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Abstract 
This article studies the potential measurement errors when coding occupational data. The quality of occupational data 
is important but often neglected. We recoded open-ended questions on occupation for last and current job in the Dutch 
SHARE data, using the CASCOT ex-post coding software. The disagreement rate, defined as the percentage of 
observations coded differently in SHARE and CASCOT, is high even when compared at ISCO 1-digit level (33.7% for 
last job and 40% for current job). This finding is striking, considering our conservative approach to exclude vague and 
incomplete  answers.  The  level  of  miscoding  should  thus  be  considered  as  a  lower  bound  of  the  “true”  miscoding.  This  
highlights the complexity of occupational coding and suggests that measurement error due to miscoding should be taken 
into account when making statistical analysis or writing econometric models. We tested whether the measurement error 
is random or correlated to individual or job-related characteristics, and we found that the measurement error is indeed 
more evident in ISCO-88 groups 1 and 3 and is more pronounced for higher educated individuals and males. These 
groups may be sorted in occupations that are intrinsically more difficult to be classified, or education and gender may 
affect the way people describe their jobs. 
 
Keywords: disagreement rate; ISCO; coding software; gender; education 
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University of Amsterdam, made possible through a visiting grant of the InGRID project (Inclusive Growth Infrastructure 
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1. Introduction 
Knowledge   of   individuals’   occupation   is   an   important   information   for  many   studies in social 

sciences. For instance in economics, sociology, and other disciplines occupation is often considered, 

either itself or as part of an index, as a proxy for socioeconomic status. In labour economics, 

occupation  is  a  key  variable  in  a  wide  strand  of  studies,  such  as  the  “task  approach”  to  labour markets 

and job polarization (e.g. Autor 2013; Autor et al. 2006; Goos and Manning, 2007), the definition of 

skill mismatch and over-education (for extensive overview of this literature e.g. Hartog 2000; Leuven 

and Oosterbeek 2011), and analysis of the effect of occupation on health status (e.g. Fletcher et al. 

2011; Ravesteijn et al. 2013).  

In this literature, the quality of occupational data is hardly discussed, despite the fact that 

measuring occupation in social surveys is a rather complex issue. Handbooks detail how to ask for 

occupation in Labour Force Surveys and Censuses, among others by international organizations such 

as the International Labour Organization (ILO) (e.g. ILO, 2010). However, empirical research on best 

practices and on miscoding is little. The difficulty to provide researchers with an accurate measure of 

occupation firstly regards the choice of the question(s) to include in the questionnaire and the related 

training to interviewers and then relates to the conversion of job tiles, that are often recorded as open 

text field into occupational codes.  

The statistical agencies of 150 countries associated in the ILO have adopted the International 

Standard Classification of Occupations (ISCO) to harmonize the measurement of occupations. The 

first classification dates back to 1958, with updates in 1968, 1988 and recently in 2008. The 

Commission of the European Communities (2009) has adopted ISCO-08 as its occupational 

classification, and the European statistical agency Eurostat has put effort in supporting European 

countries in developing coding indexes for their occupation data collected in Labour Force Surveys 

and similar surveys. In 2012 almost half of the 150 countries used ISCO with the other half either not 

classifying occupations or maintaining an own classification (UN 2014). 

The ILO provides a classification and task descriptions for all 4-digit occupational units in ISCO 

(ILO, 1014). The task descriptions provide also a coding index, but only in English. Therefore, coding 

occupations becomes particularly challenging in international surveys, such as the Survey of Health, 

Ageing and Retirement in Europe (SHARE) and the European Social Survey (ESS), where the 

occupational codes should be fully comparable across countries, because it is sometimes problematic 

for countries to map their specific occupations and job titles into the international ISCO categories.  
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Researchers are often not aware of the complex preparatory work behind occupational coding. 

They consider the published variable  ‘occupation’ as free of error. In this article, we will first point 

out that this might not be the case. In addition, we will test whether such a measurement error in 

occupation is random or is instead correlated to some specific individual or job-related characteristics. 

We suggest to take this potential measurement error in occupation into consideration when making 

statistical analysis or writing econometric models.  

To reach these aims, we conduct the following empirical analysis. We recode open-ended 

questions on occupation for the Dutch sample of SHARE data using a well-known software for ex-

post coding called CASCOT. We then compare SHARE originally published with recoded 

occupational variables. Finally, we analyse which individual characteristics (such as gender, 

education, or industry) are associated to the probability of different coding. The article proceeds as 

follows: Section 2 discusses the alternative methods used to collect and code information on 

individuals’  occupations  and  describes  the  main features of CASCOT. In section 3, we describe our 

empirical exercise and present the data and the methodology adopted. The results of our analysis are 

presented and discussed in section 4. Finally, section 5 concludes and suggests some directions for 

further research.  

2. Coding occupations in survey data: alternative methods  
Most of occupational information in survey data is obtained from direct questions addressed to 

respondents. The question about occupation is usually asked as an open text field (e.g.:   “What  

occupation  did  you  perform  in  your  principal  job  during  the  week  of  …  to  …  ?”) (see for an overview 

of survey questions Tijdens 2014b). Occupation can also be asked using a tick list, where respondents 

have to self-classify in a list of occupational titles. Depending on the survey mode, this list consists 

of a limited set of necessarily broad occupational groups in mail surveys or lists of thousands of items 

in web surveys. The main advantage with self-classification (or self-coding) is that surveys do not 

need a costly and time-demanding coding process. There are, however, many shortcomings with self-

coding. A limited choice-set may result in lower data quality, because it is difficult to assure 

consistency in how respondents fit their own job titles into the highly aggregated categories, thereby 

introducing aggregation bias (De Vries and Ganzeboom 2008). Both the validity (correct 

categorization) and the reliability (same categorization made by different interviewers of equivalent 

responses) of pre-coded occupational categories have been shown to be very poor. An extensive look-
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up table with a search tree leads to drop-out in web-surveys, but this problem may be tackled in case 

of text string matching (Tijdens 2014a). Promising attempts to code job titles during CAPI interviews 

are being made, using a look-up table or coding index. SHARE is currently testing a semantic text 

string matching algorithm developed by CentERdata (http://www.centerdata.nl/) for possible use in 

its future data collection.  

