the stable Lévy–Paretian distribution. More recently,
Helms and Martell (1985), using data for all commodities traded on the
Chicago Board of Trade, conclude that returns on futures prices, al-
though they are not normally distributed, are closer to normal than to
any other member of the family of Pareto distributions. Contrary to their
results, Cornew, Town, and Crowson (1984) claim that the stable Lévy–
Paretian distribution offers a better fit for futures returns of several con-
tracts than the normal distribution. So (1987) confirms that currency
futures and spot returns are stable Lévy–Paretian, whereas Hall, Brorsen,
and Irwin (1989) and Hudson, Leuthold, and Sarassoro (1987) claim that
futures returns are not stable Lévy–Paretian. Finally, Gribbin, Harris, and
Lau (1992) use a newly developed statistical methodology to conclude
that futures prices are not stable Lévy–Paretian distributed. Their meth-
odology, however, is not powerful enough to distinguish a stable distri-
bution from other distributions. Simulation results show that the method
will almost always reject any stable distribution.
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DATA

The data used in this study correspond to returns of daily settlement
prices for the time period, January 2, 1981 to October 24, 1991, for the
following six agricultural futures contracts: corn, oats, soybeans, soybean
meal, soybean oil, and wheat. These contracts are traded at the Chicago
Board of Trade.

FRACTAL PARETO–LÉVY STABLE
DISTRIBUTIONS: THEORETICAL ASPECTS

Lévy (1925) introduced the stable distributions as a generalization of the
Brownian motion. Recall that a Brownian motion is simply a continuous-
time random walk. Falconer (1990) gives the following definition regard-
ing the stable process.

Definition 5.1. A random process X(t), with t [ [0,``), is stable
if the increments X(t ` Dt) 1 X(t) are stationary; that is, they depend
only on Dt, and independent; that is, for all 0 , t1 , t2 ,•• •, t2m, the
increments X(t2) 1 X(t1), . . . , X(t2m) 1 X(t2m11) are independent.

This class of distributions allows a generalization of the central limit
theorem under weaker hypotheses. In particular, the stable distribution
represents a generalization of the normal one when the moment of order
2 or the moments of order 1 and 2 do not exist.

Generally speaking, it is not possible to give a closed form for the
density functions of the stable class. This family can be characterized by
its characteristic function:

af(t) 4 exp{i dt 1 |ct| [1 ` jb sgn(t)x(t,a)]} (3)

where

1i, if a ? 1
j 4 5`i, if a 4 1

tan(ap/2), if a ? 1
x(t,a) 4 5(2/p) log(t), if a 4 1

Note that (3) is characterized by four parameters a, b, c, and d. In
particular:

1. a [ (0,2] is the characteristic exponent that accounts for the relative
importance of the tails. If a 4 2, then (3) corresponds to the normal
distribution with finite mean and variance. When a [ (1,2], the ran-
dom variable has only finite mean.
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2. b [ [11,1] is a skewness parameter. In particular, when b 4 0, the
distribution is symmetric.

3. c [ (0,``) is a scale parameter. In particular, some authors use c 4

ca (when a 4 2, the distribution has variance 2c),

4. d [ (1`,``) is a location parameter. When a [ (1,2], d is the mean
of the distribution and when b 4 0, d is the median of the distribution.

The density probability function of the stable distribution can be
written in the following integral form:

``1
a af(x) 4 cos[1xt ` dt 1 (ct) bx(t,a)] exp[1(ct) ] dt. (4)#p 0

Using Definition 5.1 of the stable distribution, Falconer (1990) and Peters
(1991b) cite an important theorem that gives a property of this distri-
bution, namely, that the stable distribution is fractal. Falconer (1990)
offers a detailed mathematical definition of fractal and then summarizes
it intuitively as follows. A set, F, is fractal if it satisfies four conditions:

1. F has a fine structure. This means the set is very detailed on arbitrary
small scales.

2. F is too irregular both locally and globally.

3. F has some form of self-similarity; that is, parts of F resemble the
whole F in some way.

4. The fractal dimension of F, defined in some way, is greater than its
topological dimension.

5. F is often described recursively.

The interest in fractal objects is motivated by the central question
of financial economics; that is, what is the behavior of asset prices? To
show that asset prices follow fractal processes is to show more than ran-
dom walk. Fractal processes generalize random walks because, in addition
to their irregularity they are also self-similar, and the dimension of the
set can be computed. In other words, fractal processes have a fine struc-
ture that often cannot be detected by various low-power tests of random
walk. Furthermore, because fractal processes are quite complex and can-
not be detected easily, they are consistent with the paradigm of market
efficiency.

To characterize the fractal nature of a Pareto–Lévy stable distribu-
tion, Falconer (1990) and Peters (1991b) give the following theorem.
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Theorem 5.1. Let X(t), with t [ [0,``), be a Pareto–Lévy stable
stochastic process with characteristic exponent, a, and let SX(t) 4 {X(ti),
ti [ [0,``), i [ {1, . . . , T}} be its time series. Then, with probability 1,
the dim(SX(t)), is equal to a.

Moreover, to point out another property of the stochastic fractal ob-
jects; that is, the self-similarity, Mandelbrot and Taqqu (1979), Feder
(1988), and Falconer (1990) give the following definition.

Definition 5.2. Let X(t), with t [ [0,``), be a continuous sto-
chastic process. This process is called self-similar if, for fixed t, it has the
same distribution as k1KX(kt), with K [ (1`,``) and k [ (0,``).

