brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Universita degli Studi di Venezia Ca' Foscari

1 liorms |

http://dx.doi.org/10.1287/orsc.2015.0987
©2015 INFORMS

Organization

Articles in Advance, pp. 1-21
ISSN 1047-7039 (print) | ISSN 1526-5455 (online)

A Model of Collective Interpretation

Giovanni Gavetti
Tuck School of Business, Dartmouth College, Hanover, New Hampshire 03755, giovanni.gavetti @tuck.dartmouth.edu

Massimo Warglien
Department of Management, Ca’ Foscari University of Venice, 30121 Venice, Italy, warglien@unive.it

We propose a cognitively plausible formal model of collective interpretation. The model represents how members
of a collective interact to interpret their environment. Current theories of collective interpretation focus on how
heedful communication among members of a collective (i.e., how much individuals pay attention to others’ interpretations)
improves interpretive performance; their general assumption is that heed tends to be uniformly beneficial. By unpacking
the micromechanisms that underlie such performance, our model reveals a more complex story. Heedfulness can benefit
interpretive performance. It can help collectives properly interpret situations that are especially ambiguous, unknown, or
novel. Conversely, heedfulness also generates conformity pressures that induce agents to give too much weight to others’
interpretations, even if erroneous, thereby potentially degrading interpretive performance. These two effects join into a
nonmonotonic trajectory that represents how heed relates to interpretive performance: due to its beneficial properties,
performance increases with heed until it peaks before degrading due to conformity pressures. The form of this nonmonotonic
relationship is contingent on the nature of the task: ambiguous situations make collectives vulnerable to too much heed:
ambiguity ignites conformism; novel situations make collectives dependent on heed: novelty requires multiple eyes to
be seen. In addition to these results, our model offers a flexible platform that future work can use to explore collective

interpretation in a variety of organizational and supraorganizational contexts.
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Introduction

Interpretation is the cognitive act of giving meaning.
It is thus essential to choice and action because what
we decide and do cannot be decoupled from the mean-
ing we give to the situations we are in. In organi-
zations, interpretation is rarely the product of isolated
agents. Whether we consider how organizational mem-
bers interpret a competitor’s move, customers’ reac-
tions to a new advertising campaign, an accident at a
plant, or many other situations for which the meaning is
unclear, interpretation generally reflects collective, dis-
tributed dynamics.

Yet, however much we know about interpretation at
the individual level, we know much less about how it
occurs in collectives. We know well-functioning collec-
tives can achieve accurate interpretations in contexts that
are too demanding for individual interpreters to manage
independently, but what makes a collective function well
is less understood. This gap is due in part to the phe-
nomenon’s complexity: the move from the individual to
the collective introduces many extra variables that can
affect interpretive outcomes, thereby posing challenges
to theoretical tractability. Relatedly, although work on
distributed processes has demonstrated the need to focus
on the interrelationships among individuals, it has left
individual cognition in the background, as if it were
irrelevant to a theory of collective interpretation. This

work has merit, but a theory of collective interpretation
that abstracts from a cognitively accurate representation
of individual interpreters is inherently incomplete.

A solution to this problem is to focus on a mini-
mal set of variables that are foundational to collective
interpretation, and that span the individual and collec-
tive levels. This article pursues that path by elaborat-
ing a formal model of collective interpretation, which
offers a cognitively plausible characterization of indi-
vidual interpreters who are engaged in collective inter-
pretation. Through it, we perform a controlled analysis
of some central causes of variation in interpretive out-
comes. The model can also serve as a formal platform
for future studies of collective interpretation.

Interpretation: Individual Level

Interpreting a certain reality means forming a represen-
tation of it—a conceptual structure in an individual’s
mind that encapsulates her simplified understanding of
said reality (Lakoff 1987). This process is often asso-
ciative, in that it is based on memory and perceived
similarity (Lakoff 1987; Rosch 1978; Edelman 1987,
2006; Hofstadter 2001; Holyoak and Cheng 201 1).l For
instance, in the early 1940s, Charlie Merrill of Mer-
rill Lynch reinterpreted the brokerage business using a
supermarket lens (Perkins 1999). He formed a represen-
tation of brokerage premised on the perceived similarity
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between brokerage and supermarket, a business he knew
well. This brokerage-as-supermarket analogy generated
a new understanding of brokerage that in turn led to
a path-breaking strategic innovation in banking (Gavetti
and Menon 2015). In a typical associative process, the
features of a new situation that the agent pays attention
to evoke specific instances of past situations or higher-
order concepts like categories (i.e., mental containers
that cluster together similar things like objects, situa-
tions, or experiences) in her memory. In being evoked,
these cognitive structures move from being “asleep in
the recesses of long-term memory” to “gaily dancing
on the mind’s center stage” (Hofstadter 2001, p. 504),
thereby becoming the basis of the new situation’s rep-
resentation. The defining feature of such processes is
that they are based on similarity. Because of their cogni-
tive efficiency relative to alternative interpretive mecha-
nisms, Edelman (2006) argued that the brain evolved to
make them hardwired in complex tasks that are central
to human adaptation.

Indeed, theories of decisions that emphasize cognitive
realism, whether in administrative disciplines, decision
theory, economics, or political science, have increas-
ingly recognized the importance of associative pro-
cesses. For instance, in administrative studies, March
(2006) suggests the need to move away from the imagery
of rational choice, which portrays interpretation as a
“model-based anticipation of consequences evaluated
by prior preferences” (March 2006, p. 202), especially
when we wish to understand how agents deal with sit-
uations that are novel and complex. In these contexts,
agents can neither easily deduce models of the world,
nor evaluate outcomes based on them. Similarity-based
interpretation is more plausible (March 2006). Gavetti
et al. (2005) share this premise in their analogy-based
model of strategic decisions. In decision theory, Gilboa
and Schmeidler (2000) challenge the anticipatory logic
of expected utility theory on the grounds of its lack
of cognitive realism: situations that are hard to inter-
pret tend to be represented via past cases the decision-
maker knows about. In economics, Mullainathan et al.
(2008) model consumers as coarse thinkers who interpret
new products in terms of broad categories. In political
science, Neustadt and May (1986) argue that political
leaders use analogies to think about domains that are
uncertain and in which information is scarce.

Taken together, these contributions offer a strikingly
convergent characterization of the cognitive bases of
interpretation in worlds whose meanings are hard to con-
struct. These models rest on the fiction of the lonely
decision-maker. Therefore, their immediate usefulness to
organizational questions is limited. Nevertheless, they
offer a solid basis for building a microfounded model
of collective interpretation such as the one we propose.
Before articulating the premises of our model, we turn
to collective interpretation.

Interpretation: Collective Level

Weick and Roberts (1993, p. 358) lamented that “[t]he
preoccupation with individual cognition has left orga-
nizational theorists ill-equipped to do much more with
the so-called cognitive revolution than apply it to orga-
nizational concerns, one brain at a time.” Since this
complaint, organizational scholars have been paying
increasing attention to collective interpretation in orga-
nizations, where “collective” denotes a group of agents
who are highly interdependent and interact frequently in
their quest for meaning (Weick and Roberts 1993).2 This
field has been reviewed elsewhere (Walsh 1995, Meindl
et al. 1996, Drazin et al. 1999), and we do not repli-
cate such efforts here. We will, however, point out a few
developments that are germane to our agenda.

The first development is research that documents the
role that collective interpretation plays in many impor-
tant processes in organizational life. This work has
moved us from the presumption that collective inter-
pretation is widespread in organizations because indi-
viduals tend to seek out others’ interpretations when
they face ambiguous situations (Goffman 1974, Volkema
et al. 1996), to a more specific understanding of the
situations in which it occurs in organizations. This
work thus defines specific organizational situations that
a model of collective interpretation can help us under-
stand. For instance, collective interpretation or sense-
making has been shown to underpin the formation of
strategies (Porac et al. 1989) and group decision mak-
ing in top-management teams (Finkelstein et al. 2008,
Smith et al. 2010). Similarly, it has been shown to be
crucial to organizations’ interpretation of focal issues in
their environment (Dutton and Dukerich 1991). In the
domain of innovation, a collective sensemaking lens has
been evoked to explain failures and successes in product
innovation (Dougherty 1992), or creativity more broadly
(Ford and Gioia 1995, Drazin et al. 1999).

A striking illustration of the organizational relevance
of collective interpretation can be found in work on
high-reliability organizations (Hutchins 1991, Weick and
Roberts 1993). This work shows that partially ignorant
actors in a distributed system can accurately interpret
complex situations when they interact appropriately.
Stated differently, well-functioning collectives can be
reliably effective in contexts that are so challenging
that individual agents alone would likely make inter-
pretive errors. For instance, when there are unexpected
departures from routine operation in navigation or flight
operations (e.g., a crisis), collectives have been found
to properly recognize the new situation even when
the available information is misleading or unreliable
(Weick 1990, Hutchins 1995); or when critical pieces of
information are missing (Weick 1990). Similarly, well-
functioning collectives have been found to form accurate
interpretations of situations that are fundamentally novel
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(Michel 2007), or to absorb substantial turnover in the
collective’s composition (Michel 2007).

This type of processes are not exclusive of high-
reliability organizations. Narduzzo et al. (2000) found
similar principles at work in the emergence of trou-
bleshooting routines in a cellular phone company. For
instance, they showed that complex diagnostic tasks
were interpreted more effectively when teams of trou-
bleshooters developed routines for sharing their own
individual representation of the problem to form a shared
representation. In this vein, in their reconceptualization
of routines as a source of both stability and change,
Feldman and Pentland (2003) noted that collective inter-
pretation is critical to organizational routines’ ability to
adjust to changing contexts, a position echoed by oth-
ers (Edmondson et al. 2001, Obstfeld 2012, Cohen et al.
2014). In sum, this work suggests that collective inter-
pretation is relevant to the microfoundation of organiza-
tional routines.