Most surveys however still use an open-ended question with occupational coding (for question 

design see Jackle 2008). In its handbook for the measurement of the active population in censuses the 

ILO provides detailed instructions for the use of an open-ended questions and the ILO does not 

consider self-coding as an alternative (ILO, 2010). Open-ended questions allow classifying 

occupations at a detailed level of disaggregation, but the text fields require recoding afterwards 

(‘office coding’). The classification of occupational information is in fact achieved through a coding 

process that converts the reported job titles into a set of codes and that can be done manually or semi-

automatically, using a computerised coding system (‘computer-assisted  coding’) or by a combination 

of both. Manual coding requires a lot of training for coders and coders supervisors (see Hoffmann, 

Elias, Embury and Thomas, 1995; Ganzeboom, 2008). Semi-automatic coding tools are becoming 

more and more reliable instruments using semantic matching with previously coded occupations. 

Recently, machine learning algorithms appear to be a promising development, requiring a substantial 

amount of manually coded occupations to be used as training data for the automatic classification 

(Bethmann et al 2014; Cheeseman Day 2014). 

CASCOT is a software tool for coding text automatically or manually 

(http://www2.warwick.ac.uk/fac/soc/ier/software/cascot/) developed at the Institute for Employment 

Research (IER) in 1993 and since then continuously updated and used by over 100 organisations in 

the UK and abroad. The software developed at IER is able to code job titles into UK various editions 

of Standard Occupational Classification (SOC) and International Standard Classification of 

Occupations (ISCO)2. CASCOT software is coupled with an editor which allows users to modify 

internal coding rules and allows the software to use alternative occupational classification structures. 

A high quality coding requires high quality job descriptions. The recorded text should ideally contain 

                                                           

2 An international version of CASCOT, which will allow to code occupations in many languages and multi-national 
surveys, is under development within the EU financed project DASISH (see 
http://www2.warwick.ac.uk/fac/soc/ier/software/cascot/internat/). 

 

http://www.centerdata.nl/
http://www2.warwick.ac.uk/fac/soc/ier/software/cascot/
http://www2.warwick.ac.uk/fac/soc/ier/software/cascot/internat/
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sufficient information to distinguish it from alternative text descriptions which may be coded to other 

categories within the classification, but it should not contain superfluous words. This ideal will not 

always be met but CASCOT has been designed to perform a complicated analysis of the words in the 

text, comparing them to the words in the classification, in order to provide a list of recommendations. 

If the input text is not sufficiently distinctive, it may not be the topmost recommendation that is the 

correct code. When CASCOT assigns a code to a piece of text, it also calculates a score from 1 to 

100 which represents the degree of certainty that the given code is the correct one. When CASCOT 

encounters a word or phrase that is descriptive of occupation but lacks sufficient information to 

distinguish it from other categories (i.e. without any further qualifying terms) CASCOT will attempt 

to suggest a code but the score is limited to below 40 to indicate the uncertainty associated with the 

suggestion (for example cases like 'Teacher' or 'Engineer'). The performance of CASCOT has been 

compared to a selection of high quality manually coded data. The overall results show that 80% of 

records receive a score greater than 40 and of these 80% are matched to manually coded data. When 

using CASCOT one can expect this level of performance with similar data, but the performance 

depends on the quality of input data. For more information about the software, see Elias et al. (1992) 

and Jones and Elias (2004). 

The user may run CASCOT in three different modes: fully automatic, semi-automatic, and manual 

or one-by-one. The fully automatic mode does not require any human intervention once a list of job 

descriptions is provided to the software: a series of corresponding codes plus the associated scores is 

produced; if the software considers the quality of a given job description too low to be impossible for 

it to attribute any reasonable code, it provides “no conclusion” for that specific text. The semi-

automatic mode works by setting a minimum score: in all cases in which CASCOT attributes a score 

greater than the minimum value, it codes the text automatically; otherwise it asks for human 

intervention. The operator, in these cases, is asked to choose manually between a list of 

recommendations. In manual mode, for each job description, CASCOT provides a list of 

recommended codes with corresponding scores and leaves the final choice of the best code to the 

operator. Although time consuming, this mode ensures the maximum level of control on the output. 

Obviously, the operator tends to choose the topmost recommendation when the score is high and 

concentrates on the cases which show lower scores.  

A Dutch version of CASCOT has been developed at Statistics Netherlands (CBS) building upon 

its English version. Since 2012, this software (CASCOT-NL henceforth) has been used in the 
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Netherlands to code job titles in the most relevant social surveys including the Dutch Labor Force 

Survey. CASCOT-NL is suitable for implementation in CAPI, CATI and CAWI-modes.  

In this study, we use a version of CASCOT-NL which CBS used from 01-04-2012 until 01-04-

2013 to code job descriptions into 4-digits ISCO-08 in its Labour Force Survey. A noticeable 

difference between CASCOT-UK and CASCOT-NL (so  called  “classification  file   ISCO  v1.1”)   is 

that the latter includes a special category for vague responses,  called  “99..”.  This  is  because - once 

tagged in this way - these especially problematic answers go through subsequent coding steps. These 

steps exploit information from additional variables such as sector of work,  individuals’  educational 

attainments and tasks and duties involved in the job; finally, the most difficult cases are manually 

coded by a team of experts. See CBS (2012) and Westerman (2014) for further details on CBS coding 

procedures.  

3. Data and empirical strategy  
Our analysis is based on SHARE data. SHARE is a cross-national longitudinal survey on health, 

socio-economic status and social and family networks representative of the population aged 50 and 

over. Four waves of SHARE are currently available. We focus on the first wave of the data (collected 

in 2004-2005), because this is the only one in which information on occupation was gathered through 

an open-ended question. In particular, in SHARE wave 1 respondents were asked the following 

question:  “What is your [main/last] job called? Please give the exact name or title”. This question 

was asked to both employed/self-employed and retired/unemployed individuals (the latter conditional 

on having worked earlier in life).3 

SHARE country teams manually coded the text strings on respondents’  job titles into ISCO-88 

(COM) - the International Standard Classification of Occupations in place at that time. Each country 

team hired and trained coders independently. Coders were asked to follow a protocol providing them 

with guidelines on how   to   code   “critical” jobs (e.g. managers in agriculture or teachers). These 

guidelines were partly common to all countries, and partly language-specific. SHARE coders made 

                                                           

