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Abstract

Arctic and subarctic environments are being adversely influenced by human-
caused climate change across our entire planet. Canada’s northern freshwater ecosystems
are influenced by a variety of environmental stressors and are particularly sensitive to
climate change, since small shifts in climate have the potential to substantially alter their
hydrological, limnological, and biogeochemical conditions. Some other indirect effects
on northern freshwater landscapes are the expansion of vegetation as well as changes in
wildlife and waterfow! populations and distribution. It is, therefore, critical to understand
the observed and predicted influences of climate change and other environmental
stressors on these northern freshwater environments dominant in arctic and subarctic
landscapes, since they are considered productive northern “oases” and provide important
habitat for wildlife and natural resources for indigenous communities.

Concerns have been increasing regarding climate change, rapidly changing lake
levels, and the associated effects on aquatic ecological integrity within two of Canada’s
northern lake-rich national parks, Vuntut National Park (VNP), Yukon Territory, and
Wapusk National Park (WNP), Manitoba. To address these issues, Park-led monitoring
programs have been established to track status and trends of lake hydrological conditions
using water isotopes, yet there remains a need to translate these data into a format that
can be used by Parks Canada for their reporting requirements. Here, a novel water
isotope-based lake hydrological monitoring program is applied that directly encompasses
Parks Canada’s long-term monitoring protocols and provides a sensitive way to detect
hydrological change. Lake category (VNP - ‘snowmelt-dominated’, ‘rainfall-dominated’,

or intermediate and WNP - coastal fen, interior peat plateau, or boreal spruce forest) and



season-specific (spring, summer, fall) water isotope-based hydrological thresholds were
used to establish the condition (‘good’, ‘fair’, ‘poor’) of Parks Canada’s hydrological
‘Ecological Integrity Measure’ for lakes within these two northern parks. Variability in
the condition of VNP monitoring lakes exists between lake category (‘rainfall-
dominated’, ‘snowmelt-dominated’, intermediate) as well as by season (spring, fall) from
2007 to 2015. However, rainfall-dominated lakes show the most variability in lake
condition, spanning from lakes that fall entirely within the ‘good’ condition to lakes that
are almost entirely in ‘fair’ to ‘poor’ conditions. In WNP, variability in lake condition
exists between lake category (coastal fen, boreal spruce forest, interior peat plateau) and
season (spring, summer, fall) from 2010 to 2013. However, during the spring and
summer of 2014 and the entire ice-free season of 2015, these lakes improved to ‘fair’ or
‘good’ conditions, reflecting an increase in the precipitation/evaporation ratio. This
research and monitoring-program development has bridged the gap between research
science and Parks Canada monitoring by providing protocols and technical support to
establish an effective long-term lake hydrological monitoring program for sensitive
northern freshwater environments.

During the past ~40 years, WNP has experienced a rapid increase in Lesser Snow
Goose (LSG) population and a corresponding expansion in the LSG-disturbed geographic
region. This has raised concerns about environmental effects of their activities on WNP’s
aquatic ecosystems. Previous studies have found that using standard limnological
measurements (e.g., specific conductivity) combined with carbon isotope variables
(8"Cpic, 8"Cpryrorom, APCoic.pryTorom) is informative and effectively captures

differences in limnological and carbon behaviour in LSG-disturbed ponds compared to