Notice that the characteristic functions of these two random vari-
ables must depend on the same parameters. Therefore, the random vari-
able, X(t), is affected neither by an expansion of the time scale (kt) nor
by the contemporaneous homothety of the space scale, (k1K). In partic-
ular, if the random variable is Pareto–Lévy stable, Mandelbrot and Taqqu
(1979) prove that K 4 1/a.

FRACTAL PARETO–LÉVY STABLE
DISTRIBUTIONS: EMPIRICAL RESULTS

To obtain the values of the four parameters and to verify the statistical
self-similarity property, the time series of the daily settlement prices of
the six agricultural futures contracts are used to compute scaled returns

1/1 aX 4 k log[P(t ` n)/P(t)] (5)t,n

where n 4 kt is a time scale, with t 4 1 and k . 0. P(t) is the settlement
price at time t. Notice that, if n 4 1, then Xt,n is the usual logarithmic
return of daily settlement prices.

Possible dependence in the data must be eliminated. Of course, the
true autocorrelative relationship characterizing each time series is not
known, so it is approximated by an autoregressive model of order q
(AR(q)). From this the corresponding uncorrelated residuals time series
is obtained by fitting an ordinary least-squares (OLS) regression. In this
OLS regression a crucial role is played by q, and the Andrews (1991)
data-dependent rule, q 4 Int{(3T/2)1/3[l/(1 1 l2)]2/3}, where T is the
time series size and l is its sample first-order autocorrelation coefficient,
is used to detect it. Notice that this data-dependent rule is mainly able
to detect the short-term autocorrelative length and so, by using it, a sec-
ond source of approximation is introduced. The results obtained by using
the Andrews’ rule are the following: q 4 3 for corn, q 4 3 for oats, q 4
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TABLE I

Tests for Log-Normality Using a v2(g) test; g Denotes Degrees of Freedom

Futures (13)2v0 (13)2vq (27)2v0 (27)2vq

Corn 450.337 425.461 477.513 455.028
Oats 249.722 231.980 286.482 262.884
Soybeans 248.087 248.087 276.800 276.800
Soybean meal 310.154 305.477 336.552 325.947
Soybean oil 158.493 143.318 173.902 165.264
Wheat 352.703 352.218 368.403 369.448

TABLE II

Estimates of the Four Parameters of the Stable Distribution
Assuming Independence

Futures a1.0
2Ra

2R̄a b1.0
2Rb

2R̄b c1.0 d1.0

Corn 1.64 1.00 1.00 0.05 0.91 0.90 0.01 0.00
Oats 1.77 1.00 1.00 10.02 0.99 0.99 0.01 0.00
Soybeans 1.74 1.00 1.00 10.17 1.00 1.00 0.01 0.00
Soybean meal 1.73 1.00 1.00 0.15 0.96 0.96 0.01 0.00
Soybean oil 1.81 1.00 1.00 0.17 0.97 0.96 0.01 0.00
Wheat 1.77 1.00 1.00 0.18 0.92 0.92 0.01 0.00

TABLE III

Estimates of the Four Parameters Assuming Dependence

Futures a1,q
2Ra

2R̄a b1,q
2Rb

2R̄b c1,q d1,q

Corn 1.64 1.00 1.00 0.05 0.95 0.94 0.01 0.00
Oats 1.77 1.00 1.00 0.01 0.98 0.98 0.01 0.00
Soybean 1.74 1.00 1.00 10.17 1.00 1.00 0.01 0.00
Soybean meal 1.73 1.00 1.00 0.15 0.97 0.97 0.01 0.00
Soybean oil 1.82 1.00 1.00 0.16 0.98 0.98 0.01 0.00
Wheat 1.77 1.00 1.00 0.18 0.93 0.92 0.01 0.00

0 for soybeans, q 4 1 for soybean meal, q 4 4 for soybean oil, and q 4

1 for wheat.
Next the null hypothesis that the distribution of daily price changes

of the agricultural futures contracts is log-normal is rejected. Specifically,
this study tests for log-normality using an (g) distributed fit test, where2vq

g are the degrees of freedom, assuming both independence (q 4 0) and
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dependence as previously described. The results of this test are presented
in Table I.

In Tables II and III the estimates, an,q, bn,q, cn,q and dn,q, are reported
with the time scale, n 4 1, assuming both independence and dependence
as previously described. To estimate these parameters, the method de-
veloped by Koutrouvelis (1980, 1981) is used, where the starting values
of the parameters are determined by the MacCulloch method (1986)
instead of by the simple Fama and Roll one (1971). The algorithm for
the estimation of these parameters using the Koutrouvelis’ methodology
is found in Canestrelli, Cipriani, and Corazza (1993). In particular, the
MacCulloch method eliminates some restrictions arising from the
(strong) a priori hypotheses assumed by the Fama and Roll method, that
is, the symmetry of the probability distribution (b 4 0) and the existence
of a mean (a [ (1,2]).

To detect the statistical self-similarity, following the Definition 5.2,
it is empirically verified if the four estimated parameters are affected by
an expansion of the time scale on the contemporaneous homothety of
the space scale. In particular, the time scale from 1 day (n 4 1) to about
1 month (n 4 25) is considered. Notice that, for every fixed time scale,
n, it is possible to extract n different sequences from the original time
series. To get better estimates, the value of each parameter is determined
by calculating the mean of the different sequences. The results of this
analysis are reported in Figures 1–6.