The second, complementary development is progress
in the conceptualization of collective interpretation. This
development has two components. The first involves a
shift from the individual to interactions among members
of a collective. This shift reflects the idea that in a dis-
tributed cognitive system, different members contribute
distinct knowledge, and cognitive functions carried out
by the system result from the patterns of interconnec-
tions among the system’s elements (Weick and Roberts
1993). This theoretical conceptualization builds on work
on transactive memory (Wegner et al. 1985, 1991),
which emphasizes how collectives of agents can form
generalizations of a complex phenomenon as a result of
exchanges of disparate lower-order, detailed inputs. A
related influence has been work in artificial intelligence
on group mind (Sandelands and Stablein 1987, Hutchins
1990, Boden 1991, Rumelhart 1992), with its representa-
tion of collectives as distributed information-processing
systems, and its emphasis on how the parts of the system
(i.e., individual agents) interact.

The second component is the increased interest in
explaining the drivers of interpretive outcomes, espe-
cially the accuracy and speed with which an interpretive
system converges on an interpretation. In much of this
work, variation in interpretive outcomes is explained in
terms of variation in supraindividual variables that gov-
ern interaction (e.g., how agents interact, what culture is
functional to collectives’ proper functioning, etc.). Espe-
cially salient is the construct of “heedful interrelating,”
as emphasized by Weick and Roberts (1993) in their
pioneering work on collective mind. In their study of
aircraft carriers, Weick and Roberts (1993) argue that
variations in heedful interrelating can generate profound
variations in how well ambiguous situations are inter-
preted. Indeed, in most of the studies of high-reliability
organizations that we mentioned above, the basic pre-
sumption is that high levels of heed are essential to make
a collective effective in dealing with trying situations.

To sum up, these developments have (a) pinpointed
organizational arenas in which collective interpretation
plays a central role; (b) provided initial conceptualiza-
tions of collective interpretation as a process and as an
outcome; and (c) demonstrated that understanding what
makes a collective function properly can reveal first-
order causes of variation in the quality of organizations’
decisions and actions.

Toward a Model
We said at the outset that properly accounting for collec-
tive interpretation in organizations stretches the bounds
of theoretical tractability. A collective interpretive out-
come depends both on solo agents’ cognition and on a
process in which individual agents exchange informa-
tion, influence others’ interpretations, revise their own
interpretations, etc. It is presumably because of this com-
plexity that students of collective cognition have thus
far not really expanded the primary level of analysis,
but shifted it from the individual to the interrelation-
ships among them. In doing so, they have de-emphasized
individual-specific memories and the interpretive pro-
cesses through which they are elicited and used. As
argued by calls for increased attention to the individual’s
role in distributed systems (Resnick et al. 1997, Michel
2007), however, a theory of collective interpretation can-
not be complete unless it rests on a cognitively realistic
understanding of the individual. Any collective perfor-
mance, Feldman and Pentland (2003, p. 109) remark, is
“energized and guided by the subjective perception of
the participants.” We believe this gap is a key reason for
the lack of a general understanding about what factors
in how collectives function are particularly important to
interpretive outcomes, and under what conditions of the
interpretive task. For instance, we have just seen that
heedfulness can help collectives achieve accurate inter-
pretations in trying conditions, but it would be important
to know if this is always the case, or if it can sometimes
undermine interpretation. Similarly, it would be helpful
to know if heedfulness is monotonically good, or if it can
hurt beyond a certain level. More broadly, a key ques-
tion is what role that variables beyond heedfulness (i.e.,
the homogeneity of the collective, the way it is struc-
tured, its power distribution, etc.) play in interpretation
and under what contingencies of the task environment.
It is now possible to fill this gap because of the devel-
opments discussed in the prior section, which atten-
uate the theoretical tractability issue. We now have
a robust yet parsimonious individual-level microfoun-
dation of collective interpretation; initial conceptual-
izations of collective interpretation that can guide the
development of a model of the collective; and empir-
ical evidence, especially on the robustness of collec-
tive interpretation in trying situations, that can be used
as a benchmark against which to test a model of the
collective.
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In this article, we propose a model of collective inter-
pretation that spans a characterization of individuals who
have a reality to interpret, and their relationships to other
members of the collective in their quest for meaning.
Our model tackles issues of theoretical tractability by
seeking to focus on a minimal set of variables that are
foundational to collective interpretation and interpretive
outcomes. Its structure allows us to establish the precise
role these variables play vis-a-vis interpretive outcomes.

With this premise in mind, we start by portraying the
individual agent, and characterize the cognitive mech-
anisms involved in the recognition of the problem she
faces. Our modeled agents’ interpretation is governed by
a memory that operates associatively over sets of fea-
tures (Anderson and Bower 1980). That is, they encode
the problem at hand in terms of qualitative features, and
recognize it via an association to the past experience
that most closely matches such features. To model these
processes, we rely on the formal apparatus of associa-
tive neural networks (Hopfield 1982, Amit et al. 1994),
which are thought to capture the basic properties of the
neural processes involved in associative memory (see
Miyashita 1988, Fuster 1995, Poucet and Save 2005, and
Wills et al. 2005 for neurophysiological demonstrations
of such properties and Amit et al. 1994 and McRae
et al. 1997 for early attempts to reproduce experimen-
tal observations of human memory by associative neu-
ral network models). The success of such models in
predicting individual behavior in multiple-cues decision
making and probabilistic inference has been demon-
strated by Glockner and Betsch (2008) and Glockner
et al. (2010).

Second, we characterize interaction. Our model
represents a collective of agents who share their
interpretations of a reality with each other, and keep
communicating until a stable collective interpretation is
achieved. A process of this sort can be influenced by
many variables, like the size of the collective, the hetero-
geneity of its members, its power structure, the organi-
zation of communication (i.e., who talks to whom), and
variables of the reality to interpret, such as novelty and
ambiguity. Our analytical structure is flexible enough to
readily capture most of these variables. Here, we focus
especially on the role of “heed” (i.e., how much A takes
into account what B tells her) vis-a-vis the interpre-
tive outcome. There are two reasons for our choice of
perspective. First, heedfulness has a special status in
both the theoretical and empirical literature on collective
interpretation. Second, even before we use the model to
generate novel predictions, we need to test its reliability
against a benchmark of established empirical regulari-
ties: Does the model reliably generate predictions that
square with empirical evidence? Work on high-reliability
organizations provides such a benchmark.

Specifically, we first use this model to deduce, in
closed form, general properties of collective interpre-
tation. We demonstrate that heed significantly affects

interpretive outcomes, and that within certain ranges, it
leads agents to shared interpretations that are new to
each of them and do not correspond to anything they
individually know or have previously experienced. Col-
lectives can be a source of genuinely novel knowledge.
This property is important when agents face novel prob-
lems that do not match any of their previous experi-
ences: heedful communication can enable a novel reality
to be interpreted appropriately. However, heed can also
have pathological effects. We demonstrate how exces-
sive conformism may emerge when heed’s intensity is
too strong.

We then use the model to explore, via simulation, col-
lective interpretation in less stylized settings. In partic-
ular, although we know that collectives can be effective
even when information is noisy, or unavailable, or sit-
uations that are profoundly novel, etc., we know less
about what makes a collective function well. By using
our model to explore stressful settings, we obtain a fine-
grained understanding of what can make collectives more
or less effective in these situations. Expanding on the
closed-form properties and allowing their quantification,
our simulations suggest that the level of heed has a non-
monotonic effect on the quality of collective interpreta-
tion. Up to a certain level of heed, communication greatly
helps collectives’ effectiveness even in trying conditions.
Beyond a certain level of heed, however, interpretive out-
comes worsen as heed increases. Our simulations also
suggest that the level of heed that brings a collective to
maximum interpretive accuracy, and the sensitivity of a
collective to the detrimental effects of excessive heed are
contingent on the nature of the interpretive task. Novel
situations require higher levels of heed for novelty to
be recognized as such, and peak performance is thus
achieved for higher levels of heed. Conversely, ambigu-
ous situations offer agents many opportunities to form
erroneous perceptions of the situation, which make them
especially vulnerable to too much heed. Furthermore,
simulations allow to explore the process of convergence
to an interpretation, further illuminating how different
conditions affect the final outcome.

The article’s contribution involves both fostering
knowledge of collective interpretation and offering a for-
mal platform that future research on organizational inter-
pretation can use to explore a wide variety of situations.
The merit of the first objective is self-explanatory. Let
us spend a few words on the second objective. Although
a set of core variables can be thought of as being invari-
antly important to interpretation in most settings, other
factors can play roles that vary widely across situations.
For instance, a collective of top managers seeking to
make sense of an ambiguous strategic problem faces
a different problem than a crew of firefighters facing
a crisis does. In the former case, the composition of
the collective (e.g., the diversity among members’ histo-
ries, backgrounds, memories) can significantly influence



Gavetti and Warglien: A Model of Collective Interpretation
Organization Science, Articles in Advance, pp. 1-21, © 2015 INFORMS

how the collective makes sense of the problem (Gavetti
et al. 2005); in the latter case, the interpretive outcome
might hinge more critically on how cognitive labor is
divided among firefighters (i.e., what facets of the envi-
ronment each firefighter is asked to pay attention to),
and the timeliness with which the information gathered
is shared among crew members (Weick 1993). Although
we look at collective interpretation through a particular
lens, we offer an analytical structure that can be used
to represent different situations because collective inter-
pretation can take different forms. (Online Appendix 1,
available as supplemental material at http://dx.doi.org/
10.1287/0rsc.2015.0987, reports a few analyses reflect-
ing configurations of collective systems other than ones
we considered in the main text of the paper. It thus gives
a flavor of the versatility of the model.)

