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Abstract In this paper we use a nondifferentiable optimal control model to

analyze the advertising expenditure for a museum institution, which organizes

a temporary exhibition and may have higher costs in case of congestion. The

laws governing the behaviour of the system through time are defined by two

alternative dynamical systems, depending on the visitors attendance rate being

higher or lower than a critical level, the congestion threshold. We propose a

local search approach in order to determine optimal solutions to the museum

visitors flow problem. We focus on special neighbourhood structures in order

to develop suitable local search algorithms which take into account some

important features of the solutions of the control problem.
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1. Introduction

Let us consider a cultural organization which wants to promote a special

exhibition that takes place in a definite time period. Typically the promoter

must compete with a variety of proposals of recreation and entertainment

activities for attracting visitors. To this end, the promoter may advertise the
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event in order to enhance the interest for it among the potential audience [17].

There is indeed strong evidence on the increasing importance of marketing

strategies also for nonprofit organizations, such as museums, as it is testified

for example by [1], [3], [7], [8, pp. 43–45], [11] and [17].

We distinguish between two types of communication channels for transmit-

ting information on museum exhibitions within the social system. The first one

is media communication, which is directly controlled by means of the advertis-

ing policy of the promoter. The second one is word–of–mouth communication,

which is related to museum reputation and is not affected by the advertising

policy. Both types of communication are considered in the literature concern-

ing optimal control applications to marketing problems, see for example [12],

[4], [5], [6], [10]. As far as word–of–mouth communication is concerned, here we

assume in particular that past visitors can spread both favorable and unfavor-

able information, according to their museum experience being either positive

or negative. As Rothenberg [15] notes, museum visits, like many public goods

(highways, beaches, parks, tourist attractions of all kinds) are subject to crowd-

ing and congestion: the presence of other users adversely affects the level of

utility obtained by each consumer. Utility deterioration may be revealed in

terms of lenght of queues, psychological tension or aesthetic disfiguration of

the exhibition. There exists, in general, a congestion threshold beyond which

interference effects become noticeable and the quality of visitor experience de-

creases. We relate the occurrence of the unsatisfied visitors to the exhibition

congestion.

We propose to describe the behaviour of the system through time by means

of two alternative dynamical systems. Both of them account for the positive

effects on the visitors attendance rate of the advertising expenditure rate and

of the cumulative number of satisfied visitors, on the one hand, and account for

the negative effects on the visitors attendance rate of the possible congestion

of the exhibition and of the cumulative number of unsatisfied visitors, on the

other hand. The first dynamical system is associated to a low attendance

rate (normal regime), when no actual congestion effects are observed. The

second one is associated to a high attendance rate (congested regime), when the
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visitors attendance rate is also affected negatively by the actual congestion and

additional management costs are observed. In a state trajectory we distinguish

a sequence of arcs which belong to the normal regime and the congested regime

alternatively. Because of the regime switching the optimal control problem

is nondifferentiable and the standard maximum principle is unsuitable for

analysing optimal policies. Local search techniques are then used in order to

formulate a special family of algorithms searching for candidates to optimality.

The paper is organized as follows. In Section 2 we introduce the museum

visitors flow problem. In Section 3 we give a suitable definition of neighborhood

of an admissible solution and we present the basic local search algorithm. In

Section 4 we focus on a family of auxiliary control problems that are needed to

specify some steps of the basic local search algorithm. In Section 5 we discuss

a cycle based algorithm as a local search algorithm which exploits the different

regime characteristics of the admissible solutions.

2. The museum visitors flow (MVF ) problem

2.1 Statement of the problem

Let us denote by

T, the final time, which is the end time of the exhibition, 0 ≤ T ≤ T ;

T , the least upper bound of the feasible final times, T > 0;

y(t), the visitors attendance rate at time t;

y, the congestion threshold, y > 0;

x(t), the cumulative number of satisfied visitors at time t;

z(t), the cumulative number of unsatisfied visitors at time t;

v(t), the advertising expenditure rate at time t;

v, the maximum advertising expenditure rate, v > 0;

B(y, v), the museum net benefit rate.

