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Abstract

We consider a local search algorithm for the museum visitors flow problem

and propose some variants of it in order to reduce its complexity. A new

definition of neighbourhood of an admissible solution, permits us to exploit

the piecewise linearity of the museum visitors flow problem. Most iterations of

the resulting algorithm require to solve finite sets of one–dimensional nonlinear

programming problems and each of these problems has, as objective function,

the sum of the optimal value functions of two linear optimal control problems.

Two first improvement variants of the local search algorithm are also presented.

Key Words: local search, optimal control, mathematical programming,

museum, advertising
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Introduction

The museum visitors flow problem is the problem of determining the

possible optimal advertising policies for a museum institution which seeks

the maximum net benefit from a temporary exhibition. Visitors are supposed

to spread both positive and negative information about the event, where an

unfavorable message is a consequence of observing a congested exhibition.

The museum visitors flow problem was analyzed in our previous work (see

Funari and Viscolani (1997)). It is formulated as a nonlinear, nondifferentiable

optimal control problem and local search techniques are proposed in order

to determine possible optimal advertising strategies. The final result is the

cycle based maximum depth algorithm, a local search algorithm which exploits

the special cycle structure of the feasible solutions of the museum visitors

flow problem. The algorithm involves the solution of a sequence of optimal

control subproblems which concern the behaviour of the system in special time

subintervals. The result is still unsatisfactory from a computational viewpoint,

as the optimal control subproblems are still nondifferentiable.

In this paper we propose a heuristic in order to reduce the complexity

of the cycle based maximum depth algorithm. We first define the cycle

preserving neighbourhood structure on the set of admissible solutions. The

neighbourhoods that we consider are proper subsets of the neighbourhoods

which are fundamental in the cycle based maximum depth algorithm. Then

we analyze the consequences on the corresponding local search algorithm and

observe that most iterations of the algorithm require to solve finite sets of one–

dimensional nonlinear programming problems. Each nonlinear programming

problem has, as objective function, the sum of the optimal value functions of

two linear optimal control problems. Finally, we discuss two first improvement

variants of the local search algorithm in order to further reduce its complexity.

The paper is organized as follows. In Section 1 we introduce the museum

visitors flow problem and in Section 2 we present the cycle based maximum

depth algorithm. In Section 3 we modify the general cycle based algorithm by

using a new neighbourhood structure. In Section 4 we discuss the two families

of linear optimal control problems which are relevant with reference to the new
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neighbourhoods. In Section 5 we show how the problem of the cycle preserving

local improvement procedure, which is the essential part of the steepest descent

algorithm, can be formulated as a one–dimensional nonlinear programming

problem. Finally we present in Section 6 two first improvement variants of the

local search algorithm.

1. The museum visitors flow problem

The museum visitors flow problem (MVF ) is the following nondifferen-

tiable optimal control problem:

maximize J =

∫ T

0

[αy(t)− kmax{0, y(t)− y} − v(t)]dt, (1)

subject to ẋ(t) = y(t)(1− 1I(y(t)− y)), (2.1)

ẏ(t) = −γmax{0, y(t)− y}+ axx(t)− azz(t) + bv(t), (2.2)

ż(t) = y(t)1I(y(t)− y), (2.3)

and to x(0) = 0, (3.1)

y(0) = y0, y(T ) ≥ 0, (3.2)

z(0) = 0, (3.3)

v(t) ∈ [0, v], (4)

T ∈ [0, T ], (5)

where

1I(y − y) =

{

0, if y < y,
1, if y ≥ y,

(6)

and the following conditions are supposed to hold for the parameters:

0 < y0 < y, (7)

γ > 0, ax > 0, az > 0, b > 0, α > 0, k ≥ 0. (8)

We restrict our attention to the solutions (x(t), y(t), z(t), v(t), T ) such that

i) v(t) is piecewise continuous,

ii) ẏ(t∗−) 6= 0 at all t∗ such that y(t∗) = y,
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iii) if y(t∗) = y then there exists ǫ > 0 such that

either y(t) < y, t ∈ (t∗ − ǫ, t∗) and ẏ(t∗+) ≥ ẏ(t∗−),
or y(t) > y, t ∈ (t∗ − ǫ, t∗), and ẏ(t∗+) ≤ ẏ(t∗−),

iv) the set {t ∈ [0, T ] | y(t) = y} is finite.
Solutions of this kind are, for instance, those which are determined by the

constant control functions.