Premises, Assumptions, and
Modeling Choices

Premises and Assumptions

Associative interpretation is the representation of a situa-
tion based on its perceived similarity with something the
agent already knows or has experienced (i.e., a cognitive
representation of a situation or experience that is stored
in her memory) (Anderson and Bower 1980). Therefore,
any cognitively plausible model of associative interpre-
tation needs to capture realistically three key elements
of this process. First, cognitive representations, which
are the foundation on which associative interpretation is
based—both the raw materials used in the interpretive
process and the outcomes derived. Second, how individ-
uals perceive similarity between what they know and the
new reality they need to interpret. Third, memory oper-
ation, especially how experiences are stored and how
they are accessed in interpreting reality. Moving from
the individual to the collective level then requires that
we address how communication among individual inter-
preters generates meaning. The theoretical premises and
assumptions that we make in dealing with these chal-
lenges are summarized below.

Cognitive Representations. Cognitive representations
are conceptual structures in individuals’ minds that
encapsulate a simplified understanding of the reality
these individuals face (Lakoff 1987, Thagard 2014).
More concretely, a long tradition in cognitive psy-
chology (Tversky 1977, Rumelhart and Ortony 1977,
Gentner 1983) treats cognitive representations as clus-
ters of features. That is, out of the many possible fea-
tures along which a given reality can be characterized,
a cognitive representation is a low-dimensional set of
such features—a coarse characterization of an infinitely
detailed reality.

Perceived Similarity. Associative processes are based
on perceived similarity between different realities (see
Larkey and Markmann 2005 for a broad discussion).

In cognitive terms, this process consists of drawing a
link between the reality to be interpreted as captured
by an initial, embryonic representation (i.e., the sub-
set of situational features the agent observes or infers)
and a more fully formed representation of a prior real-
ity the agent has already experienced or learned about
in some form. This link thereby connects cognitive
entities, specifically cognitive representations. Similarity
has been argued to be typically feature-based (Tversky
1977).3

Memory. The individual’s memory is a collection
of representations of situations that are accessed or
retrieved in a direct way by associative processes (as
in content addressable) and not by serial, systematic
search over all memory addresses. Thus, memory can
be characterized as a combination of a state (what is
remembered) and a process (how memory states can
be retrieved). In a typical associative process, an agent
is presented with a situation to interpret, and some
observed or inferred features of the situation evoke a
memory state in her mind. Neurobiological studies of
memory (Kandel et al. 2000) offer strong empirical sup-
port for the idea that memory retrieval proceeds asso-
ciatively (Anderson and Bower 1980, Edelman 1987).
Specifically, associative memory is a content-addressable
process that directly retrieves a memory that closely
matches the reality to be interpreted along some fea-
tures observed by the agent (Anderson and Bower 1980).
A classic example is how a flavor can instantly evoke
entire episodes from the past. Such a connection is
relatively immediate and does not require a system-
atic search through a bank of memories. This charac-
terization of memory operation improves on what is
commonly assumed by models of analogy-based inter-
pretation, which suggest some kind of exhaustive, brute
force serial search through all possible direct and vicari-
ous experiences stored in the agent’s memory. For exam-
ple, case-based decision theory (Gilboa and Schmeidler
2001) assumes that agents look through all cases stored
in their memory, and the Gavetti et al. (2005) computa-
tional model adopts a similar perspective.

So far, we have discussed interpretation in terms of
associations with memories of single experiences. Inter-
pretation often proceeds, however, not on the basis of
associations with individual experiences, but in rela-
tion to categories, i.e., mental structures that group any-
thing experienced or learned along some dimensions of
similarity (Rosch 1978, Lakoff 1987). Categorization—
interpretation of a new reality by its association with a
category—is cognitively analogous to association with
singular experiences. When agents categorize a situation,
they associate it with a prototypical exemplar of a certain
category. That is, the similarity between the situation to
be interpreted and a given category is assessed with ref-
erence to a specific prototype of the category. Once the
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situation is categorized, it is represented analogously to
the category’s other members. Thus, associative inter-
pretation can operate in relation to both individual expe-
riences and categories. Our model aspires to be general
enough to capture both forms.

To sum up, in our characterization of interpretation
at the individual level, we assume that; (i) cognitive
representations are feature-based; (ii) associations are
based on similarity, which, in turn, is feature-based; and
(iii) memory is a collection of representations that are
accessed or retrieved associatively and not serially.

From the Individual to the Collective. To move
from individual to collective interpretation, we need to
account both for communication and for how the sharing
of individual interpretations via communication trans-
lates into a collective interpretation. Consistent with the
assumption that representations are feature-based, we
assume communication operates over features. Individ-
uals tell each other what features of the reality they
“see,” and they can be more or less heedful to what
other individuals in the collective tell them. The collec-
tive achieves an interpretation when none of its members
feels compelled to challenge others’ opinions.

In addition to these two basic elements, we need a
structure that allows us to capture some of the variables
that reflect the possible contingencies that can affect
interpretive outcomes. Agents can be more or less homo-
geneous in their cognition and experiences; they can be
more or less focused in the attention they pay to exter-
nal cues; the structure of communication can be more or
less centralized, or more or less hierarchical, etc. Infor-
mation from the environment can be more or less noisy,
more or less complete, more or less novel, etc.

Modeling Choices

Neural networks techniques capture both associative pro-
cesses and feature-based conceptions of representations
and memory (Hertz et al. 1991). These techniques are
empirically robust: when used to reproduce experimen-
tal observations on human memory, they consistently
demonstrate strong explanatory power (Poucet and Save
2005).* Among the various neural network approaches,
the Hopfield model (Hopfield 1982) is the simplest
model of content-addressable memory retrieval. As we
explain in detail below, the Hopfield model represents
both novel situations to be interpreted and experiences
stored in the agent’s memory as clusters of correlated
features. The memorized situation most similar to the
input stimuli (the features of the novel situation that the
agent pays attention to) is retrieved through a process
that exploits correlations among features to converge to
a memorized situation without visiting the agent’s full
memory. Because this model is empirically robust, math-
ematically tractable, and consistent with our assump-
tions, we build on it to model individual interpretation.’

Nonetheless, all modeling choices entail crucial assump-
tions and simplifications. Some of the choices we made
imply minor losses of generality. For example, con-
tinuous or stochastic activation rules can be adopted
instead of the threshold function we adopt (see (1)
below) that preserve the fundamental associative mem-
ory properties of the model (Hertz et al. 1991). More
significantly, introducing strongly asymmetric connec-
tions might affect the stability of the network, but offer
opportunities to memorize sequences and temporal pat-
terns. Consistent with the “minimalist” nature of our
modeling effort, we have opted for the simpler model.
Although we are aware of its limitations, we decided
to trade off the formal complexities of more elaborate
models because we believe that such simplifications are
justified by their heuristic fruitfulness (see however the
Online supplement for the exploration of some more
complex model).

Neural networks also naturally lend themselves to rep-
resenting the relational component of interpretation, as
the analytical intuitions of the connectionist school sug-
gest (see especially Hutchins 1995). We build on such
intuitions and construct networks of neural networks—
collectives of agents who face a new situation that is
initially interpreted on an individual basis before agents
communicate what they see to each other until a stable
state—a collective interpretation—is achieved.

The Model

We first lay out the model of the individual, and then use
it as the microfoundation for the collective-level model.

The Basic Setup: Individual Level

Intuition. Before articulating our formal model of
individual-level interpretation, we preview its central
mechanisms informally. The agent is given a reality or
situation to interpret that she represents or recognizes
associatively: The situation is recognized when a mem-
ory in her mind is activated. This memory will be the
basis for her interpretation. In the model, the reality is
characterized as a set of features, and so is the agent’s
memory, which consists of a set of prototypical experi-
ences, each of which is encoded via features that might
or might not be present. For instance, if the agent is
a strategic decision-maker operating in a new business,
she will interpret this setting in terms of her memory
of prior businesses. She will observe some features of
the present business, and activate a memory of a busi-
ness that is similar along the features she observes. The
agent’s experiences are stored in her memory as a neu-
ral network, with each node of the network representing
a feature, and the connections among them encapsulat-
ing the agent’s experiences. The higher the correlation
between two given features across the agent’s experi-
ences is, the heavier the connection between such fea-
tures is. That is, if features x and y tend to be jointly
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Figure 1 Associative Recall: A Visual Example

a b
c d e
present across the agent’s experiences, their connection
will be heavier than it would be if the two features
did not co-occur. This fundamental principle is known
in neuroscience as Hebb’s Rule (Brown et al. 1990).
With this setup in mind, it might be useful to regard the
nodes of the network as hypotheses about the presence
or absence of features. When the agent has a new situa-
tion to interpret, the network will be initialized to reflect
the new situation (i.e., each node will reflect hypothe-
ses about the presence or absence of features according
to what the agent initially sees). This event is the start-
ing point of an updating process during which the net-
work will modify its configuration, thereby correcting
the agent’s initial perception of the reality, according to
the consistency between the hypotheses the network is
currently making and the agent’s memory. This iterative
process will continue until the network converges to one
of the experiences that the agent stores in her memory.

A simple visual example will help clarify the nature of
the associative interpretation process. Consider a mem-
ory that stores two prototypical patterns, as in Fig-
ures 1(a) and 1(b).

Each configuration can be represented as a vector of
25 nodes (the little squares). Once the memory is stimu-
lated by a new visual input (Figure 1(c)), it progressively
modifies the state of its nodes until it converges after a
few iterations to the stored configuration that matches
most closely the new input (Figure 1(e)).

The model has three building blocks: environmental
states (i.e., realities to be interpreted), which we call situ-
ations; agents’ memories (i.e., limited repertories of situ-
ations); and network dynamics (i.e., the process through

which the neural network associates a given situation
with a given memory). We describe them in turn.

Situations. We model situations or realities as config-
urations of features, and assume that the set of such fea-
tures, F ={fi, f»,..., f,}, is finite (n = N). Thus, each
situation can be encoded by a vector s of N binary state
variables that take on value 1 when the feature is present

Figure 2 A Neural Network

and —1 when it is absent. There are Z =2V conceivable
situations.