3 SHARE  also  collects  information  on  respondents’  second  job,  parents’  job  and  former  partner’s  job.  Parents’  jobs  
are intrinsically more difficult to code than  respondents’  jobs  because  the  former  may  have  been  excluded  from  recent  
job   classifications.  There   are   very   few  observations   for   respondents’   second   job   and   former   partner’s   job.  Thus,  we  
exclude these additional variables from our analysis.  
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also use of ancillary information on training and qualifications needed for the job (this last 

information was not included in the public release of the data) and on the industry the respondent was 

working in,  based  on  the  question  “What  kind  of  business,  industry  or  services  do  you  work  in  (that  

is,  what  do  they  make  or  do  at  the  place  where  you  work)?”. From one side, SHARE coders were 

asked to code job descriptions at the maximum possible level of detail, i.e. at 4-digit or  ‘unit  group’  

ISCO-88 level. On the other side, they were suggested to code vague responses by means of trailing 

zeros: this means that in case they were unsure if a given job description could have been attributable 

to a given unit group, they should have attribute it to either a minor (i.e. 3-digits), sub-major  (2-

digits) or major  (1-digit) group. Two variables - one for current main job (ep016_) and one for last 

job (ep052_) - reporting generated ISCO-88 codes were finally published (for further details, see 

MEA, 2013, p. 29). 

The first wave of SHARE covers 11 European countries, plus Israel. Our recoding exercise 

exploits only the Dutch sample of this wave, because CASCOT is currently available in two 

languages - English and Dutch - and the English language is not present in SHARE data. To have 

more control over the recoding process, we recoded job descriptions using CASCOT-NL in its manual 

mode with the assistance of a Dutch-native language team of researchers at SHARE partner 

CentERdata. As expected, disagreement rates with the topmost recommended code proposed by 

CASCOT were almost negligible for highly scored job descriptions. For instance, for the last job 

variable, only 10 job descriptions out of 968 to which CASCOT attributed a score higher than 80 

were manually changed. Consequently, had we run CASCOT in semi-automatic mode setting a 

minimum score equal to 80 would have resulted in very similar codes. 

Two main issues arise when comparing codes from SHARE and CASCOT-NL. The first one is 

the homogeneity of the classification structure. SHARE Netherlands coded job descriptions in 3-digit 

ISCO-88 (Note that all other countries coded jobs in ISCO-88 at 4-digit level, see above). CASCOT-

NL codes, as described earlier, to ISCO-08 4-digit level. We then homogenised the two sets of codes 

as follows. First, we converted CASCOT-NL codes from ISCO-08 into ISCO-88 using official 

correspondence table (ILO, 2014). Unfortunately, there is no one-to-one correspondence between 

ISCO-08 and ISCO-88, i.e. multiple ISCO-88 codes are associated to the same 4-digit ISCO-08 code. 

In our data, this occurs for 220 individuals, i.e. 1/5 of the sample. In these cases, we associate multiple 

ISCO-88 codes to the same job description. Considering the issue of no one-to-one correspondence 

between different versions of ISCO, we state  that  a  job  description  has  a  “different  code”  if  the  ISCO-

88 code attributed by SHARE coders is not equal to any of the ISCO-88 codes resulting from the 
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conversion into ISCO-88 of the CASCOT-NL output. Otherwise, we state that a job description has 

“same  code”. Second, we only consider 3-digits. To sum up, we compare codes from SHARE and 

CASCOT-NL in terms of 3-digit ISCO-88.  

The second issue concerns coding vague and incomplete answers. As described earlier, SHARE 

coders and CASCOT-NL follow two different approaches for these types of job descriptions: whereas 

CASCOT-NL makes use of a separate category (“99..”), SHARE uses trailing zeros. As a result, 

vague and inadequate responses could not be compared, and are excluded from the statistical analysis. 

We  also  exclude  those  answers  which  were  coded  by  CASCOT  as  “no  conclusion”.  

Table 1 shows the sample size for our statistical analysis, i.e. 1,690 observations of which 1,083 

concern last job and 607 current job. The higher frequency for last job in comparison with current job 

mostly reflects the distribution of respondents by work status in the first wave of SHARE.  

Table 1: coding comparability in SHARE and CASCOT – Dutch data 

 Last job Current job 
 Freq. Percent Freq. Percent 
     
Comparable  1,083 62.1 607 60.82 
Not comparable  661 37.9 391 39.18 
     
Total 1,744 100 998 100 

 

4. Results 

4.1 Descriptive statistics 
Figures 1a and 1b show the distribution of occupations by ISCO-88 major groups according to 

both SHARE and CASCOT-NL coding, for last and current job respectively. Given the fact that, due 

to the lack of one-to-one correspondence between ISCO-08 and ISCO-88, in our recoding exercise 

multiple codes are sometimes associated to the same individual, we use weights to construct these 

figures: In particular, when n codes are associated to the same individual, we attribute a weight equal 

to 1/n to each of them. 

The figures highlight sizable differences between ISCO distributions of current and last job. The 

share of professionals and associate professionals (ISCO major groups 2 and 3) is much higher for 



 

9 

current job than for last job, whereas the opposite occurs for lower-skilled occupations. This fact may 

reflect changes in the occupational structure over time, possibly due to technological change or 

international trade, as last job may easily refer to occupations started early in an individual’s working 

career. There is in fact an extensive literature showing that technological progress and increased 

competition from low wage countries have changed labour demand in favour of more skilled 

occupations (e.g. Autor et al. 2003; Feenstra and Hanson 1996). In addition, these differences in the 

distribution of occupation can also be due to selective retirement: manual workers may retire earlier 

from the labor force than non-manual workers and therefore may be overrepresented in the last job 

variable; the contrary may occur for professionals, which may stay in the labor market even beyond 

the standard retirement age. The issue of selective retirement is non-negligible in countries favoring 

part-time work such as the Netherlands. Finally, note that the number of observations for each major 

group is limited; consequently, statistical analyses disaggregated by ISCO groups at 2/3-digits are not 

presented in this section.  