unaffected ponds. This research compiles mid-summer limnological and carbon isotope
data from 45 lakes during 2015 and 2016, which span a LSG disturbance gradient
(undisturbed, actively-disturbed, severely-disturbed) across a portion of WNP. In 2015,
higher mid-summer values of specific conductivity, pH, TP, TKN, DIC, DOC, and
YCruyTorom paired with lower mid-summer values of 53Cpic and A¥®Cpic.pryTorom
values were characteristic of severely-disturbed ponds when compared to undisturbed and
actively-disturbed ponds. Results from 2016 indicate a clear LSG disturbance gradient
with increasing values of specific conductivity, pH, TP, TKN, DIC, DOC, and
813CpHYTop0M paired with decreasing values of 813CD|C and A13CD|C-PHYTQPO|\/|, as LSG
disturbance increased from undisturbed to actively-disturbed to severely-disturbed ponds.
Reduced sensitivity to LSG disturbance during 2015 can be attributed to substantial
rainfall that occurred during the month of July prior to and during sampling. These
limnological trends can be explained by an array of processes including chemically-
enhanced CO; invasion, elevated catchment runoff of nutrients, carbon and ions, as well
as enhanced aquatic productivity, which increasingly influenced the nutrient and carbon
balance of ponds along a LSG disturbance gradient. A numerical synthesis of the data
identified established (by La Perouse Bay), active (the landscape to the north and
northwest of Thompson Point), and emerging (the inland area in the southern portion of
the study region) areas of LSG disturbance. Continued monitoring of LSG disturbance
within WNP is critical to understand how freshwater environments in WNP will respond
to historical, active, and new LSG disturbance. The analyses and interpretations presented
in this research will serve as a useful tool for Parks Canada staff to monitor aquatic

ecosystem trends and status as LSG population and migration patterns continue to evolve.



Monitoring and anticipating lake hydrological and limnological change is
challenging in the north due to its remoteness and the sensitivity of shallow lakes and
ponds to multiple environmental stressors. Often, due to the lack of alignment and
effective communication of research priorities between southern researchers and northern
agencies, the short duration of funding, as well as the high turnover rates of staff and
graduate students, the science and training necessary to create the foundations for
agency-led monitoring is not always feasible. However, by means of substantial efforts to
augment relations with Parks Canada staff, a long-term lake monitoring program within
Wapusk National Park (the ‘Hydroecology Monitoring Program”) was successfully
established in 2015. These efforts included instilling the significance of our research to
Park’s staff and the local community of Churchill, providing the necessary training and
knowledge transfer, as well as offering ongoing assistance and guidance. This monitoring
program has been developed in a format that aligns with Parks Canada’s mandate, can be
utilized for their reporting requirements, and is designed to focus on two major threats to
aquatic ecosystems: 1) Pond Water Dynamics/Lake Hydrology monitoring and 2) Goose
Aquatic Impact monitoring. Several key contributions transformed this research science
into action and application. These include operationalizing agency-led monitoring (e.g.,
creation of training schematics and standard operating procedures), communicating
monitoring results with science practitioners (e.g., scientific reports and open-access
data), and communicating research with the general public (e.g., news articles, public
presentations, and the Expedition Churchill interactive platform). In summary, research

presented here is a contribution to the new research paradigm in northern Canada, where
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collaborative, interdisciplinary, and community-driven research reflects northern

priorities and leads to action.
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Chapter 1: Introduction

Globally, arctic and subarctic environments are being adversely influenced by
human-caused climate change. In these northern regions, feedbacks between the loss of
snow and ice and the absorption of solar radiation regionally amplify the global warming
signal, resulting in warming trends four or more times greater than the global average
(IPCC, 2014; Bush and Lemmen, 2019). During the past century, the circumpolar North
has experienced some of the greatest regional warming compared to other areas of the
world, which has substantial impacts on hydrological conditions, permafrost dynamics,
and the overall stability of arctic and subarctic landscapes (ACIA, 2004; IPCC, 2014).
Freshwater resources within Canada’s North, although relatively isolated from direct
human activity, are influenced by a variety of environmental stressors and are particularly
sensitive to climate change. Small shifts in climate have the potential to substantially alter
their hydrological, limnological, and biogeochemical conditions (Rouse et al., 1997;
ACIA, 2004; Prowse et al., 2006; Schindler and Smol, 2006; IPCC, 2014). Recent studies
have predicted that climate warming will have the greatest effects on the limnological
and biogeochemical processes of northern freshwater environments (e.g., wetlands as
well as lakes and ponds, hereafter referred to as lakes) through the modification of
hydrological processes, not just through the temperature rise itself (Rouse et al., 1997;
Prowse et al., 2006; Schindler and Smol, 2006). Some other indirect effects on northern
freshwater landscapes are the expansion of vegetation (e.g., Tape et al., 2006; Mamet and
Kershaw, 2012) and changes in wildlife and waterfowl populations and distribution (e.g.,
Abraham et al., 2005a; Luoto et al., 2014). It is, therefore, critical to understand the

observed and predicted influences of climate change and other environmental stressors on



these northern freshwater environments dominant in arctic and subarctic landscapes,
since they are considered productive northern “oases” and provide important habitat for
wildlife and natural resources for indigenous communities (Rouse et al., 1997; Prowse et
al., 2006).