The following equations determine the dynamics of the system:

ẋ(t) = y(t)(1− 1I(y(t)− y)), (1.1)

ẏ(t) = −γmax{0, y(t)− y}+ axx(t)− azz(t) + bv(t), (1.2)

3



ż(t) = y(t)1I(y(t)− y), (1.3)

B(y(t), v(t)) = αy(t)− kmax{0, y(t)− y} − v(t), (2)

where

1I(y − y) =

{

0, if y < y,

1, if y ≥ y,
(3)

and

γ > 0, ax > 0, az > 0, b > 0, α > 0, k ≥ 0.

Equations (1.1) and (1.3) represent the way in which satisfied and unsatisfied

visitors appear: all visitors are supposed to be either satisfied or unsatisfied

according to the visitors attendance rate being either less or greater than the

congestion threshold, respectively. Equation (1.2) represents the growth of

museum demand as a function of excess demand, cumulative satisfied visitors,

cumulative unsatisfied visitors and advertising. The museum net benefit rate

is given by equation (2), which takes into account that each visitor pays a

constant admission fee and has a constant exhibition cost, but there is an

additional exhibition cost rate at all times in which the visitors rate exceeds the

congestion threshold level. In order to make sure that an admissible control v(t)

determines a unique state function (x(t), y(t), z(t)), we restrict our attention

to solutions (x(t), y(t), z(t), v(t), T ) such that

i) v(t) is piecewise continuous,

ii) ẏ(t∗−) 6= 0 at all t∗ such that y(t∗) = y,

iii) if y(t∗) = y then there exists ǫ > 0 such that

either y(t) < y, t ∈ (t∗ − ǫ, t∗) and ẏ(t∗+) ≥ ẏ(t∗−),

or y(t) > y, t ∈ (t∗ − ǫ, t∗), and ẏ(t∗+) ≤ ẏ(t∗−),

iv) the set {t ∈ [0, T ] | y(t) = y} is finite.

Solutions of this kind are, for instance, those which are determined by the

constant control functions.

At time t = 0 the state is given by:

x(0) = 0, (4.1)

z(0) = 0, (4.2)

y(0) = y0. (4.3)
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The problem can be stated as follows: find an advertising policy v(t), t ∈ [0, T ],

that maximizes the museum total benefit J

J =

∫ T

0

B(y(t), v(t))dt, (5)

subject to the differential equations (1.1)–(1.3), with the initial conditions

(4.1)–(4.3) and with the further non–negativity constraint

y(T ) ≥ 0, (6)

which is also an anticipated stopping condition. The final time T is restricted

to vary in the closed interval [0, T ], whereas feasible controls are constrained

by the maximum expenditure rate v, that is:

v(t) ∈ [0, v]. (7)

Moreover we assume that the initial visitors attendance rate is less than the

congestion threshold level when the exhibition opens to the public:

0 < y0 < y. (8)

2.2 Normal and congested regimes

We say that the system is in normal regime at time t if y(t) < y, so that

its evolution is determined by the motion equations:

ẋ(t) = y(t), (9.1)

ẏ(t) = axx(t)− azz(t) + bv(t), (9.2)

ż(t) = 0. (9.3)

If y(t) ≥ y, we say that the system is in congested regime at time t, and

the associated motion equations are:

ẋ(t) = 0, (10.1)

ẏ(t) = −γ(y(t)− y) + axx(t)− azz(t) + bv(t), (10.2)

ż(t) = y(t). (10.3)

5



Let (x(t), y(t), z(t), v(t), T ) be a feasible solution to the museum visitors

flow problem, which satisfies the conditions (i)–(iv) of Section 2.1. As condition