Memory. Individuals’ limited memory comprises a
repertoire of situations (see Gilboa and Schmeidler 2001
for a closely related assumption). We assume that the
set of situations stored in an individual memory (M) is
a subset of the set Z of all conceivable situations, and
that the former has much lower cardinality than the latter
does: M C Z and #(M) < #(Z). We model an individual
memory as a neural network, which is made of nodes
(i.e., artificial neurons) that can fire or become active
when incoming stimuli exceed some threshold. Consis-
tent with the interpretation we suggested above, a given
node fires when the hypothesis is accepted that the fea-
ture associated with it exists. Nodes are connected by
arcs (i.e., artificial synapses) that pass stimuli from node
to node. In our model, there is a node for each feature,
and the network is fully connected by symmetric arcs
(see Figure 2). The network graph can be translated into
a pair (s, W) where s represents the nodes’ states, and
W, the matrix of weights, represents the adjacency net-
work of the network graph. Formally, s is a vector of N
binary variables s; that take on values {1, —1}, and W
is a symmetric N x N matrix of real-valued weighted
connections wy;.

Network Dynamics. Given a matrix of connection
weights W, nodes update their state once a new situa-
tion is presented as an input to the network. When a new
situation is presented, each node takes as its initial state
the value consistent with the state of the corresponding
situation. In other words, the set of features perceived by
the agent is directly translated into the nodes’ activation.
Then, the update process is based on a classical principle
of neural network models: Each node s; of the network
takes as an input the activation state of each other node
J # i, weighted by the strength of the connections from
the jth node to the ith node. At this point, such inputs are
simply summed up. If the sum of inputs is above a given
threshold, the node becomes (or stays) active. Otherwise
it becomes (or stays) inactive. The update process pro-
ceeds sequentially for each node s;. The simplest way to
model this principle in a network in which a node state
of 1 stands for activation and —1 stands for inactivity is
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Figure 3 Update Rule

to take the sign of the aggregate input to determine the
value of the ith node (see also Figure 3):°

5= sgn(; w,.js,). 0

Rule (1) has two useful implications:

(i) It has been proved that it always leads the network
to a configuration in which no node state is changed
or modified: a fixed point. Because of this property, the
agent’s memory can be represented as a set of situations
stored as fixed points.

(ii) When a new input is presented to the network,
rule (1) guarantees convergence to the memorized sit-
uation that is most similar to the perceived input
(technically speaking, to the fixed point with the low-
est Hamming, or bit by bit, distance). Thus, memory
recall is a feature-matching process that associates new
situations with memorized ones according to similar-
ity. Visually, the stored situations can be represented
as decomposing the space of conceivable situations in
basins of attraction that are determined by this similar-
ity metric. Figure 4 shows an idealized two-dimensional
representation of such decomposition in basins of attrac-
tions around the stored situations.’

Because a stored situation will be always recalled at
the end of an interpretation process when the new input
is close enough to it (i.e., it falls into its basins of attrac-
tion), associative memories have two important proper-
ties. First, they have an error-correction property: If a

Figure 4 Basins of Attraction

X

|X = Initial situation @ Memorized situation

Note. Adapted from Hertz et al. (1991).

situation is distorted by noise or errors when it is pre-
sented to an agent, the memory will recall the “right” sit-
uation (as in the visual example of Figure 1). Of course,
if the error is so pervasive that it makes the input look
more similar to another situation stored in memory, the
memory will misinterpret the stimulus and retrieve the
latter situation. Second, for the same reason, associative
memories can fill information gaps such as incomplete
inputs (i.e., features that are initially unspecified).

Storing Situations. Although nodes update their state
during the recall process, we keep W constant. Thus, the
connection weights are the parameters of the network
dynamics. This condition implies that a situation can be
memorized by appropriately tuning W. In the language
of neural networks, this memorization corresponds to
the tuning of the synaptic connections’ strength. There
are two ways to store situations in agents’ memory.
One is to allow them to learn the weights experientially
(for instance, through learning procedures such as the
Hebbian rule (Hertz et al. 1991)). Alternatively, we can
directly engineer the storage of situations as fixed points
in agents’ memory. Because our focus in this paper is
not on agents’ memorization processes, but rather on
how a given memory is used to interpret new situations,
we adopt the latter approach.®

From the Individual to the Group

Core Structure. We characterize the group as a set
of individual interpreters with a communication struc-
ture among them. In a nutshell, the group faces a situa-
tion to interpret. Each agent in the group first interprets
the situation individually. Agents then share their ini-
tial interpretations with other members of the collective,
and initiate a process of mutual influence until the group
achieves a stable collective interpretation.

We model communication through the architecture
introduced by Hutchins (1995) and further developed
by Marchiori and Warglien (2005). In this architecture,
every agent receives signals from others about their cur-
rent interpretation of the environment (as represented by
the current configuration of their own memory network).
Signals focus on specific features (nodes). For instance,
if agents 1 and 2 communicate, and agent 1 believes f; is
present, she transmits a signal to agent 2 about the pres-
ence of f;. This message adds to the input received by
agent 2 on f;. For example, suppose a U.S. company is
considering entering a Latin American region, which is
new to this company and its competitors. Suppose senior
managers are evaluating the situation collectively. The
key challenge is to interpret what the region will be like
(e.g., what type of customers, what institutional environ-
ment, what infrastructures, etc). Our model would cap-
ture this situation by having each executive form a first
impression of the situation based on her own percep-
tions. Then, in some asynchronous order, each executive
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would start re-evaluating single features in light of their
coherence with the patterns (“cases”) stored in her mem-
ory, but also taking into account what she knows about
others’ perceptions. Each executive would then tell her
peers what she believes is going on, as she updates her
opinion of the focal feature. More specifically, let us
consider how a typical executive in our model commu-
nicates with her peers (the same will happen to all exec-
utives in the group). This executive will first try to get a
sense of the current beliefs of her peers on a given fea-
ture (e.g., the type of consumer prevailing in the region).
She will compare these with her own perception and
the overall patterns stored in her memory. She will then
update her beliefs about such features while trying to
find the highest coherence between her own perception,
her memory, and the beliefs of her peers. She might thus
reject some suggestions outright because they are deeply
inconsistent with her memories; but others might cause
her to change her opinion for some specific characteris-
tics. For example, she might find that given the type of
mindset that she believes to be dominant in the country,
the type of institutional environment the firm will likely
face, the other features she considers, and the opinions
of the majority of other managers, her current percep-
tion about the type of consumer might be misleading.
She will thus update her beliefs about that feature. She
will then communicate to her peers her new view about
that feature. This process will continue iteratively, with
managers asynchronously updating their beliefs about
specific features, until a stable interpretation is achieved.
This process of communication is represented by con-
nections between nodes of the agents’ respective mem-
ories, which transmit signals from one agent to another.
A given agent will simply add the weighted signal from
another agent to those internally generated by her own
memory when she updates her interpretation of a fea-
ture. Figure 5 shows a two-agent communication struc-
ture (dotted lines), in which agents communicate over
two features.

To concretely affect interpretation, communication has
to be intense enough to affect the state of mind of the
recipient of the message. An increase in the intensity

Figure 5 Introducing Multiple Agents

Communication link

Communication link

of communication means that the recipient of a mes-
sage pays more attention to the message and is more
affected by it. In our model, this effect is modulated
by the weight of the connection between agents: The
heavier the connection, the stronger the message’s effect
on the recipient’s update of her interpretation. We call
this effect “level of heedful communication” or in short
“level of heed.”

Moving to the formal structure, the group-level model
could be described as a network of neural networks.
The whole group itself is a large collective associative
memory net. Consider n agents with m feature-nodes
each. Each agent k is associated with a vector of states
s* of length m. Appending such vectors to each other
will generate a vector s of length m * n, which repre-
sents all nodes in the group. Each node of s will be
connected to both within-agent nodes and, via commu-
nication, other-agents’ nodes. We will keep the symbol
w;; (which, when necessary, is supplemented by a super-
script for each agent k) to represent within-agent con-
nections, and we will use the symbol vy to indicate the
intensity of between-agent connections or level of heed.
In the analyses that follow, we assume that vy is the same
for all between-agent connections. In concrete terms, y
indicates how influential an agent k’s interpretation of
a given feature is over another agent’s interpretation of
the same feature, with high levels of y meaning high
influence, and low levels denoting low influence. Given
our assumption that it is the same for all between-agent
connections, 7y reflects a group-level property of com-
munication expressing how much group members “pay
attention to each other.” By tuning 7y, we can therefore
obtain groups characterized by various degrees of inter-
nal influence, which correspond to various degrees of
collective heed, thus summarizing the potentially infi-
nite and diverse factors that determine the influence of
communication among group members.

The matrix W of all such connections is a symmetric
square matrix that has the (shaded) blocks constituted
by each agent’s internal connections W* (i.e., individual
memories) on its main diagonal, and the blocks repre-
senting communication among agents outside the main
diagonal (see Figure 6).

Once communication is introduced, the update rule (1)
for a single feature-node of a single agent becomes

sf+ D) =sgn Y whsi () +yY sl (D) ¢. (2
j n=1
! yor

A Flexible Structure. This analytical engine offers a
flexible platform that can be used to characterize a vari-
ety of collectives facing a variety of problems. For
instance, 7y can be easily tuned to explore the effects
of asymmetries in intragroup heedfulness, such as those
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Figure 6 A Multiagent Neural Network
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that reflect some form of leadership. Furthermore, com-
munication can be more or less dense as dictated by
which agent talks to which other agent within a group.
Also, communication can differ in scope. That is, a pair
of agents can communicate over a more or less extensive
set of features. These two parameters, density and scope
of communication, allow us to model different commu-
nication structures. For instance, one can represent a
full network structure of communication by having each
agent communicate with each other. Alternatively, a star
structure can be obtained by having each agent commu-
nicate with only a central agent, or many other structures
corresponding to different communication patterns. In
turn, these structures can take on two forms: communi-
cation is complete if agents communicate on all features;
it is specialized if they communicate on a subset of fea-
tures, perhaps reflecting cognitive division of labor, with
agents’ areas of expertise being complementary. Indeed,
it is possible to model individuals that are heterogeneous
in their expertise by simply controlling how homoge-
neous the experiences they have in memory are. We can
also control the type of environment the agents face.
Some environments are noisier than others are. Infor-
mation can be corrupted, or it can be incomplete, etc.
Given our goals for this article, we explore only a subset
of these contingencies. However, to provide a flavor of
the versatility of the model, Online Appendix 1 summa-
rizes a few additional analyses that reflect configurations
other than the ones we consider below. Most notably,
we study how collectives with strong leadership behave
vis-a-vis structures of peer agents.'”