From Tables I–III and Figures 1–6 one can deduce the following.
First, the analyzed time series are significantly nonnormal because

of the (wide) rejection of the null hypothesis that the sample distribution
of daily (i.e., n 4 1) price changes is normal (see Table I). In particular,
the results of the test are qualitatively the same assuming both indepen-
dence (q 4 0) and dependence; therefore, one can conjecture that the
influence of the simple autocorrelative structure assumed earlier is neg-
ligible. Moreover, the estimated characteristic exponent for different
time-scaled distributions (i.e., from n 4 1 to n 4 25) are, in general,
less than 2 and, so, nonnormal.

Second, the values of the statistics, R2 and R̄2, associated with both
the characteristic exponents and the skewness parameters of every ana-
lyzed time series, are elevated ( 4 1.00, 4 1.00, [ [0.91,1.00]2 2 2¯ ¯R R Ra a b

and [ [0.90,1.00]). Notice that, because the characteristic exponent2R̄b

is greater than 1, the location parameter gives the sample mean of the
distribution and, in particular, it is close to 0 for all the analyzed time
series. Notice also that, because the characteristic exponent is less than
2, the probability distribution does not have finite variance, so, one can-
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FIGURE 1
(a) Mean value of ALPHAn,0 of corn futures returns. (b) Mean value of BETAn,0 of corn futures returns. (c) Mean value of Cn,0 of corn

futures returns. (d) Mean value of DELTAn,0 of corn futures returns.
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FIGURE 2
(a) Mean value of ALPHAn,0 of oats futures returns. (b) Mean value of BETAn,0 of oats futures returns. (c) Mean value of Cn,0 of oats futures

returns. (d) Mean value of DELTAn,0 of oats futures returns.
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FIGURE 3
(a) Mean value of ALPHAn,0 of soybeans futures returns. (b) Mean value of BETAn,0 of soybeans futures returns. (c) Mean value of Cn,0 of

soybeans futures returns. (d) Mean value of DELTAn,0 of soybeans futures returns.
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FIGURE 4
(a) Mean value of ALPHAn,0 of soybean meal futures returns. (b) Mean value of BETAn,0 of soybean meal futures returns. (c) Mean value of

Cn,0 of soybean meal futures returns. (d) Mean value of DELTAn,0 of soybean meal futures returns.
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FIGURE 5
(a) Mean value of ALPHAn,0 of soybean oil futures returns. (b) Mean value of BETAn,0 of soybean oil futures returns. (c) Mean value of Cn,0

of soybean oil futures returns. (d) Mean value of DELTAn,0 of soybean oil futures returns.
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FIGURE 6
(a) Mean value of ALPHAn,0 of wheat futures returns. (b) Mean value of BETAn,0 of wheat futures returns. (c) Mean value of Cn,0 of wheat

futures returns. (d) Mean value of DELTAn,0 of wheat futures returns.
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not use the volatility as a proper index of risk. Nevertheless, because the
probability distribution has finite mean, it is always possible to define an
index of variability based on the first-order moment, like, for instance,
the mean absolute error (i.e., |xi 1 d|]/T).T[Ri41

Third, the estimates of the four parameters are quite similar assum-
ing both independence (q 4 0) and dependence (see Tables II and III),
so one can conjecture also the negligibility of the sample autocorrelative
structure assumed in section 6.

Because of a1,q [ [1.64,1.82] (see Tables II and III), following The-
orem 5.1, it is confirmed empirically that the dimensions of all time series
analyzed are not integer. It is a first confirmation of the fractal nature of
the process generating the returns.

Following Definition 5.2 and the expression (6), one can deduce em-
pirically the property of the invariability by time-scale change, or statis-
tical self-similarity, for corn, oats, soybeans, soybean meal, and soybean
oil (see Figures 1–5) because their estimated characteristic exponents are
between 1.64 and 1.81, as n goes from 1 to 25. This variability range is
similar to the one (an,0 [ [1.6,1.8]) found by Walter (1990), by which
he accepted the statistical self-similarity property for the French stock
market. On the other hand, only the variability range concerning wheat
(see Figure 6) is wider than the others. Notice that the characteristic
exponents of the different time series analyzed do not show the same
behavior when n increases from 1 to 25. In particular, for soybeans it
shows a decreasing behavior, for corn, oats, soybean meal, and soybean
oil they show an oscillating one, and for wheat they show an increasing
one, taking values progressively closer to 2 as n increases. Furthermore,
the presence of invariability by time scale change for all time series an-
alyzed is confirmed empirically by the steadiness of their scale and loca-
tion parameters behavior. Only in the skewness parameter behavior are
significant differences found among the analyzed time series, probably
due to the estimation method [for more details see Walter (1990)]. In-
deed, such behaviors are characterized by a variability range equaling 40%
of its domain. In particular, for corn and wheat the skewness parameter
shows a decreasing behavior and for oats, soybeans, soybean meal, and
soybean oil it shows an increasing one.

From an economics point of view, the empirical results verify the
invariability by time-scale change property. This means that the analyzed
agricultural futures markets are characterized by (self-) similar liquidity,
risk, and trading levels. It implies the contemporaneous presence of in-
vestors with different time horizons (probably due to different evaluations
of the same new information arriving to the market). Moreover, it makes
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the matching between supply and demand easier, and, consequently,
makes the market able to avoid panics and/or stampedes when the supply
and demand become imbalanced. Peters (1994) calls this property, the
fractal market hypothesis.