(8) holds, we can define the following sequence of times:

t0 = 0,

t2i−1 = inf{t > t2i−2| y(t) ≥ y}, i ≥ 1,

t2i = inf{t > t2i−1| y(t) < y}, i ≥ 1,

(11)

where inf ∅ = +∞. If tn−1 is the last real element of the sequence determined

recursively by (11), then let

tn = T. (11.1)

We call the times t0, t1, ..., tn, transition times associated with the feasible

solution (x(t), y(t), z(t), v(t), T ), as we observe a regime change at time tk,

k 6∈ {0, n}. In view of the (restrictive) conditions on the feasible solutions of

Section 2.1, in particular condition (iv), we have that all feasible solutions have

a finite number of transition times. We call ith epoch the time interval

ei = [ti−1, ti], i = 1, .., n. (12)

in which the system is observed staying either in normal regime (i odd) or in

congested regime (i even). Finally, if we consider the time interval resulting

from the union of two consecutive epochs, we have a cycle:

ci = ei ∪ ei+1 = [ti−1, ti+1], i = 1, .., n− 1. (13)

3. Improvement of admissible policies

We present an algorithm with the goal of searching for candidates to

optimality of theMV F problem. The algorithm exploits a local search strategy

in a context which is suggested by Bellman’s optimality principle.

Local search algorithms, as presented in [2], [9], [13], [14], [18] are iterative

algorithms with the aim of finding a (local) optimal solution to a general

optimization problem. One first defines the neighbourhood of each feasible
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solution of the problem as a special subset of feasible solutions “near to”

the given solution. Then, starting from an arbitrary initial solution, local

search consists in moving from the current solution to another one in its

neighbourhood, according to some well–defined rules. When the criterion for

selecting the next solution is to choose a solution in the neighbourhood with

an improved value of the objective function then the literature refers to it as a

descent algorithm [9], [14], to indicate that at each step of the iterative process

the value of the objective function decreases (in the formulation of the problem

as a minimum problem).

3.1 Neighbourhood structure

Let Σ be the set of all admissible solutions to the MV F problem, i.e.

the solutions which satisfy the motion equations (1), the assumptions i)–iv)

of Section 2.1, the initial conditions (4), the terminal condition (6) and the

control constraint (7). Let I be the set of all closed subintervals of [0, T ].

Definition Let F : Σ → P(I) be a mapping from the set of admissible

solutions into the power set of the set of closed subintervals of [0, T ], such

that, for all ξ = (x, y, z, v, T ) ∈ Σ,

i) F (ξ) is finite,

ii)
⋃

I∈F (ξ) I = [0, T ].

Let Φ :
⋃

ξ∈Σ{ξ}×F (ξ)→ P(Σ) be a mapping which maps a couple (ξ, I),

where ξ = (x, y, z, v, T ) and I = [t′, t′′] ∈ F (ξ), into a nonempty subset Φ(ξ, I)

of admissible solutions η = (x′, y′, z′, v′, T ′) ∈ Σ such that T ′ ≥ t′ and

(x′, y′, z′, v′)(t) = (x, y, z, v)(t), for all t ∈ [0,min{T, T ′}] \ I,

where T ′ = T whenever t′′ < T .

We define the (F,Φ)–neighbourhood of the solution ξ ∈ Σ as the set

NF,Φ(ξ) =
⋃

I∈F (ξ)

Φ(ξ, I).

We find it convenient for our purposes not to follow the convention,

assumed e.g. in [16], that ξ 6∈ NF,Φ(ξ), for all ξ ∈ Σ. Nevertheless, we do

7



not exclude choices of Φ such that ξ 6∈ Φ(ξ, I) for some (ξ, I) and possibly that

ξ 6∈ NF,Φ(ξ).

In the special case in which Φ(ξ, I) ⊆ Σ is a singleton for all ξ ∈ Σ and

I ∈ F (ξ), we have that the number of admissible solutions of the neighborhood

NF,Φ(ξ) equals the number of time intervals of F (ξ).