Northern freshwater ecosystems remain among the least studied due to the
scarcity of long-term monitoring data (Smol, 2002). This is critical since one of the
predominant concerns for these freshwater ecosystems is the current and future state of
water quality and quantity, especially in relation to climate change. Some key climate
drivers of hydrological change include permafrost thaw as well as changes in the duration
and amount of snow and ice cover, the proportions of rain and snow, and thaw season
evaporation-to-precipitation ratios (Rouse et al., 1997; Prowse et al., 2006; Schindler and
Smol, 2006). Scientists have recently begun to examine the responses of northern
freshwater ecosystems to climate change across the subarctic and Arctic (e.g.,
MacDonald et al., 2017), as well as in Siberia (e.g., Smith et al., 2005), Nunavut (e.g.,
Smol and Douglas, 2007), Northwest Territories (e.g., Brock et al., 2010), Alaska (e.g.,
Riordan et al., 2006), Yukon Territory (e.g., Labrecque et al., 2009; Turner et al., 2010),
and the Hudson Bay Lowlands (Bouchard et al., 2013; Ruhland et al., 2013, MacDonald
et al., 2015). They find that northern freshwater landscapes are reacting differently to
climate change forcing and are becoming increasingly dynamic, with lake expansion
increasing in some regions and lake-water levels decreasing in other locations
(Yoshikawa and Hinzman, 2003; Smith et al., 2005; Riordan et al., 2006; Smol and
Douglas, 2007; Labrecque et al., 2009; MacDonald et al., 2017). Many of these

freshwater ecosystems have also shown an increase in lake productivity in response to



longer ice-free seasons and a corresponding increase in lake evaporation (e.g., Rihland et
al., 2003; Antoniades et al., 2005, Riihland and Smol, 2005). However, as previously
mentioned, there is a paucity of long-term monitoring programs and many of the existing
programs that monitor northern freshwater lakes rely on labour-intensive and expensive
techniques that are generally not feasible on large spatial scales in remote landscapes
(i.e., gauged inflow and outflow, lysimeters; Gilvear and Bradley, 2000; Karlsson et al.,
2011). These long-term data are critical to better understand how hydrological and
limnological conditions have and will continue to respond to climate change and there is
need to translate southern scientists and researchers’ priorities into sustainable monitoring
programs that can be carried out by northern science practitioners (e.g., Parks Canada,
community members).

To address complexities of climate change, concerns about rapidly changing lake
levels, and associated effects on ecological integrity, ongoing multi-disciplinary lake
monitoring projects have been initiated in collaboration with Parks Canada staff from two
subarctic Canadian National Parks: Vuntut National Park (VNP) and Wapusk National
Park (WNP). Both VNP and WNP contain abundant shallow lakes, which are dominant
features in these northern freshwater landscapes. Substantial lake water isotope
hydrology datasets have now been generated for both national parks (since 2007 in VNP;
since 2010 in WNP). The legacy of these datasets is evidenced by Parks Canada staff-led
water isotope sampling of a subset of lakes in VNP (since 2012) and WNP (since 2015),
in partnership with university-based researchers. These complete hydrological datasets

are important components of this thesis and help translate our research priorities into



long-term, sustainable monitoring programs to track the hydrological and limnological
conditions of northern freshwater ecosystems in response to climate change.