HURST EXPONENT H: THEORETICAL
ASPECTS

Hurst (1951) discovered that a large class of natural phenomena show a
behavior over time that can be described through a particular biased sto-
chastic process. Such a process was called fractional Brownian motion
(FBM) by Mandelbrot and van Ness (1968). This process implies the
presence of some long-term dependence in its realizations. Falconer
(1990) defines the FBM as follows.

Definition 7.1. A real stochastic process X(t), with t [ [0,``), is
a fractional Brownian motion with index H [ (0,1), called the Hurst
exponent, if

(a) X(0) 4 0 with probability one,

(b) X(t) is continuous almost everywhere for all t [ [0,``),

(c) The increments X(t ` Dt) 1 X(t) are normally distributed with mean
zero and variance Dt2H for all t [ [0,``) and Dt [ [0,``).

This means that, if H ? 0.5, the increments of the FBM are station-
ary but dependent random variables. In particular, it is not the short-term
(Markovian-like) memory, but the long-term memory that is influenced
the most by the latest increments.

Notice that for FBM the Hurst exponent, H, provides double infor-
mation on the underlying stochastic process. Indeed, remembering Def-
inition 5.2, it is possible to prove that H is also equal to the statistical
self-similarity parameter, K. This result is found in Mandelbrot and Taqqu
(1979). Notice, also, that the Hurst exponent, H, qualifies the nature of
the long-term memory. In particular, for H [ (0,0.5) there is a negative
dependence between the increments; that is, if the graph of X(t) in-
creases/decreases for t0 $ 0, then it probably decreases/increases for some
t . t0. In this case the process has an antipersistent behavior and the
time series of the realizations is qualified as ergodic or mean reverting.
For H [ (0.5,1) there is a positive dependence between the increments;
that is, if the graph of X(t) increases/decreases for t0 $ 0, then it probably
continues to increase/decrease for some t . t0. In this case the process
has a persistent or trend-reinforcing behavior.
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The case, H 4 0.5, is the standard Brownian motion (sBm) with
independent increments. Moreover, the Hurst exponent, H, also gives a
kind of measure of the long-term memory intensity; that is, the period
and the strength of the antipersistent/persistent behavior increases as H
approaches to 0/1. In particular, for a FBM, it is possible to quantify the
link between the Hurst exponent, H, and the long-term dependence by
the following autocorrelation function:

12H 1C(H) 4 2 1 1

,0 if H [ (0,0.5), C(H) → 10.5 as H → 0
40 if H 4 0.5 (7)
.0 if H [ (0.5,1), C(H) → 1 as H → 1

To determine the value of the Hurst exponent, H, Hurst used the R/
S analysis, based on the range of partial sums of deviations of a time
series from its mean, rescaled by its standard deviation. From a qualitative
point of view it gives a standardized measure of the path length covered
over a given time interval by the stochastic process. It is a statistical
method used to study a wide range of phenomena. Mandelbrot and Wallis
(1969) show that the R/S analysis is robust to highly nonnormal distri-
bution of the process generating the considered time series. Moreover, it
is possible to prove its almost-sure convergence for stochastic process
with infinite variance [for more details see Mandelbrot and Taqqu
(1979)]. In particular, it is possible to prove the following link between
the R/S statistic and the Hurst exponent, H. [For more details see Cut-
land, Kopp, and Willinger (1993) and Peters (1994).]

Hlim E[R /S ]/(aT ) 4 1 (8)T T
T→``

where

RT is the range of the partial sums of deviations of the time series from
its sample mean

ST is the sample standard deviation of the original time series

a [ (0,``) is a constant.

From this link, it is possible to obtain the approximate relationship

ln{E[R /S ]} . ln(a) ` H ln(T). (9)T T

In particular, some techniques proposed by Greene and Fielitz (1977),
Mandelbrot and Taqqu (1979), Feder (1988), and Peters (1991b) are
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improved upon and coordinated. The algorithm used can be summarized
as follows:

Step 1. Consider the original time series, Y 4 {yi, i 4 1, . . . , T}.

Step 2. Fix subtime series of length, N 4 N0 # T.

Step 3. Determine all possible nonoverlapping subtime series, Y1,N 4

{y1, . . . , yN}, Y2,N 4 {yN`1, . . . , y2N}, . . . , Yi,N 4 {y(i11)N`1, . . . ,
yiN}, . . . , Yi,Z 4 {y(i11)Z`1, . . . , yiZ}, where Z is the integer part of
the ratio, T/N.

Step 4. For every subtime series, Yi,N, i 4 1, . . . , Z, calculate the sample
mean, mi,N, determine subtime series, Xi,N, of the cumulative sums
of deviations

t

X 4 {x 4 (y 1 m ), t 4 1, . . . , N} (10)i,N (i11)N`t o (i11)N`j i,N
j41

compute the sample variation range, Ri,N,

R 4 max X 1 min X (11)i,N i,N i,N
1#t#N 1#t#N

and calculate its standard deviation, Si,N, and ratio, Ri,N/Si,N.

Step 5. Calculate the mean value, RN/SN, from Ri,N/Si,N.

Step 6. Set new subtime series length, N by NSer 4 N ` S (S . 0) and
N 4 NSer.

Step 7. If N # T, then go to Step 3; otherwise, go to Step 8.

Step 8. Fit OLS regression between {log(R1/S1), . . . , log(Rj/Sj)} and
{log(1), . . . , log(j)} for every j 4 2, . . . , Z.

Step 9. Determine the unique value of the Hurst exponent, H, among the
Z-2 estimates making joined use of the graphic approach proposed
in Peters (1989 and 1991b) and of the statistical one proposed in Lo
(1991).