In view of the above definition, choosing an admissible solution in the

neighbourhood NF,Φ(ξ) of a solution ξ means modifying the solution ξ in an

interval I ∈ F (ξ).

3.2 The basic steepest descent algorithm

Once we have fixed the mappings F and Φ and we have chosen an initial

admissible solution, we obtain a local search steepest descent [16] algorithm

by moving, at each step, from the current solution ξ to the best solution in

its neighbourhood NF,Φ(ξ). We observe that, if Φ(ξ, I) is a singleton for all

ξ ∈ Σ and I ∈ F (ξ), then the local search steepest descent algorithm requires,

at each step, first to determine the admissible solution associated with each

interval I ∈ F (ξ) and evaluate the objective functional of problem MV F in

it, then to move from the current solution ξ to the best admissible solution

associated with an interval in F (ξ).

Basic steepest descent algorithm

Step 0: (initialization) construct a feasible solution ξ0 = (x0, y0, z0, v0, T 0)

n← 0

Step 1: determine the set of intervals F (ξn)

Step 2: ηn ← ξn

Step 3: for all I ∈ F (ξn) do

Step 3.1: find the best solution η ∈ Φ(ξn, I)

Step 3.2: if η is better than ηn, then ηn ← η

Step 4: if ηn is better than ξn, then ξn+1 ← ηn

else stop

Step 5: n← n+ 1

Step 6: go to Step 1
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In order to determine completely a descent algorithm one has to specify,

in addition to the mappings F and Φ:

i) how to construct a feasible solution ξ0 (Step 0),

ii) how to find a “best solution” η (Step 3.1).

We observe that the characteristics of the optimization problem of Step

3.1 depend on the characteristics of the set Φ(ξn, I) and in particular that

there may not exist a best solution in Φ(ξn, I) and in that case Step 3.1 is

undefined. We are particularly interested in having a mapping Φ which induces

optimization problems, which are less difficult than the original problem MV F .

Now, assuming that a best solution in Φ(ξn, I) exists in all cases, we

observe that after executing the Steps 1–4 for a given n, with ηn better than

ξn, the value of the objective functional at the improved admissible solution

ξn+1 is greater than the value at the previous solution ξn. All feasible controls

may be used to initialize the algorithm and in general the choice of the initial

feasible solution affects the algorithm convergence.

3.3 First improvement rules

In addition to the steepest descent algorithm which implements the best

improvement pivoting rule, we may consider a class of algorithms which

implement the first improvement pivoting rule [2] and [18]. They consist in

searching new solutions in the neighbourhood of the current one until one is

found which presents an improved value of the objective functional. The use

of such first improvement approach can modify the previous basic algorithm in

several ways.

In view of the particular representation of the neighbourhoods that we

have used in the basic steepest descent algorithm, we may propose two different

versions of first improvement algorithms, by substituting Steps 2 to 4 as follows:

Version I

Step 2: L← F (ξn)

Step 3: choose an interval I ∈ L

Step 3.1: L← L \ {I}
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Step 3.2: find the best solution ηn ∈ Φ(ξn, I)

Step 4: if ηn is better than ξn

then begin

ξn+1 ← ηn

go to Step 5

end

else if L 6= ∅ then go to Step 3

else stop

Version II

Step 2: L← F (ξn)

Step 3: choose an interval I ∈ L

Step 3.1: L← L \ {I}

Step 4: if there exists ηn ∈ Φ(ξn, I) such that ηn is better than ξn,

then begin

ξn+1 ← ηn

go to Step 5

end

else if L 6= ∅ then go to Step 3

else stop

The resulting local search algorithms explore, at each iteration of Steps

3–4, a subset of the neighbourhood of the current solution. In particular, in

Version II an arbitrary solution η ∈ Φ(ξn, I) is sought, which is better than

the current solution ξn and is not necessarily the best one. In Version I, on

the other hand, the best solution in Φ(ξn, I) is chosen, for some I ∈ L, but in

general this solution will not be the best solution in NF,Φ(ξ) =
⋃

I∈L Φ(ξn, I),

as it was required by the steepest descent algorithm.