Analysis

We use this formal structure to first derive, in closed
form, some fundamental properties of collective inter-
pretation that we expect to be robust across contexts.
We derive these properties by considering the simplest
parametric configuration of our model: full communica-
tion among agents and a noiseless environment. We then
turn our attention to more realistic settings, which we
analyze via simulation.

Some Fundamental Properties of Collective
Interpretation
To start, we need to define collective interpretation pre-
cisely. By collective interpretation, we mean a stable
state in which no agent has reason to modify individu-
ally her current interpretation of the environment. Ana-
lytically, we model collective interpretations as fixed
points of an effort in which individuals modify their own
interpretations to satisfy the pressures of both their own
memories and the opinion of others. Note that this def-
inition does not require that all agents share the same
interpretation—they might agree to disagree: there may
be fixed points of the group network in which agents
have persistently different beliefs about specific features.
Instead, we require each member of the group to reach,
by repeatedly adjusting her own current interpretation
to those of others, an acceptable individual interpreta-
tion that balances the associative pressures coming from
her own internal mental states with those from others’
interpretations—a kind of collective reflective equilib-
rium (Goodman 1955, Rawls 1971). The case in which
all agents reach the same interpretation, which we label
shared interpretation, is a special type of collective inter-
pretation, and will play a major role in our analysis.
Notice also that this definition makes an implicit but
clear distinction between interpretation as a state and the
process through which this state is reached (a same state
might be reached through different processes).

Any model of collective interpretation should address
a few fundamental questions. The first, most obvious
question corresponds to the existence problem: Can col-
lective interpretation as we define it be achieved in our
model of the collective? Without a positive answer, our
modeling effort would be meaningless. The second ques-
tion corresponds to the consensus problem: Can shared
interpretation be achieved, and, if so, what factors enable
shared collective interpretations? The third question cor-
responds to the creativity problem: Does collective inter-
pretation have to reflect a pre-existing interpretation of at
least one agent in the group, or can genuinely new inter-
pretations emerge from communication among agents?
If new interpretations can emerge that are shared, it
would be important to establish under what conditions
collectives can lead to creative insight. Finally, a tradi-
tion in the study of groups suggests that there may be
negative side effects of collective interpretive efforts, a
tendency of collectives to generate conformity—a ten-
dency to unanimity that overrides the goal of realis-
tically appraising situations (Asch 1957, Janis 1972,
Baron 2005). A final question thus concerns the con-
formity problem: can the model express such collective
conformism property and, if so, under what conditions?
Below, we provide a general, closed form answer to
these questions in form of four propositions. Proofs of
the propositions can be found in Online Appendix 5.
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We rephrase the existence question in terms of
whether a network of interacting associative memories
can preserve the fixed point properties of individual
associative memories (i.e., whether the group can con-
verge to a stable collective interpretation of the environ-
mental input). The answer is positive, and we express it
as the following:

ProPOSITION 1 (EXISTENCE). Given a network of
associative memories (s, W) and the update rule (2),
there is always at least one collective interpretation for
any input received by the agents.

We offer an intuitive explanation that is based on
Figure 6 and expression (2): The group model has the
same formal structure as a Hopfield network, with an
update rule that includes other-agents’ inputs. The group
is thus a collective associative memory that “merges”
the individual ones and adds between-agent interactions
among nodes to within-agent ones. It follows that the
group model inherits the properties of the individual
model, especially the existence and local stability of
fixed points, which act as group memory states.'! Such
memory states might not reflect agreement among group
members, but their existence guarantees that by adjusting
some individual interpretations to others’ via communi-
cation, the group will achieve a collective interpretation.

Propositions 1 provides no information about the pos-
sibility of shared interpretations or what conditions are
necessary for their existence. Intuitively, as agents pay
more attention to others’ interpretations, the pressure to
agree on the same interpretation increases. We can prove
an even stronger statement than this intuition: If the level
of heed is high enough, consensus will always emerge.
Accordingly, Proposition 2 states the following:

PrOPOSITION 2 (CONSENSUS). Provided that vy s
large enough, ALL collective interpretations must be
shared ones."?

The reader is referred to Online Appendix 5 for a
proof of Proposition 2. The intuition of the proof is that
when a group is in a very high vy condition, the majority
opinion on each feature will spread in the group, forcing
an agreement.

Propositions 2 opens the door to the third question: If
communication can force consensus among group mem-
bers, is this effect limited to inducing agreement only on
pre-existing interpretations, or can genuinely novel inter-
pretations instead emerge out of agents’ communication?
We can prove the following (see Online Appendix 5 for
the proof):

PrOPOSITION 3 (CREATIVITY). If 7y is large enough,
there will always be a shared interpretation that does not
correspond to any of the situations stored in individual
memories.

Proposition 3 indicates a genuinely creative process
for generating new interpretations of the environment.
Heed can induce an individual to break the internal con-
sistency of her mental states (induced by the connections
within her own memory) to establish a new interpreta-
tion that will account for the weight of others’ hypothe-
ses. When communication weights are strong enough,
they will lock the new mental state and make it sta-
ble. Thus, new stable states of mind will arise from the
recombination of different individual hypotheses when
the situation to interpret is truly different from anything
experienced before—a whole new truth is created out of
partial ones. Ironically, here recognition (seeing the new
in terms of the familiar) may lead to new cognitions.

The dynamics that underlie Propositions 2 and 3 sug-
gest that groups characterized by very high levels of
heed may be induced to quickly lock into initial interpre-
tations, no matter how arbitrary they are. As 7y increases,
they may become increasingly “credulous,” prone to
agree on everything—a state reminiscent of the patholo-
gies of pressure to conform. Consensus may override
realism. In fact, we can prove the following:

PROPOSITION 4 (CREDULITY). Provided that vy is
large enough, ANY arbitrary shared interpretation can
be a fixed point.

In sum, Propositions 2—4 suggest that an increase in
collectives’ heed has both positive and negative effects
on interpretive outcomes. On the positive side, Proposi-
tion 3 guarantees that genuinely new situations can be
identified as such. If no agent has memories that closely
correspond to the new situation to interpret, intense com-
munication may help generate an interpretation that is
closer to reality, and it does so by compensating for indi-
vidual errors through the emergence of collective wis-
dom resulting from aggregating right hypotheses that are
diffused among different agents. Thus, communication
can reinforce the error-correction and information-filling
virtues of individual associative memories (see also the
next section). On the negative side, as y moves beyond
a critical threshold, the pressure to conform can lead the
group to converge to any arbitrary configuration.

Although these propositions establish fundamental
properties of collective interpretation, they also leave
some questions open. To what extent can heed make
collective interpretation more reliable by improving
the error-correction and information-filling virtues of
individual associative memories? Can it discriminate
between truly novel situations and accidental perturba-
tions of old ones, or will the creativity property result
in mere noise filling and systematic misinterpretation?
To what extent can conformism override the benefits of
consensus? The next session will use computer simu-
lations to consider a set of more specific and realistic
task environments in which such questions can be inves-
tigated, and that also relate to relevant debates in the
organizational literature.
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Simulation Experiments: Collective Interpretation
and Organizational Reliability

We explained at the outset that properly functioning col-
lectives have the potential for reliable interpretive per-
formance even in extremely challenging settings. Yet our
current understanding of how such outcomes come about
is limited. Work on collective minds (Sandelands and
Stablein 1987, Weick and Roberts 1993, Weick et al.
1999) has pointed to the importance of some proper-
ties we discussed in the prior section, such as how
heedful communication among agents can reinforce the
properties of error correction and information filling of
individual associative memories, favor the integration
of conflicting information and representations, and gen-
erate new interpretations that do not already exist in
agents’ individual minds. This is a promising conver-
gence, and we use our model to explore these proper-
ties more fully in four settings that are prototypical to
the literature on organizational reliability and distributed
systems, settings that induce misinterpretations if not
properly handled.

The first setting is one in which the information upon
which interpretation is based is noisy, in that it is cor-
rupted and potentially misleading (Hutchins 1995). For
instance, a cause of the Tenerife airplane crash was
the Pan Am pilot’s difficulty in comprehending what a
“ground controller who spoke with a heavy accent” was
trying to communicate (Weick 1990, p. 130). The sec-
ond setting corresponds to situations in which critical
pieces of information are hidden to the interpreter. To
stay with the Tenerife accident example, another cause
of this crash was the presence of thick clouds and fog,
which made it impossible for the pilots to obtain critical
information. The third setting is one in which, indepen-
dent of the quality and amount of information processed,
the situation to interpret is new to the interpreters. That
is, it might not correspond to any of the agents’ expe-
riences or memories (Michel 2007). The final setting
corresponds to situations in which a distributed system
is disrupted by turnover in its members,'* which can
challenge interpretation when the incoming agents share
little in terms of background, experiences, and beliefs
with the other group members (Weick and Roberts 1993,
Michel 2007).!4

Basic Architecture

Computer simulations use the formal structure detailed
in the model section, which has three building blocks:
an environment of situations to interpret, agents, and a
communication structure among them. We now briefly
describe how we operationalize them, leaving a more
detailed specification to the simulation description.

Environment. The environment is represented as a
set of situations to interpret, each operationalized by
12 binary features.!> We consider 3 situations (that rep-
resent true states of the world) that equally span the state

space in terms of Hamming distance. The agents receive
signals from the environment in the form of 12 bit
strings, where each bit represents a feature. See below
how we operationalize noisy and incomplete signals.