Long-term monitoring datasets for northern freshwater ecosystems are also
increasingly critical due to the mounting concerns regarding multiple and interacting
environmental stressors. One of these concerns is related to the environmental
consequences of changes in wildlife and waterfow! populations and distributions.
Waterfowl population expansions in particular, can act as an environmental stressor and
change the functioning and structure of northern freshwater ecosystems through
eutrophication brought on by changes in vegetation, nutrient sources and cycling
(Ruhland et al., 2003; Gregory-Eves et al., 2004; Abraham et al., 2005a; Smol and
Douglas, 2007; Coteé et al., 2010; MacDonald et al., 2014; 2015). The effects of
waterfowl in northern freshwater ecosystems lead to varying degrees of disturbance
associated with changes in productivity and nutrient concentrations (Michelutti et al.,
2009; 2010; Coteé et al., 2010; Sun et al., 2013; MacDonald et al., 2014). The supply of
nutrients due to waterfowl disturbance has the potential to increase these freshwater
ecosystems’ productivity and alter the role that they play in the global carbon cycle. Very
few studies have examined the dual effects of climate warming and waterfowl expansion,
which could have drastic impacts on the integrity of northern freshwater ecosystems.
Thus, a major component of this thesis is to address lake monitoring needs stemming
from recent exponential growth of Lesser Snow Goose (LSG; Chen caerulescens
caerulescens) populations within WNP. During the past ~40 years, there has been a rapid
increase (5-14% per year) in the population density and nesting area range of the Lesser

Snow Goose within Wapusk National Park (Batt et al., 1997; Jefferies et al., 2006;



Alisauskas et al., 2011; Peterson et al., 2013). This region has also experienced some of
the greatest warming in the circumpolar North during the past ~50 years (Smith and
Burgess, 2004; Kaufman et al., 2009; Hochheim et al., 2010), which has the potential to
exacerbate LSG-disturbance on the Hudson Bay Lowlands landscape. Parks Canada
(2011) acknowledged that the combination of expanding LSG population and climate
warming may drastically alter the ecological integrity of lakes in WNP, emphasizing the

need for effective aquatic ecosystem monitoring.

1.1 Objectives and Approach

To understand future environmental (hydrological, limnological, carbon
behaviour) changes in northern freshwater ecosystems in response to multiple
environmental stressors (e.g., climate change and waterfowl expansion), current research
and continued monitoring is required. As identified, there are research gaps that require
new knowledge to fully assess and monitor the effects of climate warming and waterfowl
population expansion within Canada’s northern subarctic National Parks. Additionally,
there is a need to adopt a new research paradigm, where collaborative, interdisciplinary,
and community-driven research reflects northern priorities and leads to action. This
research focuses on work completed within VVuntut National Park, northern Yukon
Territory and Wapusk National Park, northern MB. Using a variety of approaches that are
outlined in detail within each chapter (e.g., field observations, water isotopes,
limnological and carbon isotope data, and spatial interpolation), my research addresses

through the following objectives:



1) To track hydrological conditions within two of Canada’s subarctic National
Parks by developing and applying novel lake hydrological thresholds in order to
establish hydrological ‘Ecological Integrity Measure’ conditions (good, fair,
poor) in a manner congruent with Parks Canada’s established ‘Ecological
Integrity Indicator’ system.

2) To characterize how lake hydrology, limnology, and carbon behaviour vary
spatially across a gradient of Lesser Snow Goose disturbance within a portion of
Wapusk National Park and to identify spatial patterns and degree of Lesser Snow
Goose disturbance within Wapusk National Park’s freshwater ecosystems.

3) To ensure that the research results generated to address the previous objectives
are translated into sustainable, collaborative, long-term monitoring programs and
to advocate the importance of fostering relationships and communicating science
with local science practitioners (e.g., Parks Canada), local community

organizations, and the general public.

1.2 Outline of Thesis

This thesis is organized into chapters that correspond to several distinct scientific
studies. The introduction, Chapter 1, provides a broad overview of themes discussed
throughout the thesis; specifically, the hydrology and limnology of subarctic freshwater
systems in response to climate change and other environmental stressors (e.g., waterfowl
disturbance). Chapters 2 through 4 are the results, exploration, and application of direct
field and laboratory-based research focused on the hydrology and limnology of several
lakes within Canada’s subarctic. The assessment of hydrological conditions of lake-rich

landscapes within two of Canada’s subarctic National Parks (Vuntut National Park and



Wapusk National Park) in response to climate change is presented in Chapter 2,
addressing objectives 1 and 3. Chapter 3 focuses on the use of water chemistry and
carbon isotopes to assess the effects of another environmental stressor, Lesser Snow
Geese disturbance, on lakes in Wapusk National Park, addressing objectives 2 and 3.
Chapter 4 addresses objective 3 and discusses the importance of translating science into
action and the various ways | have achieved this goal; through operationalizing agency-
led monitoring, communicating monitoring results with science practitioners, and
communicating research with the general public. The final chapter, Chapter 5, contains
concluding remarks, synthesizes the key contributions of this research, and includes

general recommendations for the future.