 

Figure 1a: Distribution of occupation ISCO-88 major groups, CASCOT and SHARE coding – Last job 

 

Legend: 0=Armed forces, 1=legislators, senior officials and manager, 2=professional, 3=technicians and associate 
professional, 4=clerks, 5=service workers and shop and market sale, 6=skilled agricultural and fishery workers, 7=craft 
and related trades workers, 8=plant and machine operators and assemblers, 9=elementary occupations 
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Figure 1b: Distribution of occupation ISCO-88 major groups, CASCOT and SHARE coding – Current job 

 

Legend: 1=legislators, senior officials and manager, 2=professional, 3=technicians and associate professional, 4=clerks, 
5=service workers and shop and market sale, 6=skilled agricultural and fishery workers, 7=craft and related trades 
workers, 8=plant and machine operators and assemblers, 9=elementary occupations 

 

Tables 2a and 2b report frequency and percentage of same and different codes for last and current 

job respectively. The percentage of differently coded (which  we  call  “disagreement  rate”  hereafter) 

appears high even when the comparison is made at 1-digit level (33.7 percent for last job and 40 

percent for current job). As expected, such percentages rise with the number of digits the comparison 

is performed. Remarkably, the percentage of differently coded is sensibly higher for current job than 

for last job: e.g. at 3-digit level 60 percent of texts for current job are differently coded, cf. with 49 

percent for last job. A possible explanation of this last finding is related to sample composition: we 

have seen that the ISCO-88 major group distribution for current and last job are sensibly different 

(Figure 1), and some ISCO groups may be more subject to coding errors than others (see Table 3). It 

has to be pointed out that previous exercises (Ellison, 2014) found qualitatively similar findings, 

namely when asked through open-ended questions mother’s   and   father’s   jobs   are   typically better 

coded than  individuals’  own  jobs.  The intuition behind these results is that individuals tend to give 

too many details about their current job, because they think that their job is complex and do not 

provide easy descriptions, whereas this  occurs  to  a  lesser  extent  for  parents’  and  last  job.  
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Table 2a – same and different code: Last job 

  1-digit 2-digit 3-digit 
 ISCO-88 Code:  Freq. Percent Freq. Percent Freq. Percent 
       
same  718 66.3 639 59.0 548 50.6 
different  365 33.7 444 41.0 535 49.4 
       
Total 1,083 100 1,083 100 1,083 100 

 

Table 2b – same and different code: Current job 

  1-digit 2-digit 3-digit 
 ISCO-88 Code: Freq. Percent Freq. Percent Freq. Percent 
       
same  364 60.0 299 49.3 242 39.9 
different  243 40.0 308 50.7 365 60.1 
       
Total 607 100 607 100 607 100 

 

Table 3 reports disagreement rates by ISCO-88 major groups, for both current and last job. There 

exists a wide heterogeneity in the disagreement rate across groups,  with  groups  1  (“legislators,  senior  

officials  and  manager”)  and  3  (“technicians  and  associate  professional”)  being  those  with  the  highest  

values. The  percentage  of  differently  coded  is  also  high  for  the  current  job  variable  in  group  6  (“skilled  

agricultural and  fishery  workers”).  Agricultural workers are known to be difficult to code and some 

occupations in this category have been subjected to changes in classification from ISCO-88 to ISCO-

08. The high disagreement rate for this category may be due to the fact that the ISCO-88 Unit groups 

1221,  “Production  and  operations  department  managers  in  agriculture  forestry  and  fishing”  and  1311,  

“General  managers  in  agriculture  forestry  and  fishing”  have  been  removed  from  Major  Group  1  in  

the ISCO 08-classification. The occupations included within this category have been moved to Sub-

Major Group 61 and have been merged with the relevant supervisory groups (UN, 2007). Therefore, 

“General  managers  in  agriculture  hunting,  forestry  and  fishing”  are  classified  as  ISCO-88 unit group 

1311, and should not be included within group 6.  
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Table 3 – disagreement rate by ISCO major groups: last and current job (%) 

 Last job Current job 
 Disagreement rate (%) 

Disagreement 

Disagreement rate (%) 

 

ISCO 1-digit as coded in SHARE 3-digit 2-digit 1-digit 3-digit 2-digit 1-digit 
Legislators, Senior Officials And Manager  82 65 59 80 53 47 
Professional 44 37 34 38 31 28 
Technicians And Associate Professional 64 52 50 70 59 53 
Clerks 52 33 31 48 36 32 
Service Workers And Shop And Market Sale 40 39 31 38 36 26 
Skilled Agricultural And Fishery Workers 24 24 22 80 70 60 
Craft And Related Trades Workers 30 20 09 61 35 16 
Plant And Machine Operators And Assemblers 44 39 28 32 24 16 
Elementary Occupations 39 25 17 72 56 31 

 

In addition to disagreement rates, in the following we attempt to quantify the degree of 

disagreement between the two sets of codes. To do this, we need to assume that the order of ISCO-

88  major  groups,  from  “1”  to  “9”  (while  Armed  forces  are  not  part  of  this  ordering), is meaningful. 

To be clearer, a job description x is considered to be more differently coded than a job description y 

if  the  former  is  e.g.  coded  as  “1”  in  SHARE  and  as  “9”  in  CASCOT,  while  the  latter  is  e.g.  coded  as  

“1”   in   SHARE   and   as   “2”   in  CASCOT. Considering the issue of no one-to-one correspondence 

between different versions of ISCO (see above), we use weights when constructing bivariate 

distributions in Table 4a and 4b (e.g. if we obtain 3 possible ISCO-88 codes for a given job 

description, we attribute a weight equal to 1/3 to each of them). We first perform the Wilcoxon signed-

rank test for paired data (Wilcoxon 1945). The null hypothesis that SHARE and CASCOT-NL coding 

distributions are the same is rejected at 0.5% confidence level for last job and at 4.3% level for current 

job. 

The bivariate distributions – SHARE vs CASCOT-NL ISCO-88 major groups – are presented for 

last job in Table 4a and for current job in Table 4b. The percentages reported in these tables sum up 

to 100 percent horizontally, i.e. with respect to SHARE coding. For instance, 41.5 percent of job 

descriptions  coded  as  “1”  (“legislators,  senior  officials  and  manager”)  by SHARE coders have also 

been  coded  as  “1”  by  CASCOT-NL, while the same software has coded about 13 percent of them as 

“2”   (“professionals”).  Despite the low frequency of observations, which may limit the statistical 

validity of some of these figures, the off-main diagonal cells of these matrixes probably highlight 

some common coding problems. One of them is the remarkable percentage of 55.6 percent (Table 4a, 

1st column, 6th row) coded in group 1 by CASCOT and in group 6 by SHARE, which likely reflects 
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the  difficulty  in  coding  “General  managers  in  agriculture,  hunting,  forestry  and  fishing” (CASCOT 

performs better than SHARE in this case if this is true). This result should be taken with caution 

considering the very low number of observations in our sample for this group (N=10 for current job 

and N=37 for last job). However, what is reassuring is that most of the coding disagreement occurs 

within similar groups of occupations (1 to 3, 4 to 7, and 8 to 9), which means that if occupations are 

used to construct social class indices (see for example Harrison, 2010), the classification errors should 

not be too pronounced.   