Agents. Each agent is modeled as an associative mem-
ory that stores a limited number of prototypical situa-
tions (in our model, the agent stores 3 situations), each
consisting of 12 features. A prototypical situation is a
12-bit array stored as a fixpoint of the individual mem-
ory. Agents may store partial knowledge of the situation
(not all features may be represented in their memory),
or may have memorized situations that differ from indi-
vidual to individual.

Group Structure. We consider a group of four agents
fully communicating with each other. As specified in the
Model section, communication occurs through feature-
by-feature, weighted connections between agents.
Groups’ level of heed is modeled through vy. If y takes
on a 0 value, we speak, for simplicity, of no commu-
nication. Through this basic structure, we consider four
settings:

(I) Noisy Environments. The situations to interpret
can be noisy or randomly corrupted. We capture noise
by randomly flipping individual “true” features, with
noise being independent for each agent (i.e., each agent
receives independently corrupted information). A noise
parameter 1 determines the probability of a random flip
of a feature as perceived by agents, and therefore the
amount of noise that exists in the system.

(IT) Incomplete Information. Agents can receive
incomplete information about the situations to inter-
pret. We capture this effect by assigning some features
an uninformative 0 value. We model incompleteness as
being independent among agents (i.e., agents receive
independently incomplete information). We assume
independence because it allows drawing conclusions that
are not conditional on specific patterns of incomplete-
ness. An incomplete information parameter i determines
the probability that a given feature is uninformative.

(IIT) Novelty. The situation to interpret can be more
or less novel. We model the degree of novelty in terms
of the Hamming distance between true state of the world
and prototypes stored in agents’ memory. The more the
true state of the world is Hamming distant from the clos-
est stored prototype, the higher its novelty.

(IV) Turnover. Collectives’ membership is not always
stable. An important question is therefore how personnel
turnover affects interpretive outcomes. If the incoming
and outgoing members share the exact same experi-
ences, the effects of turnover should be negligible. An
interesting case of turnover is therefore the case of
heterogeneous newcomers. Heterogeneity can be opera-
tionalized by endowing agents with different memorized
prototypes. Accordingly, in the turnover treatment, three
agents (the incumbents) have homogeneous memories,



Gavetti and Warglien: A Model of Collective Interpretation
Organization Science, Articles in Advance, pp. 1-21, © 2015 INFORMS

13

while the newcomer is modeled as having entirely dif-
ferent prototypes in memory.

Performance. In what follows, we take the rate of
correct shared interpretations in a given environment
as the main indicator of performance, measured over
a large number of simulation runs (although we also
consider other performance measures). This emphasizes
the fact that in the prototypical environments that we
explore, agents essentially play a coordination game,
where success depends both on accuracy and consensus,
and common interest is assumed. However, the simu-
lation platform might easily be accommodated to dif-
ferent payoff structures, where for example the degree
of consensus or the average accuracy provide additional
sources of reward (and incentive misalignment among
agents might be represented).

Simulation Results

I. Noisy Environments. Figure 7(a) summarizes the
main results of simulations experiments under condi-
tion I. The simulation we conducted (Figure 7(a)) rep-
resents all agents as receiving complete, albeit noisy,
information. We ran 10,000 iterations for each parame-
ter combination of noise level n and communication y
(5 x 26); m takes values from O (no noise) to 0.2 (20%
of chance of distortion for each feature) with 5% steps,
and vy ranges from 0 (no communication) to 2.5.'6

As can be seen, the interpretive performance is always
(and trivially) correct when there is no noise because
all agents receive the same signal from the environment,
which matches a prototype that each agent has memo-
rized. Heedful communication has little to add.

Noise has a significant impact on interpretive perfor-
mance. Without communication, agents converge to an
already memorized prototype, but often to the wrong
one. Such an impact is small for low levels of noise
(i.e., 7 = 0.05) because each agent has enough redun-
dancy built in her memory to correct minor deviations

Figure 7 Noisy Environments
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form the right prototype. As noise increases, perfor-
mance deteriorates (more than proportionally) because
individual agents are misled by noisy information and
may therefore retrieve an erroneous prototype from their
memory. !

Thus, group failures in the absence of communication
result because the error-correcting properties of indi-
vidual associative memories are insufficient. On this
ground, heedful communication has a powerful impact
on interpretive performance. As can be seen from Fig-
ure 7(a), heed enables agents to reach almost error-free
performance even for rather high levels of noise. The
basic effect of communication among heedful agents is
to reinforce the error correction and pattern reconstruc-
tion properties of individual memories. This is obtained
by exploiting the redundancy (a constant trait of high
reliability organizations) built in the collective. If an
agent perceives a feature incorrectly, her misperception
is likely to be corrected by agents that perceive it cor-
rectly. This is a clear reflection of the “consensus” prop-
erty of heed analyzed in the closed form section. As long
as the majority of the agents are right, there will always
be a level of heed that makes the whole team right.

However, this beneficial effect exhibits an inverted-
U-shape behavior: It declines after a critical level is
reached. This decline is not due to miscoordination of
individual interpretations among agents, as happened
in the no- (or low-heed) communication case. After
the maximum level of performance is reached, there
is always final consensus (Figure 7(b)). What happens
instead is that agents converge on arbitrary interpreta-
tions that “fit” noise. If noise is high enough, too much
heed can be worse than no heed. This result is clearly
related to the “credulity” property analyzed in closed
form in the prior section.

Thus, taken together, Propositions 2 and 4 result,
within the environment that we have designed here, in a
parabolic effect where the consensus benefits are over-
ridden by the damaging effects of pressure to conform.
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Note. Average performance (rate of correct interpretation: 1.0 = 100% of successes) and rate of convergence to interpretations consistent
among agents (rate of consistency: 1.0 =100% consistent interpretations).
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Figure 8 Incomplete Information
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II. Incomplete Information. We can now introduce
incomplete information (Figure 8). We ran 10,000 itera-
tions for each parameter combination of noise 17 and heed
v under different assumptions about incompleteness,
the probability of a given feature to be uninformative
being, respectively, 0.2, 0.4, and 0.6 (Figures 8(a), 8(b),
and 8(c)).

Figure 8 suggests a few relevant properties. First,
incompleteness by itself has a much milder effect than
noise does, as suggested by the comparison of the effects
of noise and incompleteness (in the absence of noise)
for the same probability level. For a noise probability
of 0.20, without communication, the interpretive perfor-
mance degrades below 50%. For the same probability
of incompleteness, performance stays close to 100%.
Only high levels of incompleteness generate substan-
tial degradation of performance without communication.
Furthermore, although noise tends to generate nonmono-
tonic effects of communication, heed is always beneficial
when there is only incompleteness because incomplete-
ness creates missing information, whereas noise creates
false information. Thus, incompleteness does not have
the distracting properties of noise. It can damage individ-
ual interpretation only when it creates enough informa-
tion gaps that there are unsolvable ambiguities regarding
which situation the available information may represent.
Furthermore, when there is communication, it can dam-
age collective interpretation only when features are miss-
ing for all agents, and no one agent can help the others
to fill the gaps.

1.5 2.0 2.5

The interaction of incomplete information and noise
is interesting. The more information for some features is
missing, the less right information can correct distorted
information, thus amplifying the effects of noise. Con-
sequently, when communication is absent, information
incompleteness further deteriorates interpretive perfor-
mance. Nonetheless, incompleteness also dampens the
credulity effect: For a given level of noise, it reduces
the absolute number of wrong features (because infor-
mation gaps cannot be turned into false information by
noise) and thus reduces the potential for generating cred-
ulous states. As a result, when enough incompleteness is
combined with noise, while the parabolic shape of per-
formance remains, too much heed tends to be no worse
than no heedful communication at all is (see Figures 8(b)
and 8(c)).

III. Novelty. Until now, we have dealt with agents
who have to detect errors, correct erroneous interpre-
tations, and integrate chunks of incomplete information
in a world where states of the environment neverthe-
less correspond to those stored in individual memories.
Agents operate under “very trying conditions” (La Porte
and Rochlin 1994, p. 221) but still in known worlds.
Agents or organizations are often presented, however,
with unknown situations (Weick et al. 1999), which they
need to interpret. This is the challenge we explore here.

In these simulations, we consider two cases. In the
first case (Figure 9(a)), there is a 50% probability that
the situation to interpret differs from the ones agents
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Figure 9 Novelty
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store in memory by three features (a Hamming dis-
tance of 3), and a 50% probability that it is one already
stored in their memory. In the second case (Figure 9(b)),
the probability that the true state of the world is new
is 100%. The network of agents interprets the current
environment successfully when it correctly discriminates
whether the current environment is new or old, and rec-
ognizes all features of the environment accurately. We
ran 200 iterations for each parameter combination of
noise level 1 and heed y (5 x 26). As before, n takes
values from 0 to 4 (20% of chance of distortion for each
feature) with 5% steps; y ranges from 0 to 2.5.

Although the results appear to be similar to the ones
in Figure 7, there are a few important differences. First,
even when noise is absent, the group often fails to
interpret the situation when there is no communication
because individual memories do not contain the situation
to interpret. Once heedful communication is introduced,
however, the group becomes good at discriminating
between old and new, and it reaches an accuracy close to
the performance in the baseline condition of Figure 7(a).
Still, peak performance is reached at higher levels of
v than it is in the baseline case: novel environments
require more heed than those with only noisy, incom-
plete information.