The meaning of the symbols is the following:

T, the final time, which is the end time of the exhibition, 0 ≤ T ≤ T ;

T , the least upper bound of the feasible final times, T > 0;

y(t), the visitors attendance rate at time t;

y, the congestion threshold, y > 0;

x(t), the cumulative number of satisfied visitors at time t;

z(t), the cumulative number of unsatisfied visitors at time t;

v(t), the advertising expenditure rate at time t;

v, the maximum advertising expenditure rate, v > 0,

J, the total benefit of the museum in the interval [0, T ].

Let ξ = (x(t), y(t), z(t), v(t), T ) be a feasible solution to the museum

visitors flow problem, which satisfies the conditions (i)–(iv). We say that the

system is in normal regime at time t, if y(t) < y, and that it is in congested

regime at time t, if y(t) ≥ y. We define the sequence t0, t1, . . . , tn, of transition

times associated with ξ as follows:

t0 = 0, (9)

for all i ≥ 0, if ti has been defined and ti < T , then let

Yi =

{

{t ∈ (ti, T ) | y(t) ≥ y}, if i is even,
{t ∈ (ti, T ) | y(t) < y}, if i is odd,

(10)

and
{

ti+1 = inf Yi, if Yi 6= ∅,
n = i+ 1 and tn = T, if Yi = ∅.

(11)

We call ith epoch the time interval

ei = [ti−1, ti], i = 1, .., n, (12)
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in which the system is observed staying either in normal regime (i odd, in view

of (7)) or in congested regime (i even). We call ith cycle the time interval

ci = ei ∪ ei+1 = [ti−1, ti+1], i = 1, .., n− 1. (13)

Moreover, we call ci a normal/congested cycle if i is odd and we call ci a

congested/normal cycle if i is even. Finally, we denote also by el(ξ) the last

epoch of ξ, i.e. the epoch with upper bound T , and denote by C(ξ) the set of

the cycles of ξ.

2. The cycle based maximum depth algorithm

The concepts of cycle and epoch of an admissible solution to the museum

visitors flow problem and Bellman’s optimality principle have been used, in

Funari and Viscolani (1997), in order to formulate a special local search

algorithm (see Anderson (1996), Papadimitriou and Steiglitz (1982), Pirlot

(1996)) for the solution of the museum visitors flow problem. This is the

cycle based maximum depth algorithm, which is the steepest descent algorithm

associated with a special cycle based neighbourhood structure (see Verhoeven

and Aarts (1995)).

Definition Let Σ be the set of all admissible solutions to the MV F problem,

i.e. the solutions which satisfy the motion equations (2), the assumptions i)–

iv) of Section 2, the state conditions (3), the control constraint (4) and the

time constraint (5). For each admissible solution ξ = (x, y, z, v, T ) ∈ Σ, let

F (ξ) = C(ξ) ∪ {el(ξ)} be the set of intervals which are either cycles or the last

epoch of ξ. We define the cycle based neighbourhood N(ξ) of the solution ξ ∈ Σ

as the subset of Σ such that if η = (x′, y′, z′, v′, T ′) ∈ N(ξ), then T ′ ≥ t′ and

there exists I ∈ F (ξ) such that

η|[0,min{T,T ′}]\I = ξ|[0,min{T,T ′}]\I ,

if sup I < T , then T ′ = T .

While executing the algorithm, let ξ ∈ Σ be the current admissible solution

and let I ∈ F (ξ); we call I an improvable interval of ξ as long as we do not

know whether ξ is optimal among all the solutions η = (x′, y′, z′, v′, T ′) ∈ N(ξ)

6



such that η|[0,min{T,T ′}]\I = ξ|[0,min{T,T ′}]\I . We write η ≻ ξ to state that “η

is better than ξ”, i.e. that the value of the objective functional associated to η

is greater than the value of the objective functional associated to ξ.

The iterative process of moving from the current admissible solution to

the best solution in its neighbourhood is based on the construction of a list of

improvable intervals, which is updated during the executon of the algorithm.