 

 

 

Table 4a – Bivariate distributions - SHARE vs CASCOT-NL ISCO-88 major groups - Last job (%) 

Cascot 

→   

1 2 3 4 5 6 7 8 9 Total  
Share  ↓   
            

1 41.6 13.3 22.7 7.0 3.5 0.0 9.8 0.7 1.4 100 
2 1.2 63.1 27.0 3.5 3.5 0.0 0.6 1.2 0.0 100 
3 7.0 29.6 44.5 5.1 7.2 0.5 3.1 0.0 3.1 100 
4 1.1 4.2 18.8 69.7 1.4 0.0 1.4 0.0 3.5 100 
5 11.3 1.7 5.0 0.6 70.5 0.0 3.3 3.3 4.4 100 
6 55.6 0.0 0.0 0.0 0.0 8.9 4.4 0.0 31.1 100 
7 0.0 0.0 1.3 0.0 0.7 0.0 90.3 3.9 3.9 100 
8 0.0 2.1 4.9 4.2 0.0 0.0 16.9 63.4 8.5 100 
9 0.4 1.4 1.4 6.9 2.4 0.4 4.2 1.4 81.7 100 

            
Total  7.6 11.0 13.2 13.3 15.5 0.3 18.3 4.8 16.0 100 

 

Legend: 1=legislators, senior officials and manager , 2=professional, 3=technicians and associate professional, 
4=clerks, 5=service workers and shop and market sale, 6=skilled agricultural and fishery workers, 7=craft and related 
trades workers, 8=plant and machine operators and assemblers, 9=elementary occupations 
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Table 4b – Bivariate distributions - SHARE vs CASCOT-NL ISCO-88 major groups – Current job (%) 

Cascot  → 
1 2 3 4 5 6 7 8 9 Total 

Share  ↓ 
            

1 43.5 20.9 13.0 4.9 2.5 0.0 12.3 0.5 2.5 100 
2 1.0 69.9 18.3 3.6 6.0 0.0 1.2 0.0 0.0 100 
3 2.4 38.8 40.3 3.9 8.7 0.0 1.0 0.0 4.9 100 
4 0.0 2.5 25.6 68.1 3.8 0.0 0.0 0.0 0.0 100 
5 6.6 1.1 8.8 0.0 76.8 0.0 1.1 1.1 4.4 100 
6 29.3 0.0 4.9 0.0 0.0 7.3 0.0 0.0 58.5 100 
7 0.0 0.0 2.8 0.0 1.9 0.0 85.1 4.7 5.6 100 
8 0.0 0.0 0.0 0.0 0.0 0.0 14.9 76.6 8.5 100 
9 1.0 3.8 2.9 11.4 8.6 0.0 1.9 1.9 68.6 100 

            
Total 6.1 17.0 22.2 12.0 15.8 2.1 9.4 5.4 9.9 100 

 

Legend: 1=legislators, senior officials and manager, 2=professional, 3=technicians and associate professional, 
4=clerks, 5=service workers and shop and market sale, 6=skilled agricultural and fishery workers, 7=craft and related 
trades workers, 8=plant and machine operators and assemblers, 9=elementary occupations 

 

The ILO maps ISCO major groups into skill levels (Elias 1997; ILO 2012) which can be then 

mapped to ISCED-97 levels of education (see Table A1 in the Appendix). Tables 5a and 5b present 

the bivariate distributions – SHARE vs CASCOT-NL skill levels groups - for respectively last and 

current job. The tables confirm that most of the coding disagreement occurs within similar groups of 

occupations. When grouping occupations according to their skill level, we note that the percentages 

of occupations that are coded in the same skill group is reasonably high. Looking at last job, 82% of 

occupations coded in skill group 1 in SHARE are coded in the same group in CASCOT as well. The 

percentages of correct coding are around 80% for skill group 2, 57% for skill group 3 and 63% for 

skill group 4. As seen before, these percentages are lower when considering current job. 

 

Table 5a – bivariate distributions - SHARE vs CASCOT-NL skill levels - Last job (%) 

Cascot  → 
Share  ↓ 1 2 3 4 Total 
1 81.66 15.22 1.73 1.38 100.00 
2 5.46 79.11 13.61 1.82 100.00 
3 2.36 18.02 56.88 22.74 100.00 
4 0.00 8.76 28.19 63.05 100.00 
Total 16.01 52.15 20.83 11.01 100.00 
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Table 5b – bivariate distributions - SHARE vs CASCOT-NL skill levels - Current job (%) 

Cascot  → 
Share  ↓ 1 2 3 4 Total 
1 68.57 23.81 3.81 3.81 100.00 
2 5.12 78.65 15.05 1.18 100.00 
3 4.18 15.45 46.61 33.76 100.00 
4 0.00 10.85 19.25 69.90 100.00 
Total 10.32 45.65 23.10 20.93 100.00 

 

In the remaining part of the article, we investigate which individual characteristics are more likely 

associated to different coding. We perform both univariate and multivariate analyses. We show tables 

reporting univariate statistics in the Appendix. In particular, Table A2 shows the disagreement rate 

by education, Table A3 by gender and Table A4a and A4b by industry for last and current job 

respectively. The figures clearly show that the rates of coding disagreement differ substantially across 

education and gender, with higher rates for more educated individuals (only for last job) and for 

males. No clear patterns emerge from the tables on disagreement rates by industry, probably because 

of the very low number of observation in some groups. In the next subsection, we investigate this 

result in more details by performing a multivariate analysis.  

4.2 Multivariate analysis  
What individual characteristics are associated to the probability of having provided an answer to 

the  SHARE  question  “what  is  your  [main/last]  job  called?  Please  give  the  exact  name  or  title”  which  

has been differently coded in SHARE and CASCOT-NL? Among these characteristics, we 

specifically explore the role of education and gender, but we also shed some light on the importance 

of two basic job-related characteristics (industry and ISCO group) on the probability of coding 

disagreement.  