Chapter 2: Establishing water isotope-derived thresholds to assess the
hydrological condition of lake-rich landscapes of Canadian subarctic

National Parks

2.1 Introduction

Shallow lakes, many of which are thermokarst in origin, are often abundant within
arctic and subarctic landscapes. These landscapes are considered highly productive
northern oases, providing necessary resources and habitat for a variety of wildlife as well
as supporting the traditional lifestyles of Indigenous cultures (Rouse et al., 1997; Prowse
et al., 2006). However, these freshwater resources are particularly sensitive to climate
change, which is causing pronounced variation in hydrological conditions (Smith et al.,
2005; Smol et al., 2005; Schindler and Smol, 2006; Prowse et al., 2006; Riordan et al.,
2006; Labrecque et al., 2009; Avis et al., 2011; Carroll et al., 2011). Declines have been
observed in both the abundance and size of lakes due to warmer temperatures, longer ice-
free seasons, and increased evaporation (Labrecque et al., 2009; Turner et al., 2010;
Bouchard et al., 2013). These climatological changes have also led to increasing
permafrost thaw with the potential of rapid lake drainage events (Wolfe and Turner,
2008; Marsh et al., 2009; Jones et al., 2011). However, increases in lake surface area
have been reported, also driven by permafrost thaw (Payette, 2004; Smith et al., 2005).
Additionally, below average snow accumulation has been documented in lake-rich
subarctic landscapes (Schindler and Smol, 2006; Bouchard et al., 2013). If snowmelt

supply is diminished and prolonged dry conditions become more frequent due to



pronounced climate warming and longer ice-free seasons, widespread mid-summer
landscape drying, reduced water levels, and lake desiccation may occur.

Detecting and anticipating the varying hydrological responses to climate warming
are challenging in northern landscapes due to the rapid rate of changes and remoteness,
which impedes conventional monitoring approaches. Large-scale, northern hydro-
ecological monitoring programs are few in number and many existing long-term
programs monitoring freshwater lakes rely on labour-intensive and expensive techniques
that are generally not feasible on large spatial scales in remote landscapes (e.g., gauged
inflow and outflow, lysimeters; Gilvear and Bradley, 2000; Karlsson et al., 2011).
Alternatively, previous research has successfully demonstrated the use of water isotopes
(8"0, 5°H) to characterize variations in lake water balance within remote locations (e.g.,
Gibson and Edwards, 2002; Tondu et al., 2013, MacDonald et al., 2017). The oxygen and
hydrogen isotope compositions of water vary in a systematic and predictable manner as
water passes through the hydrological cycle (Clark and Fritz, 1997; Edwards et al. 2004).
Water isotopes can be used as a practical and affordable monitoring tool to track
hydrological conditions and drivers at the landscape scale since samples can be easily
collected in the field, and the analyses are broadly applicable, sensitive, and diagnostic of
changes in lake water balance and the source of input waters (Gibson and Edwards, 2002;
Brock et al., 2007; Wolfe et al., 2007b; Turner et al., 2010; Tondu et al., 2013; Anderson
et al., 2013; Brooks et al., 2014).