Notice that, if the time series possesses a natural cycle of length M
[called mean orbital period (MOP)], R/S analysis identifies it. In partic-
ular, it is possible to show that the Hurst exponent, H, tends to 0.5 as T
becomes greater than M and tends to ``; it indicates that, for such a
large time lag, the stochastic process is losing its long-term memory.

Finally, to point out another property of the stochastic fractal objects,
Greene and Fielitz (1977) report that the (fractal) dimension of a process
probability distribution is 1/H, with H [ [0.5,1). Notice that, if H 4 0.5
(i.e., sBm) the corresponding dimension is 2. Moreover, it is possible to
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prove the existence of the following relationship between the statistical
self-similarity of a FBM (K 4 H) and one of a Pareto–Lévy stable process;
that is, K 4 1/a [for more details see Mandelbrot and Taqqu (1979)]:

H 4 1/a, H [ (0,0.5) (12)

It means that, although the two considered stochastic processes are quite
different, their behaviors, from a fractal point of view, are the same.

Lo (1991) proposes a modification of the classical R/S analysis
mainly because of its sensitivity to short-term dependence. Indeed, it is
possible to prove that, because of such a sensitivity, the long-term memory
results from the classical R/S method can merely be due to short-term
memory. In particular, the modified statistic is robust to both short-term
dependence and highly nonnormal innovations and its behavior is invar-
iant over a general class of short-term memory processes but deviates for
long-term memory processes. Moreover, unlike the classical R/S statistics,
it has well-defined distribution properties.

Lo modified the classical statistic R/S by using R/S̄, with

q
2 2S̄ 4 S ` 2 w (q)c , q , T (13)o i i

i41

where

wi(q) 4 1 1 i/(q ` 1), i 4 1, . . . , q are weights depending on the short-
term memory length q

T

c 4 (Y 1 m )(Y 1 m )i o j N j11 N
j4i`1

i 4 1, . . . , q are autocorrelation estimators.
Observe that the R/S̄ statistic differs from the R/S one only in its

modified standard deviation, which is the square root of a correct and
consistent estimator of the sample variance. In fact, if the analyzed time
series is characterized by short-term dependence, the modified variance
also includes the autocovariances weighted up to lag q. In particular, to
detect q the Andrews data-dependent rule is used and to determine the
weights, the Newey and West proposal (1987) is used, always yielding a
nonnegative S̄2. Moreover, Lo (1991) determines the distribution prop-
erties of the modified statistic and identifies some link between it and the
classical one. In particular, he proves the following asymptotic relation-
ship for the modified statistics
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1 ¯Q (q) 4 R/S ; V (14)T
T!

where

the tilde denotes weak convergence
V is a random variable with the following probability distribution

``

2 2 2 2F (m) 4 1 ` 2 (1 1 4k m )exp(12k m ). (15)v o
K41

Lo (1991) also proves the asymptotic relationship for the classical
statistics

1
Q (0) 4 R/S ; nV, (16)T

T!

where n is a function depending on the short-time memory structure
Finally, by using the fractiles of the distribution of QT(q) [also cal-

culated by Lo (1991)], it is possible to determine the values for different
levels of significance to test the null hypothesis of no long-term
dependence.1

HURST EXPONENT H IN THE FUTURES
RETURNS

To determine the values of the Hurst exponent, H, the time series of the
futures returns are used. Tables IV and V report the values of Hn,q ob-
tained with the use of the algorithm summarized in the previous section,
with the time scale, n 4 1, 5, and 25, assuming both independence; that
is, q 4 0 (classical Hurst exponent) and dependence (modified Hurst
exponent). Notice that, for time scale n 4 5 and 25, q 4 0 (indepen-
dence) is used because it is found that 0 # q # 4 for all analyzed time
series. Notice also that, because the stability of the results depends on
the nonoverlapping subtime series, N (see Steps 2, 6, and 7), and because
detection of the MOP requires that the Hurst exponent tends to 0.5, in
general, a time series of sufficient size is necessary.

Second, the same tables report the results obtained from testing the
null hypothesis of no long-term dependence by the statistic, QT(q), q 4

0 and q ? 0 [see relationship (14)].

1Notice that a rejection of such a null hypothesis does not necessarily imply that long-range memory
is present, but merely that the underlying stochastic process does not satisfy simultaneously all the
conditions stated by Lo (1991).
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TABLE IV

Estimates of Hn,q for n 4 1, q 4 0, and q ? 0 with Estimates of Corresponding
Mean Orbital Periods

Futures H1,0 MOP H1,q MOP

Corn 0.60 Lo 1000 0.57 Lo 950
Corn 0.61 – 1250 0.59 – 1300
Oats 0.55 Me 1450 0.53 Me 1450
Oats 0.57 – 1350 0.55 – 1350
Soybeans ?? ?? ?? ?? ?? ??
Soybeans 0.62 – 1350 0.62 – 1350
S. Meal ?? ?? ?? ?? ?? ??
S. Meal 0.59 – 1200 0.59 – 1200
S. Oil 0.65 Me 1100 0.62 Me 1100
S. Oil 0.65 – 1150 0.62 – 1200
Wheat 0.43 Hi 1800 0.43 Hi 1800
Wheat 0.42 – 1950 0.42 – 1950

Note: The first row for each commodity contract reports estimates of the classical or modified Hurst exponent from eq. (19)
for which the null hypothesis of no long-term dependence is rejected. Hi denotes rejection at the 95% or 99% confidence
level, Me denotes rejection at the 90%, and Lo rejection at the 80% confidence level. If the null hypothesis of no long-term
dependence is not rejected, the row is filled with question marks. The second row reports the descriptive results from the
rescaled range analysis obtained from the graphical approach for which no hypothesis testing can be performed.