We estimate a set of linear probability models (LPM) for coding disagreement. A LPM is a 

multiple linear regression model with a binary dependent variable (Wooldridge 2010). The dependent 

variable of these models allows for the possibility of multiple correspondences in the ISCO-08 to 

ISCO-88 conversion tables. In other words, in our models the dependent variable is a dummy variable 

equal to 1 if the ISCO-88 code provided by SHARE is not equal to any of the ISCO-88 codes resulting 

from the conversion into ISCO-88 of the ISCO-08 CASCOT code; otherwise, the dependent variable 

is equal to 0. We consider three types of the dependent variable, depending on the number of digits 
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at which we compare SHARE and CASCOT codes, namely a dummy for being differently coded at 

1-digit, at 2-digits, or at 3-digits.  

The set of LPM we estimate differ in terms of the dependent variable as explained above, and in 

terms of the set of explanatory variables. We estimate separate models for current and for last job. By 

pooling together these two variables, we would have considerably increased the number of 

observations and perhaps improved the precision of our estimates. Nevertheless, the descriptive 

findings outlined earlier suggest that coding disagreement for current and last job follows different 

patterns; our econometric results (see later) clearly confirm that pooling current and last job together 

– assuming that explanatory variables have same effect on the probability of different coding for 

current and last job - would have led to mis-specification.  

Table 5a reports LPM estimates for the probability of the last job to be differently coded at 3-digit 

level. We present four specifications in this table. Specification (1) includes dummy variables for 

gender and educational attainment (four aggregated ISCED-97 groups) as explanatory variables. Our 

results indicate that females show a 20 percent lower probability to be differently coded when 

compared to males. Remarkably, we also found that there is a strong positive gradient between 

education and coding disagreement: relative to individuals with no or primary education, those with 

a lower-secondary degree (ISCED 2) have a 10 percent higher probability of different coding; this 

percentage raises to about 17 percent for individuals with an upper and post-secondary degree (ICED 

3-4), up to 28 percent for those holding a tertiary education degree (ISCED 5-6). 

These results are particularly interesting, as they suggest that the probability of being miscoded 

is not random, but is more pronounced for certain groups. In particular, it seems that more educated 

individuals and males are more likely to be coded differently when using alternative coding systems. 

This may be due the fact that males and more educated people are sorted in particular occupations 

that are intrinsically more difficult to be classified. In fact, for example, more educated individuals 

and males are likely to work in high skilled occupations - as shown for the mean level of education 

and the percentage of females for each 1-digit group ISCO-88 in Table A5 in the appendix - where 

the coding disagreement is higher according to the results shown in Table 3. An alternative 

explanation could be that education and gender affect somehow the way people are able to describe 

their jobs when asked in interviews.  



 

17 

Specification (2) adds two right-hand-side variables to the model. A dummy for being coded as 

“not  elsewhere  classified (NEC)”  was constructed by looking at the ISCO-88 4-digit codes, as coded 

by CASCOT software. This dummy is equal to 1 if the ISCO-88 fourth digit is equal to 9, which, 

according  to  ILO’s  guidance,  refers  to  occupational  categories  that  are  not  classified  to  other  specific 

categories within the classification. This variable includes ISCO categories, which usually contain 

many types of clerical jobs. We thus expect NEC jobs to be more likely differently coded. More 

important, since these jobs are typically performed by females, including this variable is expected to 

affect the estimate for the gender variable. Another dummy was constructed for the self-employed. 

Being self-employed is also correlated with gender. As expected, the   variable   “not   elsewhere  

classified”  is  positive and significant at 10 percent level; however, the coefficient for females is not 

affected by controlling for this confounding factor. The self-employed variable turned out to be not 

significant.  

In specification (3) we additionally control for industry by including in the model a set of 31 

industry dummy variables. Industry is classified using NACE Codes, Version 4 Rev. 1 1993 (see 

http://www.top500.de/nace4-e.htm for a description of NACE Version 4 Rev. 1 and MEA, 2013, pp. 

32-33 for the shorter classification used in SHARE). They jointly affect the probability of different 

coding, as indicated by the result of the Wald test reported at the bottom of the table (p-value 0.02). 

Once controlling for industry, the positive gradient between coding disagreement and education 

attainment shown in the previous specifications becomes less clear: only the tertiary education 

dummy variable remains strongly significant. Moreover, the coefficient for female reduces in size 

(from -.20 to -.15).  

Specification (4) builds upon specification (3) by adding to it a full set of ISCO 3-digit dummy 

variables (90 groups). This specification is very demanding in terms of data requirements, and we 

expect to have limited variability in gender and, especially, in education once we condition on being 

coded in a specific ISCO minor group. The most clear-cut effect of adding ISCO unit groups to the 

model is the dramatic increase in the model fit: the R2 (see the ancillary statistics at the bottom of the 

table) in fact increases from about 12 percent (specification c) to about 44 percent (specification d). 

The p-value of the Wald test for no joint significance of the ISCO minor groups dummy variables is 

equal to 0. Controlling for ISCO minor groups determines a sizable reduction in the coefficient for 

female (from -.15 in specification 3 to -.1 in specification 4). Adding ISCO minor groups has an 

overall quite limited impact on the coefficients for education: the dummy variable for having attaining 

a Tertiary education degree (ISCED 5-6) is equal to .16 (cf. with .24 in specification 3) and remains 

http://www.top500.de/nace4-e.htm
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highly significant. These last findings remain almost unchanged if we condition on either ISCO 2-

digit or ISCO 1-digit groups instead of ISCO 3-digit groups. 

Table 5a – LPM for the probability to be differently coded at 3-dgt level: estimation results, last job 

  (1) (2) (3) (4) 
VARIABLES     
      
Female -0.205*** -0.207*** -0.152*** -0.101** 
 (0.030) (0.030) (0.038) (0.040) 
Lower-secondary education (ISCED 2) 0.100*** 0.098** 0.060 -0.009 
 (0.038) (0.038) (0.043) (0.038) 
Upper and post-secondary education (ISCED 3-4) 0.168*** 0.168*** 0.095* 0.031 
 (0.045) (0.045) (0.050) (0.047) 
Tertiary education (ISCED 5-6) 0.280*** 0.276*** 0.236*** 0.160*** 
 (0.052) (0.052) (0.060) (0.060) 
Not elsewhere classified  0.147* 0.048 -0.082 
  (0.082) (0.093) (0.086) 
Self-employed  -0.079 -0.052 -0.014 
  (0.052) (0.060) (0.056) 
Additional controls:     
Industry dummy (31 groups) No No Yes Yes 
ISCO 3-digit dummy (90 groups) No No No Yes 
Ancillary statistics:     
Wald test H0: no joint significance industry dummy variables 
(p-value) - - 0.0213 0.0203 
Wald test H0: no joint significance ISCO 3-digit dummy 
variables (p-value) - - - 0 
Observations 1,066 1,066 933 933 
R-squared 0.079 0.083 0.117 0.443 

Note: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; Reference categories: male, no or primary 
education (ISCED 0-1), employee. 