We observe that Step 3.2 in Version I is not well defined in the case that

the best solution in the set Φ(ξn, I) does not exist. On the contrary all the

steps in Version II are well defined.
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4. Interval subproblems

Here we focus on the special kind of (F,Φ)–neighbourhood NF,Φ(ξ) which

is determined by the least restrictive mapping Φ :
⋃

ξ∈Σ{ξ} × F (ξ) → P(Σ),

i.e. we consider Φ(ξ, I) as the set of all solutions η = (x′, y′, z′, v′, T ′) ∈ Σ

such that

η|[0,min{T,T ′}]\I = ξ|[0,min{T,T ′}]\I .

In this case, the problem of finding the best solution η ∈ Φ(ξ, I) is equivalent

to the optimal control problem of maximizing the objective functional of the

MV F problem on the interval I with suitable boundary conditions. We will call

maximum depth algorithm the steepest descent algorithm which is associated

with the above definition of Φ.

Now, let us consider the subproblem

P (t′, I, X ′, Y ′, Z ′, X ′′, Y ′′, Z ′′), (14)

associated with the time interval [t′, t′′] (where the endtime t′′ is variable in I),

which is the problem of maximizing the objective functional

∫ t′′

t′
B(y(t), v(t))dt, (15)

subject to the motion equations (1.1)–(1.3), the assumptions i)–iv) of Section

2.1, the control variable restriction (7) and the following initial and terminal

conditions for the state variables:

x(t′) ∈ X ′, x(t′′) ∈ X ′′, (16.1)

y(t′) ∈ Y ′, y(t′′) ∈ Y ′′, (16.2)

z(t′) ∈ Z ′, z(t′′) ∈ Z ′′. (16.3)

In the following we will write s in place of the singleton {s}, for all s ∈ ℜ,

moreover we will denote by ℜ+ the set of all nonnegative real numbers,

ℜ+ = [0,+∞).

We can state the steepest descent algorithm with reference to the actual

neighbourhood structure, i.e. the maximum depth algorithm, and using the

notation just introduced, as follows:

11



Maximum depth algorithm

Step 0: (initialization) construct a feasible solution ξ0 = (x0, y0, z0, v0, T 0)

n← 0

Step 1: determine the set of intervals F (ξn) = F (xn, yn, zn, vn, Tn)

Step 2: ηn ← ξn

Step 3: for all I = [t′, t′′] ∈ F (ξn) do

Step 3.1: if t′′ < Tn

then let ηI be an optimal solution to the interval subproblem

P (t′, t′′, xn(t′), yn(t′), zn(t′), xn(t′′), yn(t′′), zn(t′′))

and let T ′ be the final time of ηI (T ′ = t′′)

else let ηI be an optimal solution to the interval subproblem

P (t′, [t′, T ], xn(t′), yn(t′), zn(t′),ℜ+,ℜ+,ℜ+)

and let T ′ be the final time of ηI (T ′ ∈ [t′, T ])

Step 3.2: if ηI is better than ξn|I

then begin

η(t) = ξn(t), t ∈ [0, t′] ∪ [t′′, Tn]

η(t) = ηI(t), t ∈ [t′, T ′]

if t′′ < Tn then set final time of η as Tη ← Tn

else set final time of η as Tη ← T ′

if η is better than ηn then ηn ← η

end

Step 4: if ηn is better than ξn, (i.e. if ηn has been modified)

then ξn+1 ← ηn

else stop

Step 5: n← n+ 1

Step 6: go to Step 1

As already observed for the basic steepest descent algorithm, Step 3.1 of

the maximum depth algorithm may not be well defined as the relevant optimal

control subproblem may not have any optimal solution.