Also, although the performance curve again exhibits
an inverted-U shape, it reflects different processes than
it does in the no novelty condition. In the first trait of
the curve, performance is low even when noise is absent
because when the situation to interpret is new, agents
are “trapped” by their stored knowledge and thus unable
to recognize its novelty. This behavior is reminiscent of
the famous Mann Gulch disaster. In his rendition of the
story, Weick (1993, p. 635) points out that “When the
smokejumpers landed at Mann Gulch, they expected to
find what they had come to call a 10:00 fire. A 10:00
fire is one that can be surrounded completely and iso-
lated by 10:00 the next morning. The spotters on the
aircraft that carried the smokejumpers ‘figured the crew
would have it under control by 10:00 the next morning’
(Maclean, p. 43). People rationalized this image until it
was too late. And because they did, less and less of what
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they saw made sense.” In this case, the smokejumpers’
prior knowledge, which drove their initial interpretation
of the fire, trapped them into an erroneous interpreta-
tion that prevented them from seeing that this was not
something they were used to. Further, because “when the
temperature is approaching a lethal 140 degrees (p. 220),
people can neither validate their impressions with a
trusted neighbor nor pay close attention to a boss...”
Weick (1993, p. 636), they could hardly communicate,
which hampered their ability to reinterpret what was
going on. Similarly, our results suggest that as heedful
communication increases, genuine recognition of nov-
elty emerges and “substitutes” stored memories when
needed. Once again, however, consensus on fictive states
erodes accurate recognition as heed becomes too strong,
and performance degrades. Finally, when all the situa-
tions to interpret are novel (Figure 9(b)), peak perfor-
mance slides further to the right, implying that more
heed is needed; the deterioration of performance is sig-
nificantly attenuated for higher levels of noise. We will
discuss this point in the conclusion.

1V. Turnover. Turnover is especially challenging when
incoming agents have little in common with either the
agents they replace or the other agents in the group.
Introducing new agents with different backgrounds can
cause a breakdown in the coordination of collective
interpretations. Yet, some organizations are resilient to
the potentially disruptive effects of turnover (Rochlin
et al. 1987). For instance, Michel (2007) studied how
newly hired investment bankers performed when they
were assigned tasks at once complex and beyond their
domain of expertise (for example, the assignment of
a merger case to a novice with no banking experi-
ence). In the organization Michel (2007) studied, these
novices performed consistently well when the organiza-
tion induced them to communicate intensely with other
experts in the bank, and helped them do so through
appropriate organizational arrangements. Our simulation
considers a similar situation: the case in which one
agent out of four is a novice. To emphasize the potential
conflict of interpretations, we maximize the difference
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Figure 10 Turnover with Heterogeneous Agents
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between the newcomers’ and incumbents’ memories.
Figure 10 summarizes the results of 10,000 runs for each
parameter combination of noise level 1 and communica-
tion y. Noise and communication are in the usual range
of values.

With low heed, turnover has a strongly negative
effect on interpretive performance. Yet, consistent with
Michel’s findings, heed attenuates such effects. The
redundancy that is built into a collective absorbs
turnover’s disruptive consequences. In line with the prior
analyses, Figure 10 also shows that noise negatively
affects the amount of absorption achieved. Furthermore,
the nonmonotonic effect of heed is apparent, with its
usual inverted-U shape, amplified by higher noise levels.
Heedful communication thus has beneficial effects vis-a-
vis the potential disruptions of turnover, but its benefits
disappear for high levels of mutual influence when noise
is present.

Discussion and Conclusion

We developed our model with a substantive and a tech-
nical goal in mind. We wanted to both foster our under-
standing of collective interpretation, and offer a tool, an
analytical platform that other scholars can use and tailor
to analyze a variety of collective interpretive. We now
comment on each in turn.

Through our model, we created a simple world in
which the phenomenon of interest depends on just a
few variables whose behavior and effects we can control
precisely. We thus isolated some of collective interpre-
tation’s key determinants and studied how they interact
to improve or derail interpretation in some relevant con-
figurations. This is what underlies our substantive con-
tribution, which we can understand along three main
directives.

First, our analyses tell a different story than is sug-
gested by extant work on collective interpretation. The
literature on organizational reliability and collective
mind assumes that heed has an overall positive effect,
possibly monotonically increasing (more is better). It
assumes that collectives that are dysfunctional in their
cognitive functions are so largely because people do not

pay enough attention to others’ states of mind (Walsh
1995, Michel 2007). This statement may be a caricature,
but it captures a central tendency of work on collective
cognition. By building on a more nuanced characteriza-
tion of the microfoundation of collective interpretation,
our model leads to a partially contrasting perspective.
At one level, our analyses clearly support the general
result that heed is crucial to interpretive outcomes. We
saw that when people pay little attention to others’
interpretations, environments that are intrinsically diffi-
cult to interpret, either because information is unreli-
able or unavailable, or because the world is genuinely
new, accurate interpretation is hard to achieve. The same
can be said when there is turnover. An increase in the
degree of heed changes the picture dramatically. When
people begin to pay more attention to each other, and
to consider others’ viewpoints credible, the fog of noise
becomes clearer, the darkness of incompleteness lights
up, the shape of novel realities coalesces, and the incom-
petence of novices gets absorbed. At the same time,
we also show the dark side of heed. Beyond a certain
threshold of heed, the potential for reinforcing erroneous
perceptions may be heightened by the excessive weight
conferred to others’ interpretations. Most prior work
has treated the effects of heed over collective outcomes
independently. On the one hand, it has emphasized the
damages of concurrence seeking; on the other hand, it
has noted the virtues of heed. Our closed-form analy-
sis shows how these two aspects are intimately related.
Our simulations suggest they interact in a well-patterned
way, with their positive and negative effects joining in a
parabolic trajectory.

Second, despite the nonmonotonic nature of the rela-
tionship between heed and quality of interpretive out-
comes, a comparison across the conditions we studied
suggests that this relationship is sensitive to the nature
of the interpretive task. Two patterns can be identified.
One is seen by considering Figures 7-10. In each con-
dition, increased noise causes the performance curves to
become steeper: once peak performance is achieved, per-
formance degrades increasingly fast. More noise sharply
decreases the collective’s tolerance of excessive levels
of heed. Too much heed hurts performance, especially
when the situation to interpret is ambiguous because
information is noisy and unreliable. The second pat-
tern is seen by comparing Figures 7 and 9. This com-
parison suggests that novelty requires, ceteris paribus,
higher levels of heed. That is, for any given level of
noise, the collective tends to achieve peak performance
for higher levels of heed when it faces a novel situation
than it does when it faces a familiar one.'® For instance,
when the noise parameter is set to 0.15 and there is no
novelty (Figure 7), the collective achieves peak perfor-
mance for a y level of 0.3; when we introduce novelty
with probability 1 (Figure 9(b)), the collective achieves
peak performance for a y level of 0.8. We interpret
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these results in terms of the bright and dark sides of
heed. Situations in which information is unreliable offer
agents many opportunities to form erroneous percep-
tions of the environment. An increase in heed exac-
erbates this pattern, thereby inducing the collective to
converge on arbitrary interpretations. Ambiguity ignites
the pathological effects of conformity. Conversely, past
experiences, knowledge, and histories (the raw materials
of associative interpretation) can trap imagination and
make it hard for individual interpreters to understand
worlds that are distant or genuinely new (March 2006,
Gavetti 2012). Collectives can liberate individual minds,
and help them understand novel realities as being gen-
uinely novel rather than different manifestations of old
realities. This outcome is possible, however, only if indi-
viduals weigh others’ opinions highly enough: to enter-
tain novel interpretations, individuals need to break the
internal consistency of their mental states or memories.
To summarize, if we conceive the type of interpretive
task along the dimensions of ambiguity and novelty, the
general pattern that emerges is one in which the kind of
collective that is suited to handle an interpretive task, and
how sensitive it is to potentially detrimental variations
in heed, depends on the type of task it faces. We are not
aware of any work that proposes a contingency approach
to collective interpretation. Our analysis does precisely
that, thereby introducing a new variable into the design
of effective collectives. In this sense, we believe it delin-
eates a fruitful path for future research that empirically
explores the key dimensions of such contingency.

Third, although our analyses were inspired by empir-
ical work on high-reliability organizations, we believe
they are generalizable to most collective interpretive
efforts. Issues of information incompleteness, noisy sig-
nals, novelty, and turnover characterize virtually all col-
lective interpretive efforts, from technological innovation
to strategic decision making or shop-floor operations.
Indeed, the inverted-U-shape-effect of mutual influence,
group cohesion, or familiarity has been observed in
many empirical contexts. An example that is highly con-
vergent with our analysis is Uzzi and Spiro’s (2005)
study of Broadway artist networks, which argues that
network structures govern behavior by affecting “the
level of connectivity and cohesion among actors embed-
ded in the system” (Uzzi and Spiro 2005, p. 449). These
are variables whose combined effect would be a good
proxy of our parameter . Uzzi and Spiro find that con-
nectivity and cohesion are beneficial only up to a cer-
tain threshold, beyond which they becomes detrimental.
We believe our model can contribute to the theoreti-
cal understanding of such nonmonotonic relationships
because it examines their underlying cognitive and com-
municative aspects.