 

Table 5b reports LPM estimates for the probability of the current job to be differently coded at 3-

digit level. To facilitate comparability, we report the same four specifications presented in Table 5a. 

Results for the current job are very different from those obtained for the last job: female is negatively 

associated to coding disagreement in specifications (1) to (3) while this coefficient loses its 

significance once controls for ISCO minor groups are added to the model (specification 4). There is 

no education coding disagreement gradient for the current job variable. Industry and ISCO minor 

groups maintain their strong explanatory power (see results of corresponding Wald tests at the bottom 

of the table).  

Finally, we point out that results for both last and current job variable remain almost unchanged 

if we change the dependent variable from coding disagreement at 3-digit level to disagreement at 1- 
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or 2-digit levels; these results are available from the authors upon request. They are also unaffected 

if we run CASCOT in semi-automatic mode instead of in its one-by-one mode. 

Table 5b – LPM for the probability to be differently coded at 3-dgt level: estimation results, current job 

 
(1) (2) (3) (4) 

VARIABLES     
     
Female -0.140*** -0.140*** -0.083* -0.020 
 (0.041) (0.041) (0.048) (0.050) 
Lower-secondary education (ISCED 2) -0.035 -0.031 -0.017 -0.046 
 (0.084) (0.084) (0.088) (0.085) 
Upper and post-secondary education (ISCED 3-4) -0.055 -0.056 -0.023 -0.132 
 (0.086) (0.086) (0.092) (0.091) 
Tertiary education (ISCED 5-6) -0.035 -0.031 0.027 -0.154 
 (0.084) (0.084) (0.094) (0.097) 
Not elsewhere classified  0.058 0.038 -0.057 
  (0.102) (0.103) (0.106) 
Self-employed  -0.074 -0.004 -0.035 
  (0.058) (0.065) (0.068) 
     
Additional controls:     
     
Industry dummy (31 groups) No No Yes Yes 
ISCO 3-digit dummy (90 groups) No No No Yes 
Ancillary statistics:     
Wald test H0: no joint significance industry dummy variables (p-
value) - - 0.0089 0.0065 
Wald test H0: no joint significance ISCO 3-digit dummy 
variables (p-value) - - - 0 
Observations 602 602 531 531 
R-squared 0.020 0.024 0.113 0.439 

Note: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; Reference categories: male, no or primary 
education (ISCED 0-1), employee. 

 

5. Conclusions 
This article studied the potential measurement errors occurring when coding occupational data. 

Given the growing use of information on occupation in labour economics research, the quality of 

occupational data is of key importance and is often neglected by the economic literature.  

In this analysis, we have recoded open-ended questions on occupation for the Dutch sample of 

SHARE data using CASCOT, a well-known software for automatic ex-post coding. Our results show 

that the disagreement rate, defined as the percentage of observations coded differently in SHARE and 

CASCOT, is high even when the comparison is made at 1-digit level (33.7 percent for last job and 40 
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percent for current job). This finding is particularly striking, considering that our approach has been 

conservative, in the sense that we only compare the  “easiest”  answers, because vague and incomplete 

answers are left out form the analysis. The level of miscoding we find should thus be considered as a 

lower  bound  of  the  “true”  miscoding.   

In our view our results highlight the complexity of occupational coding and suggest that the 

potential measurement error due to miscoding should be taken into account when making statistical 

analysis or writing econometric models. 

We have also tested whether such a measurement error in occupation is random or is instead 

correlated to some specific individual or job-related characteristics. We found that the measurement 

error is indeed more evident in certain ISCO-88 groups (ISCO-88 groups 1 and 3) and is more 

pronounced for more educated individuals and males. This may be due to the fact that males and more 

educated people are sorted in particular occupations that are intrinsically more difficult to be 

classified. Alternatively, it could be that education and gender affect somehow the way people are 

able to describe their jobs when asked in interviews. Understanding the reasons behind these results 

may constitute an interesting direction for further investigation. 
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Appendix 
Table A1: Mapping of ISCO-08 major groups to skill levels (col. 1 and 2) and mapping of the four 

ISCO-08 skill levels to ISCED-97 levels of education (col. 2 and 3) 

ISCO-08 major groups Skill level ISCED-97 level 
1. Managers  3 + 4 5b + 6, 5a 
2. Professionals  4 6, 5a 
3. Technicians and associate professionals 3 5b 
4. Clerical support workers 2 4, 3, 2 
5. Services and sales workers  2 4, 3, 2 
6. Skilled agricultural, forestry and fishery workers  2 4, 3, 2 
7. Craft and related trades workers  2 4, 3, 2 
8. Plants and machinery operators, and assemblers  2 4, 3, 2 
9. Elementary occupations  1 1 

Note: ISCED-97 levels of education: Level 1=Primary education or first stage of basic education; Level 2 = Lower 
secondary or second stage of basic education; Level 3 = (Upper) secondary education; Level 4 = Post-secondary non-
tertiary education; Level 5a = First stage of tertiary education, 1st degree, medium duration; Level 5b= First stage of 
tertiary education , short or medium duration, practical orientation); Level 6 = Second stage of tertiary education. 