Moreover we observe that at the n–th iteration of the algorithm we may

know that the current solution cannot be improved in some subintervals of

[0, Tn], so that only the intervals of a subset of F (ξn) need to be considered in
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Step 3. We call “improvable” an interval I ∈ F (ξn) until we find out that the

restriction ξn|I is an optimal solution to the interval subproblem associated to

it, i.e. either to problem P (t′, t′′, xn(t′), yn(t′), zn(t′), xn(t′′), yn(t′′), zn(t′′)) or

to problem P (t′, [t′, T ], xn(t′), yn(t′), zn(t′),ℜ+,ℜ+,ℜ+).

4.1 Interval optimality

The use of the maximum depth algorithm is justified by taking into account

the fact that whenever the current solution is an optimal solution, the algorithm

stops. This can be seen by using Bellman’s optimality principle, which, for an

autonomous problem like MV F , states that any portion of an optimal path is

optimal [16, pp. 168–169]. In the context of the museum visitors flow problem

we obtain that an optimal solution, with final time T ∗, is characterized as

follows, in any time interval [t′, t′′] ⊆ [0, T ∗].

Theorem 1 Let ξ∗ = (x∗, y∗, z∗, v∗, T ∗) be an optimal solution to the MV F

problem and let [t′, t′′] ⊆ [0, T ∗]. Then the restriction of ξ∗ to the interval

[t′, t′′] is an optimal solution to the interval subproblem

P (t′, t′′, x∗(t′), y∗(t′), z∗(t′), x∗(t′′), y∗(t′′), z∗(t′′)).

Moreover, the restriction of ξ∗ to the interval [t′, T ∗] is also an optimal solution

to the interval subproblem

P (t′, [t′, T ], x∗(t′), y∗(t′), z∗(t′),ℜ+,ℜ+,ℜ+).

An analogous justification holds for the basic steepest descent algorithm,

although, depending on the definition of Φ(ξ, I), the optimization problem of

Step 3.1 may not be an optimal control problem.

5. Cycle based neighbourhood structure

A crucial question for the realization of the maximum depth algorithm is

the definition of the mapping F : Σ → P(I), which is a part of the definition

of the (F,Φ)–neighbourhood NF,Φ(ξ). A special choice of subintervals of [0, T ]
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is the set of the cycles of the current solution, which we have defined in Section

2.2. As the set of the cycles of ξ = (x, y, z, v, T ) is finite, let F (ξ) be the set

of the intervals [t′, t′′] ⊆ [0, T ] such that either [t′, t′′] is a cycle of ξ, or it is

the last epoch (i.e. [t′, t′′] is an epoch and t′′ = T ). We call the resulting

(F,Φ)–neighbourhood of a feasible solution ξ, a cycle based neighbourhood of

ξ.

A first important consequence of using the cycle based neighbourhood

structure is that all the elements (intervals) of F (ξn) but at most three are also

elements of F (ξn+1).

A second consequence is related with the observation following the

statement of the maximum depth algorithm in Section 4, i.e. that if I ∈

F (ξn) ∩ F (ξn+1) and I is not improvable for ξn, then it is not improvable for

ξn+1 either.

Now, let the solution ξn, with final time Tn, be modified in an interval

In = [t′, t′′] ∈ F (ξn) at Step 3 of the n–th iteration and let such modified

solution be defined as ξn+1, with final time Tn+1, at Step 4; then the set of

the improvable intervals of ξn is transformed into that of ξn+1 as follows.

First we observe that either In ∈ F (ξn+1) but is not improvable for ξn+1,

or In 6∈ F (ξn+1). Moreover an interval I ∈ F (ξn+1) is not improvable for the

solution ξn+1 if either I ⊆ In (whenever t′′ < Tn) or I ⊆ [t′, Tn+1] (whenever

t′′ = Tn ).