Cycle based maximum depth algorithm

Step 0: construct a feasible solution ξ0 = (x0, y0, z0, v0, T 0);

L← F (ξ0); (list of improvable intervals)

n← 0;

Step 1: while L 6= ∅
do begin

ηn ← ξn;

Step 2: for all I ∈ L

do begin

2.1: let η = (x, y, z, v, T ) ∈ N(ξn) maximize the functional J ,

subject to η|[0,min{Tn,T}]\I = ξn|[0,min{Tn,T}]\I ;

2.2: if η ≻ ηn

then ηn ← η; I ′ ← I;

else L← L \ {I};
end; (Step 2)

Step 3: if ηn ≻ ξn (i.e. if ηn has been modified)

then begin

ξn+1 ← ηn;

L← L \A−(I ′, ξn) ∪ A+(I ′, ξn+1);

n← n+ 1;

end; (Step 3)

end; (Step 1)

At Step 3 of the algorithm, the set A+(I ′, ξn+1) is the set of the new

improvable intervals which have to be considered in the next iteration, which
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is
A+(I ′, ξn+1) = {I ⊆ [0, Tn+1] | I non–final cycle of ξn+1

and I ∩ I ′ epoch of ξn+1}.
(14)

the set A−(I ′, ξn) is the set of the deleted improvable intervals which have not

to be considered in the next iteration, which is

A−(I ′, ξn) = {I ′} ∪ {I | I cycle of ξn and I ∩ I ′ epoch of ξn}. (15)

We will refer to the couple of Steps 2 and 3 as to the local improvement

procedure. We observe that Step 2.1 may not be well defined as the optimization

problem might not have any optimal solution. Moreover, even if there exists

a function η ∈ N(ξn) which maximizes the functional J , Step 2.1 requires

to find optimal solutions to a set of control problems which have the same

characteristics of nonlinearity and nondifferentiability as the original problem.

3. Cycle preserving neighbourhood structure

In order to reduce the complexity of Step 2 of the cycle based maximum

depth algorithm, we define a special subset of the cycle based neighbourhood

N(ξ) of a feasible solution ξ, in order to restrict the search for better solutions.

This is equivalent to define a special first improvement variant of the algorithm.

The basic idea is to focus on the feasible solutions which preserve the cycle

structure of the interval under consideration.

Definition Let the set Σ and the mapping F : Σ → P(Σ) be as in the

Section 3. We define the cycle preserving neighbourhood N ′(ξ) of the solution

ξ ∈ Σ as the subset of Σ such that if η = (x′, y′, z′, v′, T ′) ∈ N ′(ξ), then there

exists I ∈ F (ξ) such that

η|[0,min{T,T ′}]\I = ξ|[0,min{T,T ′}]\I ,

if sup I < T , then T ′ = T

and η has at most one transition time internal to I.

Of course, now we call I ∈ F (ξ) an improvable interval of ξ as long as we

do not know whether ξ is optimal among all the solutions η ∈ N ′(ξ) such that

η|[0,min{T,T ′}]\I = ξ|[0,min{T,T ′}]\I . In terms of the general algorithm we have

to redefine Step 2.1 in agreement with the following reasoning.
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If I = [t′, t′′] = [t′, Tn], i.e. if sup I = Tn, then I is either the final cycle or

the final epoch of ξn and in that case the problem of the new Step 2.1 is the

same as in the general algorithm. More explicitly, if t′′ = Tn, then the problem

of Step 2.1 is the following subproblem on the interval [t′, T ], which we denote

by MV F
ξn,[t′,T ]:

maximize

∫ τ

t′
[αy(t)− kmax{0, y(t)− y} − v(t)]dt, (16)

subject to (2.1), (2.2), (2.3), (4),

and to (x, y, z)(t′) = (x, y, z)n(t′), (17)

τ ∈ [t′, T ]. (18)

We observe that the solution to the problem MV F
ξn,[t′,T ] may as well

present one cycle in the interval [t′, τ ] as none or more than one.