TABLE V

Estimates of Hn,q for n 4 5, 25 and q 4 0, with Estimates of Corresponding
Mean Orbital Periods

Futures H5,0 MOP H25,0 MOP

Corn ?? ?? ?? ?? ?? ??
Corn 0.66 – 1300 0.76 – 1200
Oats 0.60 Me 1450 0.66 Me 1500
Oats 0.62 – 1300 0.70 – 1250
Soybeans ?? ?? ?? 0.60 Lo 2700
Soybeans 0.68 – 1250 0.74 – 1250
Soybean meal ?? ?? ?? ?? ?? ??
Soybean meal 0.65 – 1050 0.76 – 900
Soybean oil 0.71 Lo 1150 ?? ?? ??
Soybean oil 0.71 – 1150 0.80 – 1150
Wheat 0.50 Hi 1750 0.60 Hi 1500
Wheat 0.50 – 1750 0.65 – 1300

Note: The first row for each commodity contract reports estimates of the classical Hurst exponent from eq. (19) for which
the null hypothesis of no long-term dependence is rejected. Hi denotes rejection at the 95% or 99% confidence level, Me
denotes rejection at the 90%, and Lo rejection at the 80% confidence level. If the null hypothesis of no long-termdependence
is not rejected, the row is filled with question marks. The second row reports the descriptive results from the rescaled range
analysis obtained from the graphical approach for which no hypothesis testing can be performed.
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TABLE VI

Estimates of an,qHn,q for n 4 1, 5, 25, q 4 0, and q ? 0

Futures a1,0H1,0 a1,qH1,q a5,0H5,0 a25,0H25,0

Corn 0.98 0.93 1.12 1.26
Oats 0.97 0.94 1.04 1.24
Soybeans 1.08 G 1.03 G 1.22 1.01
Soybean meal 1.02 G 1.02 G 1.20 G 1.38 G
Soybean oil 1.18 1.13 1.33 1.46 G
Wheat ?? ?? 0.92 1.15

Note: The row for each commodity contract reports the empirical verification of the relationship (12) by using the Hn,q values
obtained from the statistical analysis when the null hypothesis of no long-term memory is rejected and by using the Hn,q

values obtained from the graphical analysis when the same null hypothesis is accepted. In the last case the result is marked
by a G. If Hn,q , 0.5 the row is filled with question marks.

Third, Table VI reports the results of the empirical proof of the re-
lationship (12) obtained by determining the values of an,qHn,q (equal to
one, from a theoretical point of view).

Finally, Figures 7–16 report the (typical) behavior of some Hurst
exponent Hn,q’s estimates versus N. In particular, from this analysis, note
that:

● There is a starting interval (N0 # N # N*) of estimate arrangement,
in which Hn,q decreases as N increases (probably due to the low power
of the rescale range analysis for small samples).

● There is a second interval (N* , N # T) in which both the classical
Hurst exponent estimate and the modified one obtain a relative minimum/
maximum or are constant (in general, corresponding to the true value of
the Hurst exponent).

● The underlying memory structure is confirmed by reanalyzing the same
time series after a random alteration of their time order, because the
reestimated Hn,q values tend to 0.5 (i.e., no more long-term correlation)
and, so reveal the destruction of a long-term dependence that exists in
the unscrambled original time series.

The previous three tables allow one to deduce several things. The
graphical analysis indicates evidence of long-term memory for all the daily
(i.e., n 4 1) returns time series (see Table IV). In particular, the results
of this analysis are qualitatively the same, assuming both independence
(q 4 0) and dependence, so one can conjecture that the influence of the
short-term memory is negligible. Moreover, such results are analogous to
the ones found by Peters (1989) for the U.S. stock market. Notice that
the graphical approach detects positive dependence [i.e., H [ (0.5,1)]



4
5

8
C

o
ra

zza
,M

a
llia

ris,a
n

d
N

a
rd

e
lli

FIGURE 7
(a) Classical R/S analysis of corn futures returns. (b) Hurst’s exponent H1,0 of corn futures returns.
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FIGURE 8
(a) Classical R/S analysis of oats futures returns. (b) Hurst’s exponent H1,0 of oats futures returns.
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FIGURE 9
(a) Classical R/S analysis of soybeans futures returns. (b) Hurst’s exponent H1,0 of soybeans futures returns.
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FIGURE 10
(a) Classical R/S analysis of soybean meal futures returns. (b) Hurst’s exponent H1,0 of soybean meal futures returns.
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FIGURE 11
(a) Classical R/S analysis of soybean oil futures returns. (b) Hurst’s exponent H1,0 of soybean oil futures returns.
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FIGURE 12
(a) Classical R/S analysis of wheat futures returns. (b) Hurst’s exponent H1,0 of wheat futures returns.
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FIGURE 13
(a) Modified R/S analysis of soybean oil futures returns. (b) Hurst’s exponent H1,3 of soybean oil futures returns.
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FIGURE 14
(a) Modified R/S analysis of soybean oil futures returns. (b) Hurst’s exponent H1,4 of soybean oil futures returns.
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FIGURE 15
(a) Classical R/S analysis of soybean oil futures returns. (b) Hurst’s exponent H5,0 of soybean oil futures returns.
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FIGURE 16
(a) Classical R/S analysis of soybean oil futures returns. (b) Hurst’s exponent H25,0 of soybean oil futures returns.
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for corn, oats, soybeans, soybean meal, and soybean oil and detects neg-
ative dependence [i.e., H [ (0,0.5)] for wheat. This can be explained in
this way. For the positive dependence case, the ability of economic agents
to make optimal decisions under uncertainty is easier because buy and
hold strategies yield returns in the same direction. However, because of
the irregular arrival of new important information to the market, persis-
tent return movements can at times reverse direction suddenly, and de-
cisions are more difficult at turning points. For the negative dependence
case, because of to some exogenous structural sociopolitical changes, the
arrival of contrasting information to the market can induce the economic
agents to frequently change the rule-governed behavior.