Finally, if the interval I ∈ F (ξn) is a cycle of ξn and I ∩ In is an epoch of

ξn, then in general I 6∈ F (ξn+1).

On the other hand an interval I ∈ F (ξn+1), I ⊆ [0, Tn], which is a non–

final cycle of ξn+1, is improvable for the solution ξn+1 if I ∩ In is an epoch of

ξn+1.

In conclusion, if we denote by L the set of the improvable intervals for the

solution ξn, then the set of the improvable intervals for the successive solution

ξn+1 is given by L \A−(In, ξn) ∪ A+(In, ξn+1), where

A−(In, ξn) = {In} ∪ {I | I cycle of ξn and I ∩ In epoch of ξn},

A+(In, ξn+1) = {I ⊆ [0, Tn+1] | I non–final cycle of ξn+1

and I ∩ In epoch of ξn+1}.

(17)
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Using the cycle based neighbourhood structure and the observations just

presented, we obtain the following cycle based maximum depth algorithm.

Cycle based maximum depth algorithm

Step 0: construct a feasible solution ξ0 = (x0, y0, z0, v0, T 0), n← 0

Step 1: L← F (ξ0) (list of improvable cycles and last epoch)

Step 2: ηn ← ξn

Step 3: for all I = [t′, t′′] ∈ L do

Step 3.1: if t′′ < Tn

then let ηI be an optimal solution to the cycle subproblem

P (t′, t′′, xn(t′), yn(t′), zn(t′), xn(t′′), yn(t′′), zn(t′′))

and let T ′ be the final time of ηI (T ′ = t′′)

else let ηI be an optimal solution to the interval subproblem

P (t′, [t′, T ], xn(t′), yn(t′), zn(t′),ℜ+,ℜ+,ℜ+)

and let T ′ be the final time of ηI (T ′ ∈ [t′, T ])

Step 3.2: if ηI is better than ξn|I

then begin

η(t) = ξn(t), t ∈ [0, t′] ∪ [t′′, Tn]

η(t) = ηI(t), t ∈ [t′, T ′]

if t′′ < Tn then set final time of η as Tη ← Tn

else set final time of η as Tη ← T ′

if η is better than ηn then ηn ← η, I ′ ← I

end

else L← L \ {I}

Step 4: if ηn is better than ξn, (i.e. if ηn has been modified)

then ξn+1 ← ηn, L← L \A−(I ′, ξn) ∪ A+(I ′, ξn+1)

else stop

Step 5: n← n+ 1

Step 6: if L 6= ∅ then go to Step 2

else stop

We observe that, after executing Steps 3 and 4 on the cycle I ′ = [t′, t′′],

with t′′ < Tn, the new (improved) solution ξn+1 may as well have one internal
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transition time in the interval I ′ as more than one. In the first case, the interval

I ′ = [t′, t′′] is still a cycle of the solution ξn+1. In the second case, there are

1 + 2k transition times in (t′, t′′), with k ≥ 1, so that ξn+1 has more than one

cycle in [t′, t′′]. In both cases, the interval I ′ is not present in the updated list

of improvable intervals, because of Steps 3.2 and 4.

When the improvement procedure is executed on the interval I ′ = [t′, t′′] =

[t′, Tn], which is either the last cycle or the last epoch of the current solution

ξn, then the new improved solution ξn+1 whose final time is T ′ may as well

have one internal transition time in the interval [t′, T ′], as none or more than

one.

The following theorem sheds some light on the relation between possible

solutions to which the cycle based algorithm converges and optimal solutions

of the MV F problem, by considering the features of the optimal solutions of

interval subproblems for all intervals.