On the contrary, if I = [t′, t′′] 6= [t′, Tn], i.e. if sup I < Tn, then I is

a cycle of ξn (not the final one) and the problem of Step 2.1 is changed into

the following cycle preserving subproblem on the cycle I, which we denote by

MV F cp
ξn,I :

maximize

∫ t′′

t′
[αy(t)− kmax{0, y(t)− y} − v(t)]dt, (19)

subject to (2.1), (2.2), (2.3), (4), (17),

to (x, y, z)(t′′) = (x, y, z)n(t′′), (20)

and to the further constraint that there exists t∗ ∈ I = [t′, t′′] such that

i) if I is a normal/congested cycle then

0 < y(t) < y, for t′ < t < t∗, and y(t) ≥ y, for t ≥ t∗; (21)

ii) if I is a congested/normal cycle then

y(t) ≥ y, for t ≤ t∗, and 0 < y(t) < y, for t∗ < t < t′′. (22)

Hence, in place of Step 2.1 of the cycle based maximum depth algorithm

we have to use the following:
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Step 2.1′: if I = [t′, t′′] and t′′ = Tn

then let ηI be an optimal solution to problem MVF
ξn,[t′,T ]

and let T ′ be the final time of ηI (T ′ ∈ [t′, T ])

else let ηI be an optimal solution to problem MV F cp
ξn,I

and let T ′ be the final time of ηI (T ′ = t′′);

η(t) = ξn(t), t ∈ [0, t′] ∪ [t′′, Tn];

η(t) = ηI(t), t ∈ [t′, T ′];

After executing the local improvement procedure for a cycle I of ξn,

with sup I < Tn, the number of transition times associated to the improved

admissible solution ξn+1 is the same as that associated to the previous

admissible solution ξn.

We observe also that the solution η which is found after executing Step

2.1′ might not satisfy the conditions i)–iv) of Section 1.

4. Constant regime subproblems

Each admissible solution to the museum visitors flow problem satisfies

linear motion equations in all time intervals which are subsets of epochs of

the admissible solution. Furthermore, also the objective functional is linear in

the same intervals. Then the restriction of an optimal solution to the MV F

problem in a time interval, which is a subset of an epoch of the solution, is an

optimal solution to a special linear control problem. Therefore we are led to

define two special interval subproblems.

Let the time t′ ∈ [0, T ) and the interval I ′′ ⊆ (t′, T ] be given, and let us

consider the restrictions of the MV F problem to the intervals [t′, t′′], t′′ ∈ I ′′,

under the constraint that the system regime does not change.

First, let x′, z′ ∈ [0,+∞), X ′′ ⊆ (x′,+∞), y′ ∈ (0, y] and Y ′′ ⊆ [0, y] be

given and let the required regime be normal, then we define the normal regime

subproblem PN (t′, I ′′, x′, y′, z′, X ′′, Y ′′):

maximize

∫ t′′

t′
[αy(t)− v(t)]dt, (23)

subject to ẋ(t) = y(t), (24)

ẏ(t) = axx(t)− azz
′ + bv(t), (25.1)

10



0 < y(t) < y, for t′ < t < t′′, (25.2)

and to x(t′) = x′, x(t′′) ∈ X ′′, (26.1)

y(t′) = y′, y(t′′) ∈ Y ′′, (26.2)

v(t) ∈ [0, v], t′′ ∈ I ′′. (27)

Alternatively, let x′, z′ ∈ [0,+∞), y′ ∈ [y,+∞), Y ′′ ⊆ [y,+∞), and

Z ′′ ⊆ (z′,+∞) be given and let the required regime be congested, then we

define the congested regime subproblem PC(t′, I ′′, x′, y′, z′, Y ′′, Z ′′):

maximize

∫ t′′

t′
[αy(t)− k(y(t)− y)− v(t)]dt, (28)

subject to ẏ(t) = −γ(y(t)− y) + axx
′ − azz(t) + bv(t), (29.1)

y(t) ≥ y, (29.2)

ż(t) = y(t), (30)

z(t′) = z′, z(t′′) ∈ Z ′′, (31)

and to (26.2) and (27) as above.

Both problems PN and PC are linear optimal control problems and

the conditions of Pontryagin’s maximum principle are also sufficient for op-

timality, as a consequence of Mangasarian’s sufficiency theorem (see Seier-

stad and Sydsaeter (1987)). We denote by FN (t′, I ′′, x′, y′, z′, X ′′, Y ′′) and

FC(t′, I ′′, x′, y′, z′, Y ′′, Z ′′) the optimal values of the objective functionals of

the normal regime and congested regime subproblems. The following two theo-

rems state some interesting qualitative results concerning the possible optimal

solutions to problems PN and PC . The proofs of the theorems are presented

in the Appendix, together with the Pontryagin’s maximum principle necessary

conditions.