Source: ILO (2012), p. 14 
 

Table A2: Disagreement rate by education levels 

 Last job Current job 
  Disagreement rate (%)  Disagreement rate (%) 
 N 3-digit 2-digit 1-digit N 3-digit 2-digit 1-digit 

ISCED 0-1  237 35 27 20 42 60 52 38 
ISCED 2  465 44 34 27 208 55 42 29 
ISCED 3-4  227 53 42 37 155 54 43 34 
ISCED 5-6  137 67 54 49 197 55 41 37 
         
Total  1066 47 37 31 602 55 43 34 

 

Table A3: Disagreement rate by gender 

 Last job Current job 
  Disagreement rate (%)  Disagreement rate (%) 
 N 3-digit 2-digit 1-digit N 3-digit 2-digit 1-digit 
         
Male  536 59 46 38 332 61 45 35 
Females  547 36 28 24 275 48 40 32 
         
Total  1083 47 37 31 607 55 43 34 

 



 

25 

Table A4a: Disagreement rate (%) by industry (NACE codes) – last job (sorted by disagreement rate at 3-digit) 

  Disagreement rate (%) 
Industry N 3-digit 2-digit 1-digit 
Computer and related activities 1 100 100 100 
Recycling 1 100 100 100 
Real estate activities, Renting of machinery and equipment without operator 
and of personal and household goods 5 80 40 40 
Manufacture of coke, refined petroleum products and nuclear fuel 9 78 78 78 
Electricity, gas, steam and hot water supply 16 75 56 38 
Research and development 4 75 75 50 
Publishing, printing and reproduction of recorded media 23 74 70 70 
Education 50 72 54 42 
Wholesale trade and commission trade, except of motor vehicles and 
motorcycles 26 69 62 54 
Manufacture of basic metals, metal products except machinery & equipment 19 63 63 53 
Financial services and Insurance 21 62 19 19 
Manufacture of other non-metallic mineral products 5 60 60 40 
Other business activities 47 60 47 38 
Transport, Post, Telecommunications 53 58 51 34 
Manufacture of wood and of products of wood and cork, except furniture; 
manufacture of articles of straw and plaiting materials 7 57 29 29 
Hotels and restaurants 18 56 56 17 
Manufacture of motor vehicles, trailers and semi-trailers 9 56 44 44 
Public administration and defence; compulsory social security 92 53 45 41 
Recreational, cultural and sporting activities 23 52 43 39 
Mining 53 51 47 40 
Manufacture of food, tobacco, textiles, clothes, bags, leather goods 64 50 47 38 
Sewage and refuse disposal, sanitation and similar activities 2 50 0 0 
Construction 95 47 37 26 
Sale, maintenance and repair of motor vehicles and motorcycles; retail sale of 
automotive fuel 12 42 42 25 
Manufacture of electronic or electric machinery and devices 5 40 20 20 
Health and social work 126 39 31 28 
Activities of membership organization n.e.c. 15 33 20 20 
Other service activities 34 32 32 29 
Retail trade, except of motor vehicles and motorcycles; repair of personal and 
household goods 105 31 30 25 
Manufacture of furniture; manufacturing n.e.c. 4 25 25 25 
Manufacture of machinery and equipment n.e.c. 4 0 0 0 
     
Total 948 50 42 34 

Note: Industry is classified using NACE Codes, Version 4 Rev. 1 1993 (see http://www.top500.de/nace4-e.htm for a 
description of NACE Version 4 Rev. 1 and MEA, 2013, pp. 32-33 for the shorter classification used in SHARE). 

 

 

http://www.top500.de/nace4-e.htm
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Table A4b: Disagreement rate (%) by industry (NACE codes) – current job (sorted by disagreement rate at 3-
digit) 

  Disagreement rate (%) 
Industry N 3-digit 2-digit 1-digit 
Manufacture of motor vehicles, trailers and semi-trailers 3 100 67 33 
Research and development 1 100 100 100 
Mining 23 87 74 57 
Other business activities 39 85 74 67 
Education 59 81 66 54 
Real estate activities, Renting of machinery and equipment without operator 
and of personal and household goods 5 80 40 40 
Electricity, gas, steam and hot water supply 4 75 50 25 
Hotels and restaurants 8 75 75 25 
Construction 43 72 49 42 
Manufacture of food, tobacco, textiles, clothes, bags, leather goods 13 69 62 38 
Computer and related activities 9 67 67 33 
Manufacture of basic metals, metal products except machinery & equipment 3 67 67 33 
Recreational, cultural and sporting activities 20 65 60 30 
Transport, Post, Telecommunications 26 62 50 42 
Manufacture of wood and of products of wood and cork, except furniture; 
manufacture of articles of straw and plaiting materials 5 60 60 60 
Financial services and Insurance 12 58 50 50 
Public administration and defence; compulsory social security 52 58 54 42 
Wholesale trade and commission trade, except of motor vehicles and 
motorcycles 2 50 50 50 
Retail trade, except of motor vehicles and motorcycles; repair of personal and 
household goods 32 47 44 28 
Health and social work 133 45 41 38 
Sale, maintenance and repair of motor vehicles and motorcycles; retail sale of 
automotive fuel 7 43 43 14 
Manufacture of coke, refined petroleum products and nuclear fuel 3 33 0 0 
Manufacture of electronic or electric machinery and devices 3 33 33 33 
Publishing, printing and reproduction of recorded media 6 33 33 33 
Manufacture of machinery and equipment n.e.c. 4 25 25 0 
Other service activities 14 21 14 14 
Activities of membership organization n.e.c. 5 20 20 20 
Manufacture of furniture; manufacturing n.e.c. 2 0 0 0 
     
Total 536 60 52 41 

Note: Industry is classified using NACE Codes, Version 4 Rev. 1 1993 (see http://www.top500.de/nace4-e.htm for a 
description of NACE Version 4 Rev. 1 and MEA, 2013, pp. 32-33 for the shorter classification used in SHARE). 

 

 

 

http://www.top500.de/nace4-e.htm
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Table A5: Educational attainment and gender composition across ISCO-88 1 digit groups 

ISCO 1-dgt % primary % lower 
secondary 

% upper 
secondary % tertiary Mean years of 

education % of female 

1  5.6 30.4 29.9 34.1 14.0 20.3 
2  0.8 14.2 21.2 63.7 16.1 54.6 
3  3.2 22.8 35.1 38.9 14.0 41.5 
4  7.8 50.4 32.6 9.2 12.6 72.4 
5  18.9 54.7 21.6 4.8 11.6 81.9 
6  20.0 61.4 12.9 5.7 11.2 42.3 
7  31.5 48.2 17.5 2.8 9.8 20.6 
8  29.8 49.7 17.1 3.3 10.9 20.0 
9  35.3 50.5 10.7 3.6 9.9 70.6 
       
Total  15.1 40.2 23.7 21.0 12.5 51.2 

Note: The table is computed pooling current and last job and using SHARE coding  

 