The values of the MOP associated to the daily returns time series go
from 950 (i.e., about less than 4 years) to 1350 (i.e., about more than 5
years) for the positive dependence case and go from 1800 (i.e., about
more than 7 years) to 1950 (i.e., about more than 8 years) for the negative
dependence case, assuming both independence (q 4 0) and dependence.
Notice that for time lags greater than MOP, the underlying stochastic
processes lose their long-term memory and the corresponding daily re-
turns become long-term independent.

The results of the graphical analysis for both weekly (i.e., n 4 5)
and monthly (i.e., n 4 25) returns time series (see Table V) are qualita-
tively the same for both Hn,0 estimates and MOP values with the excep-
tion of wheat.

The results of the statistical analysis when it rejects the null hypoth-
esis of no long-term dependence for the daily, weekly, and monthly returns
time series (see Tables IV and V) confirm the results obtained from the
graphical analysis for both Hn,q estimates and MOP values.

Because 1/Hn,q [ [1.25,1.89], with Hn,q [ [0.5,1] (see Tables IV and
V), it is verified empirically that the dimension of the underlying process
probability distributions are not integer. It is another confirmation of the
fractal nature of such processes.

Recall that for FBM the Hurst exponent is also equal to the statistical
self-similarity parameter, K; therefore the property of invariability by time-
scale change for the analyzed time series is confirmed, proving again the
relationship (12) (see Table VI). In particular, this result holds better for
daily returns than for weekly or monthly ones.

CONCLUDING REMARKS

It is not enough to reject randomness and market efficiency hypotheses.
To make scientific progress, alternatives to randomness must be specified.
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This article offers an answer to the question: if asset returns do not follow
random walk what are they? Using daily agricultural futures data, this
study finds that returns are fractal.

What does it mean to say that returns are fractal? Returns are fractal
if they are characterized by properties such as fine structure, local and
global irregularities, self-similarity, and noninteger dimension. Such frac-
tal processes generalize the well-known random walks and martingales of
financial economics.

To support this claim that agricultural futures returns are fractal,
three pieces of statistical evidence are presented. Tests are conducted that
reject the hypothesis that returns are normally distributed. Then, the four
parameters of the Pareto–Lévy stable distribution are estimated. This dis-
tribution generalizes the special case of the normal distribution. With the
use of certain mathematical facts, it is found that the estimates of the
four parameters are consistent with the conjecture that the stochastic
process generating the returns is fractal.

The second set of tests uses the classical rescaled range analysis by
computing the Hurst exponent. The third test is an extension of the sec-
ond using a recent modification proposed by Lo (1991). With the use of
both these tests, evidence is found that returns are fractal.

What are the implications of these findings? Suppose that all finan-
cial returns (not only the agricultural futures studied in this article are
fractal. This would imply that financial returns behave in ways that are
more general than random walks. Put differently, random walks are only
a very special case of general fractal processes. Technically, this means
that although a fractal process may have a Hurst exponent that ranges
theoretically over (0, 1) set, the random walk is only one special case
when the Hurst exponent receives the value 0.5. This means that market
efficiency is a special theory and not a general theory; it holds sometimes
but not always. In other words, the empirical evidence that efficiency
holds in some cases and does not hold in others is now consistent with
the evidence that returns are fractal. Obviously, much more research is
needed to confirm or reject the fractal behavior of returns for nonagri-
cultural futures.
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Bachelier, L. (1900): “Téorie de la Spéculation,” Annales de l’Ecole Normale
Superieure, 21–86.

Bigman, D., Goldfarb, D., and Schechtman, E. (1983): “Futures Market Effi-
ciency and the Time Content of the Information Sets,” The Journal of Fu-
tures Markets, 3:321–334.

Bird, P. J. W. N. (1985): “Dependency and Efficiency in the London Terminal
Markets,” The Journal of Futures Markets, 5:433–446.

Canarella, G., and Pollard, S. K. (1985): “Efficiency of Commodity Futures: A
Vector Autoregression Analysis,” The Journal of Futures Markets, 5:57–76.

Canestrelli, E., and Nardelli, C. (1991): “Distribuzioni Stabili di Lévy dei Ren-
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del Comitato per gli Studi Economici, XXX–XXXI:111–134.

Chance, D. M. (1985): “A Semi-Strong Form Test of the Efficiency of Treasury
Bond Futures Market,” The Journal of Futures Markets, 5:385–405.

Cole, C. S., Impson, M., and Reichenstein, W. (1991): “Do Treasury Bill Futures
Rates Satisfy Rational Expectation Properties?,” The Journal of Futures Mar-
kets, 11:591–601.

Corazza, M., and Nardelli, C. (1992): “Software Tools to Calculate the Corre-
lation Dimension, the Higher Exponent of Liapunov and the Exponent of
Hurst,” unpublished.