Theorem 1 If there exists an admissible solution (x(t), y(t), v(t)) to problem

PN , then PN has an optimal control function which takes only the values 0

and v. Moreover such control function has at most 2 discontinuities.

Theorem 2 If there exists an admissible solution (y(t), z(t), v(t)) to problem

PC , then PC has an optimal piecewise constant control function, which takes
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only the values 0 and v. Moreover, if γ2 > 4az, then such control function has

at most 2 discontinuities.

5. Cycle preserving subproblems

Here we consider the cycle preserving subproblem MV F cp
ξn,I , which has

been introduced in Section 3, i.e. the problem of maximizing the functional

J restricted to the cycle I and subject to the additional constraint that the

cycle structure is preserved. In particular we discuss how the cycle preserving

subproblem can be reformulated as a one–dimensional nonlinear programming

problem, once we assume to know the optimal value functions of the linear

optimal control problems PN and PC .

Let I = [t′, t′′] ∈ F (ξ), with t′′ < T , be an arbitrary nonfinal cycle of the

current solution ξ = (x, y, z, v, T ), let t∗ ∈ I be the (internal) transition time

of the optimal solution to the cycle preserving subproblem MV F cp
ξ,I and let

(x∗, y∗, z∗)(t∗) be the state at time t∗ in the same optimal solution.

If I is a normal/congested cycle, then (x∗, y∗, z∗)(t∗) = (x∗(t′′), y, z∗(t′))

is the state at time t∗ and t∗ is an optimal solution of the following nonlinear

programming problem:

maximize LN (t) +RC(t),

subject to: t′ ≤ t ≤ t′′,

where
LN (t) = FN (t′, t, x(t′), y(t′), z(t′), x(t′′), y),

RC(t) = FC(t, t′′, x(t′′), y, z(t′), y, z(t′′)).

We observe that in FN the value y(t′) can be substituted by y for all cycles

I = [t′, t′′] with the exception of the first one (i.e. when t′ = 0).

The result follows from Bellman’s optimality principle, which states that,

given the value (x∗(t∗), y, z∗(t∗)) of the state at time t∗, both the portions of an

optimal path in the intervals [t′, t∗] and [t∗, t′′] are optimal. The same argument

proves the following proposition in the alternative case of a congested/normal

cycle, when the state (x∗(t′), y, z∗(t′′)) at time t∗ is given.
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If I is a congested/normal cycle, then (x∗, y∗, z∗)(t∗) = (x∗(t′), y, z∗(t′′))

is the state at time t∗ and t∗ is an optimal solution of the following nonlinear

programming problem:

maximize LC(t) +RN (t),

subject to: t′ ≤ t ≤ t′′,

where
LC(t) = FC(t′, t, x(t′), y, z(t′), y, z(t′′)),

RN (t) = FN (t, t′′, x(t′), y, z(t′′), x(t′′), y).

6. First improvement rules

Instead of using the best improvement pivoting rule, which requires to

move at each step from the current solution ξ to the best solution in its cycle

based neighbourhood N(ξ), we may use a first improvement pivoting rule and

move to one solution in N(ξ) which presents an improved value of the objective

functional, which is not necessarily the best one. Using a first improvement

pivoting rule with reference to the cycle based neighbourhood structure is

equivalent to using the best improvement pivoting rule with reference to a

suitably defined neighbourhood structure whose elements are subsets of the

neighbourhoods N(ξ), ξ ∈ Σ. We present here two modified versions of the

general algorithm which implement first improvement pivoting rules. In both

algorithms, a crucial role is played by the list of improvable intervals of the

current solution.