Moving to the technical contribution, the analytical
structure we developed is a platform that can be used

to address disparate questions for which collective inter-
pretation is central. Indeed, a series of parameters can
be readily built into the baseline specification we con-
sidered, and Online Appendix 1 shows the model’s ver-
satility. Because we think of our model as a platform
that other researchers can use, we view our ability to
replicate and extend some of the central properties of
work on collective mind and organizational reliability
as reassuring evidence that the platform we put forth is
a reliable basis for studying collective interpretation in
other settings. We wish to mention three recent direc-
tions in organizational studies that could benefit from
our microfounded understanding of collective interpre-
tation, and the analytical platform we offer. First, some
recent network studies are paying increasing attention
to agency (Burt 2010). Although much of this litera-
ture focuses on agents’ cognition of the network, the
question of how different network structures can be con-
ducive to accurate interpretive efforts fits this literature’s
broad thrust. Our model can capture different stylized
network configurations.!” Second, recent work on the
emergence of organizational forms focuses on audiences
that are external to focal organizations as playing a
decisive role in whether the emergence occurs (Hannan
et al. 2007). In these accounts, as in ours, the interac-
tion among agents who are involved in what are essen-
tially associative interpretive processes underlies how
new forms are categorized, and thus whether they even-
tually gain legitimacy (Carroll and Swaminathan 2000).
Again, our model can represent this kind of interplay
among audience members. Third, although our model
explores different aspects of organizational memory than
the research on transactive memory does, it dialogues
with this literature by exploring the properties of net-
works of associative memories. In theories of transac-
tive memory (Wegner 1987) and their applications to
organizations (Argote and Moreland 2003, Brandon and
Hollingshead 2004, Lewis et al. 2005, Ren et al. 2006),
other agents can be “external storages” of knowledge
that can be retrieved by locating and retrieving infor-
mation they maintain. To retrieve given content, one
needs to know the address where it is located (a kind
of knowledge directory). We model a different pro-
cess, which is distributed and content-addressable: It is
the content that directly triggers memory retrieval from
individuals, somehow automatically. Explicit and tacit
communication propagates information relevant for acti-
vating individual associative memories. The mere act
of collective retrieval can actually modify stored mem-
ory, as demonstrated by the emergence of novelty. Many
forms of collective performance, from classical routines
to improvisation in a jazz team (Moorman and Miner
1998), are supported by this kind of content-addressable
memory, which allows distributed knowledge to be acti-
vated simultaneously. Finally, although our model is not
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a model of learning, it displays important complemen-
tarities with such literature by providing a model of how
memory encodes the results of experience. For exam-
ple, the application of the Hebbian learning rule might
be used to model the emergence of patterns of action
such as routines and collective habits. It is encourag-
ing that our results tend to converge with recent stud-
ies of mutual learning, particularly that of Fang et al.
(2010). We see these efforts as complements. Whereas
Fang et al. emphasize the effect of small-world type
connectivity structure over belief diffusion in processes
of mutual learning, our model emphasizes interactions
between memories in interpretive tasks, as affected by
first order heed rather than connectivity structure in a
context in which no learning occurs.

We conclude by pointing out what we view as the
main limitation of this article. In our simulation experi-
ments, we created an artificial world, populated by arti-
ficial agents, who engage in artificial communication.
Although the results we produced are consistent with
empirical evidence of collective interpretive systems, the
real-life meaning of our parameters remains unspeci-
fied. For instance, what is the right level of intensity of
communication for a collective that needs to interpret
a novel reality? Where is the threshold beyond which
a collective falls into a conformity trap? How can it
be concretely recognized? These are important questions
when it comes to translating our insights into concrete
design guidelines. For us, these limitations suggest a
clear direction for future research. Together with a more
extensive exploration of our model’s parameter space,
we need empirical work that breathes real life into this
space. The journey might not be short, but the payoff
can be large.

Supplemental Material
Supplemental material to this paper is available at http://dx.doi
.org/10.1287/orsc.2015.0987.
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Endnotes

IThis is not to say that interpretation is always associative. For
instance, in a recent illuminating article, Holyoak and Cheng
(2011) emphasize the importance of causal learning in certain
instances. People do not only interpret the world by drawing
associations with past situations, but also by forming under-
standings of causal relationships based on their observations of

events. Although we acknowledge this possibility, our model
is designed to capture associative interpretation.

2We will use this definition throughout the paper.

3Features can be of two different types: specific attributes of
the situation, or object features (Tversky 1977), and structural
relationships among such attributes, also structural or rela-
tional features (Gentner 1983). Revisiting the Charlie Merrill
example, object features might be characteristics of super-
market customers, attributes of products, or the character of
advertising. Typical structural feature might be the relation-
ship between the difficulty of product quality assessment and
the malleability of consumer tastes. Similarity assessments can
involve object features, structural features, or a combination.
Although competing theories of associative interpretation have
disagreed on how much object features contribute vis-a-vis
structural ones in triggering associations, experimental evi-
dence shows that both types of features are important, though
individuals tend to focus relatively more on object features
(Catrambone 2002). There is a related debate on the rela-
tive effectiveness of object attributes versus relational ones in
assessing similarity between source and target domains. Some
scholars (e.g., Tversky 1977) argue that the higher the overlap
among object features is, the higher the similarity between a
given source and target is. That is, ceteris paribus, if situa-
tion A shares a higher number of object attributes with situ-
ation B than it does with situation C, it will be more similar
to situation B than it is to situation C. Others (e.g., Gentner
1983) argue that structural features (i.e., relationships among
features) offer a more reliable basis for similarity mappings.
Our position is that, whenever possible, structural features are
preferable to object features in assessing similarity. Represen-
tations that focus on relationships among features are more
likely to capture the true causal structure underlying a given
situation, thereby offering a deeper basis for similarity map-
pings. At the same time, structural mapping imposes a heavier
burden on the individual: it requires a deeper understanding
of some features of the target’s causal structure, which may
be difficult to obtain in novel situations. Despite their obvi-
ous importance, our model abstracts from these prescriptive
considerations.

4Our claim about neural networks’ empirical robustness
is limited to their explanatory power vis-a-vis associative
memory tasks. These models have performed less effectively
when used to represent other cognitive functions (Pinker and
Prince 1988).

>Neural network models, including the Hopfield model, repre-
sent the brain’s complex phenomenology only partially. Nev-
ertheless, even their simplest forms seem to capture some
basic properties of the brain’s functioning beyond what we
noted (Hopfield 1982, Hertz et al. 1991, Smolensky and Leg-
endre 2006). In particular, they capture what is regarded as
a central mechanism underlying cognition: how information
is transmitted across neurons, resulting in neurons’ activation
or inhibition. There have been attempts to blend basic neu-
ral associative memory with high-level symbol processing to
seek higher levels of cognitive realism. Some of these models
(see Kokinov and Petrov 2001) are particularly interesting for
their attempt to provide an explicit formal account of struc-
tural features in analogy. For our purposes, particularly given
our intent to characterize multiagent settings, which implies an
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extra layer of analytical complexity, we privilege mathemati-
cal tractability and simplicity, and thus focus on the simpler
Hopfield model.

®Rule (1) represents the standard step update (or activation)
function used in most neural network models. In Online
Appendix 2 we introduce a continuous sigmoid update func-
tion. Online Appendix 2 also compares the behavior of these
two activation functions in the case of a collective that faces
noisy signals.

"The space of features is a highly dimensional hypercube in
which the corners are the binary states of feature variables. The
two-dimensional Euclidean space representation in Figure 4
only hints at the “basins of attraction” imagery.

80ne way to do so (Hertz et al. 1991) involves defining W as
the sum of the “outer products” of each stored situation vector
s, with itself. In formal notation: W =", s, o5, where o is
the outer product of two vectors.

0ur labeling choice evokes the connections with theories of
collective mind in organizations previously discussed (Weick
and Roberts 1993). At the same time, our use of heed neglects
“higher order” processes emphasized in Weick’s and Roberts’s
use of heedful interrelating, in particular the property of
mutual awareness of heed. Indeed, what we model is a sort
of “first order heed.” We will see in what follows that level
of heed is sufficient to generate relevant properties of collec-
tive mind, which may suggest significant cautions on general-
izations over the virtues of heed that may derive from higher
order processes.

10A brief digression on the interpretation of the parameter y
is in Online Appendix 3; and a concrete illustration of how
collective interpretations are formed in the model in Online
Appendix 4.

"For this reason, we do not need to provide a proof of
Proposition 1, because it is implied by the ordinary proof of
existence of fixed points in standard Hopfield nets (see Hertz
et al. 1991).

12Formal proofs of Propositions 2—4 can be found in Online
Appendix 5.

B3Turnover can also be challenging when group members are
heterogeneous and there is a division of cognitive labor (i.e.,
each agent focuses on some aspects of the environment and
pays attention to some select environmental features), and the
incoming agents disrupt the pre-established division of labor.
We analyzed this situation, but do not include it because of
space constraints. Results are available from the authors.
“We acknowledge that collective minds have important prop-
erties which are related to action feedback that our model
does not directly capture (Weick and Roberts 1993); still, we
claim that our model can highlight important features of the
“constant loop of conversation taking place over several dif-
ferent channels at once” (Rochlin et al. 1987, p. 83) in groups
dealing with highly critical environments. Although we agree
that feedback from interrelating actions is important, it is still
necessary to understand better how different individual minds
confer an accurate and coordinated interpretation of the feed-
back they receive. This is the aspect on which we focus here.
Also, similar to theories of collective mind’s focus on con-
cepts such as heedful interrelation (Weick and Roberts 1993),
we consider the level of mutual attention and influence among
agents as the critical parameter determining the properties of
collective reliability. As already explained, we summarize such

level in a heed parameter 7y, which represents how much an
agent takes into account the state of mind of the other agents
when revising her own beliefs about the current state of the
environment.

5The number of features is somewhat arbitrary, but allows
enough combinatorial possibilities while leaving a manageable
computational load.

%One way to assess the strength of the y parameter is to
relate it to the probability that for a given y an actor would
reverse her opinion on a specific feature if all other agents
would disagree. In the simulation setup of this paper, a y of
0.5 would imply a reversal of opinion in 11% of the cases,
whereas a y of 1.0 would imply a reversal of opinion in 33%
of the cases.

"To distract individual memory, retrieval noise must reach a
threshold of wrong features sufficient to make the environment
signal closer to a wrong prototype than to the right one. The
“more than proportional” effect of noise is thus simply due to
the amplifying effect of probability multiplication.

'8In a set of additional analyses, we studied what happens to
this relationship for increasingly higher levels of novelty. That
is, the current results in Figure 9 reflect a setting in which
three features of the situation to interpret are novel with a 50%
probability, and a setting in which this probability is 100%.
We considered other cases by varying the number of novel
features (while preserving these two probability levels). The
results we obtained confirmed the pattern suggested above: the
higher the novelty, the higher the level of heed that maximizes
performance. We do not report such results because of space
constraints.

19We thank Jim March for suggesting this connection.
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