Corazza, M., and Nardelli, C. (1993a): “Fenomeno della Dipendenza a Lungo
Termine nel Mercato Finanziario Italiano,” Atti del XVII Convegno
A.M.A.S.E.S., Ischia, pp. 359–382.

Corazza, M., and Nardelli, C. (1993b): “Analisi della Struttura Frattale del Mer-
cato Finanziario Italiano,” Rendiconti del Comitato per gli Studi Economici,
XXX–XXXI:171–186.

Cornew, R., Town, D., and Crowson, L. (1984): “Stable Distribution, Futures
Prices, and the Measurement of Trading Performance,” The Journal of Fu-
tures Markets, 4:531–557.

Cutland, N. J., Kopp, P. E., and Willinger, W. (1993): “Stock Price Returns and
the Joseph Effect: Fractional Version of the Black–Scholes Model,” Math-
ematics Research Reports, 297–306.

Decoster, G. P., Labys, W. C., and Mitchell, D. W. (1992): “Evidence of Chaos
in Commodity Futures Prices,” The Journal of Futures Markets, 12:291–
305.

Dusak, K. (1973): “Futures Trading and Investor Returns: An Investigation of
Commodity Market Risk Premiums,” Journal of Political Economy, 81:1387–
1405.

Elam, E., and Dixon, B. L. (1988): “Examining the Validity of a Test of Futures
Market Efficiency,” The Journal of Futures Markets, 8:365–372.

Falconer, K. (1990): Fractal Geometry, New York: Wiley.
Fama, E. F. (1963): “Mandelbrot and the Stable Paretian Hypothesis,” Journal

of Business, 36:420–429.
Fama, E. F. (1965): “Portfolio Analysis in a Stable Paretian Market,” Manage-

ment Science, 11:404–419.



Fractal Structure 471

Fama, E. F. (1965): “The Behavior of Stock Market Prices,” Journal of Business,
38:34–105.

Fama, E. F. (1970): “Efficient Capital Markets: Review of Theory and Empirical
Work,” Journal of Finance, 25:383–417.

Fama, E. F. (1991): “Efficient Capital Markets: II,” Journal of Finance,
46(5):1575–1617.

Fama, E. F., and Roll, R. (1968): “Some Properties of Symmetric Stable Distri-
butions,” Journal of the American Statistical Association, 63:817–836.

Fama, E. F., and Roll, R. (1971): “Parameter Estimates for Symmetric Stable
Distributions,” Journal of the American Statistical Association, 66:331–338.

Feder, J. (1988): Fractals, New York: Plenum Press.
Feller, W. (1971): An Introduction to Probability Theory and its Applications (Vols.

1 and 2), New York: Wiley.
Glassman, D. (1987): “The Efficiency of Foreign Exchange Futures Markets in

Turbulent and Non-Turbulent Periods,” Journal of Futures Markets, 7:245–
267.

Greene, M. T., and Fielitz, B. D. (1977): “Long-Term Dependence in Common
Stock Returns,” Journal of Financial Economics, 4:339–349.

Gribbin, D. W., Harris, R. W., and Lau, H. S. (1992): “Futures Prices Are Not
Stable-Paretian Distributed,” Journal of Futures Markets, 12:475–487.

Gross, M. (1988): “A Semi-Strong Test of the Efficiency of the Aluminum and
Copper Markets at the LME,” The Journal of Futures Markets, 8:67–77.

Grossman, S. J., and Stiglitz, J. E. (1980): “On the Impossibility of Information-
ally Efficient Markets,” The American Economic Review, 70:393–408.

Guimaraes, R. M., Kingsman, B. G., and Taylor, S. J. (1989): A Reappraisal of
the Efficiency of Financial Markets, Berlin: Springer.

Hall, J., Brorsen, B., and Irwin, S. (1989): “The Distribution of Future Prices:
A Test of the Stable Paretian and Mixture of Normals Hypothesis,” Journal
of Financial and Quantitative Analysis, 24:105–116.

Harpaz, G., Krull, S., and Yagil, J. (1990): “The Efficiency of the U.S. Dollar
Index Futures Market,” The Journal of Futures Markets, 10:469–479.

Helms, B. P., and Martell, T. F. (1985): “An Examination of the Distribution of
Futures Price Changes,” The Journal of Futures Markets, 5(2):259–272.

Hsieh, D. A. (1989): “Testing for Nonlinear Dependence in Daily Foreign Ex-
change Rates,” Journal of Business, 62:339–368.

Hudson, M., Leuthold, R., and Sarassoro, G. (1987): “Commodity Futures
Prices Changes: Recent Evidence for Wheat, Soybeans, and Live Cattle,”
The Journal of Futures Markets, 7:287–301.

Hurst, H. E. (1951): “Long-Term Storage of Reservoirs,” Transactions of the
American Society of Civil Engineers, 116.

Klemkosky, R. C., and Lasser, D. J. (1985): “An Efficiency Analysis of the T-
Bond Futures Market,” The Journal of Futures Markets, 5:607–620.

Koutrouvelis, I. A. (1980): “Regression-Type Estimation of the Parameters of
Stable Laws,” Journal of the American Statistical Association, 75(37):918–
928.

Koutrouvelis, I. A. (1981): “An Iterative Procedure for the Estimation of the
Parameters of Stable Law,” Communications in Statistics, Simulation and
Computation, B10(1):29–39.



472 Corazza, Malliaris, and Nardelli
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