First improvement rule – Version I: “Move to the best solution with reference

to a minimum subset of improvable intervals”

Step 0: construct ξ0 = (x0, y0, z0, v0, T 0) ∈ Σ; L← F (ξ0); n← 0;

Step 1: while L 6= ∅
do begin

improved ← false;

Step 2: while (not improved and L 6= ∅)
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do begin

choose an interval I = [t′, t′′] ∈ L;

if t′′ = Tn

then let ηI be an optimal solution to MV F
ξn,[t′,T ]

and let T ′ be the final time of ηI (T ′ ∈ [t′, T ]);

else let ηI be an optimal solution to MV F cp
ξn,I

and let T ′ be the final time of ηI (T ′ = t′′);

if ηI ≻ ξn|I
then begin

η(t) = ξn(t), t ∈ [0, t′] ∪ [t′′, Tn];

η(t) = ηI(t), t ∈ [t′, T ′];

improved ← true;

end;

else L← L \ {I};
end; (Step 2)

Step 3: if improved

then begin

ξn+1 ← η;

L← L \A−(I ′, ξn) ∪ A+(I ′, ξn+1);

n← n+ 1;

end; (Step 3)

end; (Step 1)

In the above algorithm, the list of improvable intervals of the current

solution is explored until the best solution with reference to an improvable

interval results better than the current solution.

In the following algorithm, the list of improvable intervals of the current

solution is explored until an admissible solution is found, with reference to an

improvable interval, which is better than the current solution.

First improvement rule – Version II: “Move to a better solution with reference

to a minimum subset of improvable intervals”

Step 0: construct ξ0 = (x0, y0, z0, v0, T 0) ∈ Σ; L← F (ξ0); n← 0;
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Step 1: while L 6= ∅
do begin

improved ← false;

Step 2: while (not improved and L 6= ∅)
do begin

choose an interval I = [t′, t′′] ∈ L;

if t′′ = Tn

then P ← MV F
ξn,[t′,T ];

else P ← MVF cp
ξn,I ;

if there exists an admissible solution ηI to P such that ηI ≻ ξn|I
then begin

let T ′ be the final time of ηI ;

η(t) = ξn(t), t ∈ [0, t′] ∪ [t′′, Tn];

η(t) = ηI(t), t ∈ [t′, T ′];

improved ← true;

end;

else L← L \ {I};
end; (Step 2)

Step 3: if improved

then begin

ξn+1 ← η;

L← L \A−(I ′, ξn) ∪ A+(I ′, ξn+1);

n← n+ 1;

end; (Step 3)

end; (Step 1)

It is important to notice that the way of choosing the interval I within the

list L, at Step 2 in both algorithms, may affect the final solution to the museum

visitors flow problem. Then we should analyze different choice strategies in

order to single out a strategy which is not restrictive unnecessarily. A special

attention should be devoted to random choice strategies, as pointed out in

Anderson (1996).

In order to provide some elementary examples of a choice rule, let us order
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the intervals of L 6= ∅ according to the order ≤ on the set of their infimums,

i.e. let us say “I precedes I ′” if and only if inf I ≤ inf I ′. In fact the relation

“precedes” is an order on L and L is a finite set, therefore there exist a first

element and a last element of L.

Three deterministic choice rules are:

a) choose the first element of L;

b) choose the last element of L;

c) choose the last cycle of L, if L has at least one cycle, otherwise choose the

last interval of L.

On the other hand, if {Xn}n≥1 is a sequence of random variables, where Xn

takes values in {1, 2, ..., n} with a fixed probability distribution, then a random

choice rule is given by:

d) if |L| = n, then choose the Xn–th element of L.

7. Conclusions

In this paper we have developed a local search algorithm in order to find

an optimal solution to the museum visitors flow problem. The key issue of

our analysis has been a new definition of neighbourhood of an admissible

solution, which permits us to restrict the attention to a special subset of feasible

solutions. As a consequence of the neighbourhood definition we have obtained

some local search algorithms which exploit the feature of the museum visitors

flow problem of being piecewise linear. Then the improvement procedure of the

best–improvement algorithm has been formulated as a nonlinear programming

problem, whose definition requires to know the optimal solutions of two linear

control problems.

We have also proposed two first–improvement versions of the previous

algorithm. In particular the improvement procedure of one of this requires to

find an admissible solution to the nonlinear programming problem instead of

an optimal one.

In both first–improvement versions of the algorithm the way of choosing

an object from the list of the improvable intervals has an important role in

determining the final solution. Here we have suggested some different choice
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strategies and further analysis is needed to compare their efficiency.

Another open question concerns the initialization process. It seems

reasonable to presume that the piecewise linearity property of the problem

may be used also to this purpose.

8. Appendix

Proof of Theorem 1

Let us consider the normal regime subproblem with fixed end time, i.e.

the problem PN (t′, t′′, x′, y′, z′, x′′, y′′).