Theorem 2 Let ξ∗ = (x∗, y∗, z∗, v∗, T ∗) be a solution to which the cy-

cle based maximum depth algorithm converges. If there exists an interval

I = [t′, t′′] ⊆ [0, T ∗], such that the optimal solution ξ∗I of the interval sub-

problem P (t′, t′′, x∗(t′), y∗(t′), z∗(t′), x∗(t′′), y∗(t′′), z∗(t′′)) (or alternatively

P (t′, [t′, T ], x∗(t′), y∗(t′), z∗(t′), ℜ,ℜ,ℜ), if t′′ = T ∗) differs from the restric-

tion ξ∗|I of the solution ξ∗ to the interval I, then the interval I is neither a

cycle nor a subset of a cycle of ξ∗.

Proof Let us first consider t′′ < T ∗ and assume that there exists an

interval I = [t′, t′′] ⊂ [0, T ∗], such that the optimal solution of the interval

subproblem P ∗ = P (t′, t′′, x∗(t′), y∗(t′), z∗(t′), x∗(t′′), y∗(t′′), z∗(t′′)) differs

from the restriction ξ∗|I of the solution ξ∗ to the interval I.

If the interval I is a cycle of the solution ξ∗, then a contradiction follows

directly from the assumption that ξ∗ is a solution to which the cycle based

maximum depth algorithm converges.

If the interval I is not a cycle of ξ∗, let C = [t∗i−1, t
∗
i+1] be the cycle of

the solution ξ∗ such that I ⊂ C. In this case we consider the new solution ξ̂

obtained by substituting the optimal solution of the interval subproblem P ∗, to

the restriction ξ∗|I in ξ∗ and we consider the restriction ξ̂|C of the new solution
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ξ̂ to the cycle C. We obtain that ξ̂|C differs from ξ∗|C only in I. Moreover

the objective functional of the subproblem attains a higher value in ξ̂|C than

in ξ∗|C . Then ξ∗ is improvable in the cycle C and we have a contradiction.

The case t′′ = T ∗ is similar to the previous one with the exception that

we have to use problem P (t′, [0, T ], x∗(t′), y∗(t′), z∗(t′),ℜ,ℜ,ℜ) as the interval

subproblem P ∗. Moreover, the cycle under consideration is the last cycle

C = [t∗n−2, t
∗
n], where t∗n = T ∗.

Although a cycle subproblem is a nondifferentiable optimal control

problem, it is nevertheless simpler than the original MV F problem because

of the presence of a unique nondifferentiable point which is the transition time

internal to the cycle. On the other hand, if we consider a first improvement

algorithm with the cycle based neighbourhood structure, by modifying Steps 3

and 4 of the cycle based maximum depth algorithm along the lines of “Version

II” of Section 3.3, then we can obtain a simplification by requiring that ηI

is a feasible solution of the relevant control problem which is better than the

current one. Of course, care is needed in order to have a significant set of feasible

solutions among which to choose in the relaxed version of the algorithm.

6. Conclusions

The aim of this paper is twofold. On one hand, we have introduced the

cultural marketing problem of determining optimal advertising policies for a

museum institution. We have formulated the “museum visitors flow problem”

as a nonlinear and nondifferentiable optimal control problem with three state

and one control variables. On the other hand we have developed a special family

of local search algorithms for the solution of the problem, presenting the basic

steepest descent algorithm and two first improvement variants of it. The local

search approach consists in improving iteratively an initial admissible solution

to the museum visitors flow problem, by exploring a suitable neighbourhood

of the current solution at each iteration. The key issue of our analysis is the

special definition of neighbourhood of an admissible solution, which is based

on some relevant information on the solution. The steepest descent algorithm
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requires to solve a set of special optimal control problems at each iteration

and such problems may present the same difficulties as the original one. Then

attention has to be devoted mainly to first improvement algorithms which allow

one to consider less complicated problems. The observation that the evolution

of the system is determined by piecewise linear differential equations may be

useful to determine special first improvement rules.

Finally we observe that the initialization process affects the solution to

the museum visitors flow problem which we may obtain from the execution of

a local search algorithm. The number of iterations required by the algorithm

will depend on it too. Then it will be important to deal with the problem of

finding “good” initial admissible solutions.
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