The existence of an optimal solution (x∗(t), y∗(t), v∗(t)) to problem PN

follows from the Filippov–Cesari theorem (see Seierstad and Sydsaeter (1987),

p.132–133).

From the Pontryagin Maximum Principle we have the following necessary

conditions for optimality, which do not take into account the pure constraint

(25.2) on the state variable y . The Hamiltonian function is

H(x, y, p0, p1, p2, v, t) = p0(αy − v) + p1y + p2(axx− azz
′ + bv).

If (x∗, y∗, v∗) is an optimal solution to problem PN , then there exists a constant

p0 ∈ {0, 1} and a continuous and piecewise continuously differentiable function

(p1(t), p2(t)), such that, after defining p(t) = (p0, p1(t), p2(t)), the following

conditions hold:

i)

p(t) 6= 0, for all t ∈ [t′, t′′], (32)

ii)

ṗ(t) = −p(t)A, v.e. (33)

where

A =





0 0 α
0 0 1
0 ax 0



, (34)

iii) v∗(t) maximizes H(x(t), y(t), p(t), v, t) subject to v ∈ [0, v], that is the

optimal control satisfies the condition

v∗(t) =

{

0, if σ(t) < 0,
v, if σ(t) > 0,

(35)
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where the switching function σ(t) is given by

σ(t) = p(t)B, (36)

with B = (−1, 0, b)T .

Let us assume that σ(t) = 0, for all t ∈ [τ1, τ2], for some nondegenerate

interval [τ1, τ2] ⊆ [t′, t′′]. Then we obtain the following identity

(p(t), ṗ(t), p̈(t))B = 0, t ∈ [τ1, τ2], (37)

which can be written, by using (33), as follows

p(t)[B,AB,A2B] = 0, t ∈ [τ1, τ2]. (38)

Equation (38) has only the trivial solution p(t) = 0, t ∈ [τ1, τ2], because the

vectors B, AB and A2B are linearly independent, and this contradicts condition

(32).

Finally the number of discontinuities of an optimal control v∗(t) is less

than or equal to the number of solutions to equation σ(t) = p(t)B = 0. Now,

p(t) satisfies the adjoint equation (33) and the matrix A, as defined in (34),

has three real and distinct eigenvalues, λ0 = 0, λ1 =
√
ax, λ2 = −√ax; hence

the switching function σ(t) has the form

σ(t) = c0 + c1e
λ1t + c2e

λ2t (39)

and, using the same argument as in Leitmann (1981), p.216, we conclude that

it has at most 2 zeros.

Proof of Theorem 2

Let us consider the congested regime subproblem with fixed end time, i.e.

the problem PC(t′, t′′, x′, y′, z′, y′′, z′′).

The existence of an optimal solution (y∗(t), z∗(t), v∗(t)) to problem PC

follows from the Filippov–Cesari theorem. From the Pontryagin Maximum

Principle we have the following necessary conditions for optimality, which do
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not consider the pure state constraint (29.2) on y(t). Let the Hamiltonian

function be

H(y, z, p0, p2, p3, v, t) = p0[(α− k)y + ky − v] + + p2[−γ(y − y)+

+ axx
′ − azz + bv] + p3y .

If (y∗, z∗, v∗) is an optimal solution to problem PC , then there exists a constant

p0 ∈ {0, 1} and a continuous and piecewise continuously differentiable function

(p2(t), p3(t)), such that, after defining p(t) = (p0, p2(t), p3(t)), the conditions

(32), (33) hold, with the matrix A given by

A =





0 α− k 0
0 −γ −az
0 1 0



. (40)

Moreover the optimal control function maximizesH(y(t), z(t), p(t), v, t) subject

to v ∈ [0, v], that is v∗(t) satisfies the condition (35), where the switching

function σ(t) is given by (36) and the vector B is given by

B =





−1
b
0



. (41)

Finally, we observe that the optimal control function v∗(t) has at most 2

discontinuities, because, if γ2 > 4az, then the matrix A, as defined in (40), has 3

real eigenvalues: λ0 = 0, λ1 = (−γ+
√

γ2 − 4az)/2, λ2 = (−γ−
√

γ2 − 4az)/2,

where λ1 6= λ2. Hence the switching function σ(t) has the same form as in (39)

and we conclude that it has at most 2 zeros.
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