To address complexities of climate change, concerns about rapidly changing lake
levels, and associated effects on ecological integrity, ongoing multi-disciplinary lake

monitoring projects have been initiated in collaboration with Parks Canada staff from two



subarctic Canadian National Parks: Vuntut National Park (VNP) and Wapusk National
Park (WNP). Both VNP and WNP contain abundant shallow lakes, which are dominant
features in these thermokarst landscapes. Components of water isotope hydrological
monitoring in VNP and WNP, such as lake selection and frequency of sampling, were
based on a suite of lake isotope hydrology studies designed to identify the range of lake
water balances and their sensitivity to catchment characteristics and meteorological
conditions (Turner et al. 2010, 2014; Bouchard et al. 2013; Tondu et al. 2013;
MacDonald et al. 2017). The legacy of these studies are evidenced by Parks Canada staff-
led water isotope sampling of a subset of lakes in VNP (since 2012) and WNP (since
2015), in partnership with university-based researchers. Substantial lake water isotope
hydrology datasets have now been generated for both national parks (since 2007 in VNP;
since 2010 in WNP).

In 2011, Parks Canada established a greater emphasis on developing sustainable
monitoring programs with a commitment to maintain or restore ecological integrity in
national parks (Parks Canada, 2011). Evaluation of ecological integrity centers on the
assessment of approved park ‘Ecological Integrity Indicators’ that represent the major
ecosystems in each park, park approved ‘Ecological Integrity Measures’ within each
major park ecosystem (e.g., water quality, hydrology), and the condition of each
‘Ecological Integrity Measure’ (‘good’, ‘fair’, ‘poor’). Although prior lake isotope
hydrology studies have been conducted in VNP and WNP, with Parks Canada listed as a
partner and co-author (e.g., Tondu et al., 2013; MacDonald et al., 2017), research has yet
to align the science outcomes to directly encompass Parks Canada’s long-term

monitoring protocols and terminology. Therefore, effort is still required to bridge the gap
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between scientific research results and sustainable government-led monitoring programs
at a more operational level. This study advances the application of previous isotope-based
lake hydrological studies by reporting and evaluating data in a manner that is congruent
with Parks Canada’s established ‘Ecological Integrity Indicator’ system.

The three main objectives of this research are to 1) develop novel lake
hydrological thresholds using evaporation/inflow ratios determined from measurement of
lake water isotopes, 2) apply these novel thresholds to establish the condition (‘good’,
‘“fair’, ‘poor’) of the hydrological ‘Ecological Integrity Measure’ for lakes within two
subarctic Canadian national parks, and 3) suggest improvements to ensure this approach
meets the goals of an effective, collaborative, long-term hydrological monitoring program

for these subarctic Canadian national parks.

2.2 Study Areas
OLD CROW FLATS — VUNTUT NATIONAL PARK

The Old Crow Flats (OCF; 68°N, 140°W), located in northern Yukon Territory, is
a vast freshwater landscape (5600 km?) containing over 2,500 shallow thermokarst lakes
that are considered an important refuge for arctic wildlife while also supporting the
lifestyle of the VVuntut Gwitchin First Nation (VGFN) (Figure 2.1). OCF was a large
region of Beringia that remained unglaciated and was inundated by Glacial Lake Old
Crow during the Last Glacial Maximum. This ancient lake deposited a thick layer of
fluvial and glaciolacustrine sediments (Hughes, 1972; Lauriol et al., 2002; Zazula et al.,
2004). The glacial lacustrine plain has been incised by the meandering Old Crow River

and has left the river valley 40-50 m below a plateau of “perched” mainly thermokarst
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lakes underlain by continuous permafrost (Yukon Ecoregions Working Group, 2004;
Labrecque et al., 2009; Roy-Léveillée and Burn, 2011; Tondu et al., 2013).

Spatially complex patterns due to topographic variability and ongoing
thermokarst cycles including lake formation, expansion, and drainage have been
identified (Yukon Ecoregions Working Group, 2004). Vegetation and land cover have
been broadly categorized using Landsat imagery by Turner et al. (2014). OCF is
characterized by 37% dwarf shrub tundra vegetation (e.g., Labrador tea, arctic marsh
grass, water sedges, horsetails, sphagnum mosses and lichens) located mainly in drained
lake beds and polygonal peatlands. Well-drained areas made up of coniferous and
deciduous forests (e.g., black and white spruce) account for 13% of the landscape, and
25% of the landscape is covered by tall shrub tundra species (e.g., willows and shrub
birch). The remaining area consists of abundant shallow lakes that provide habitat for
communities of aquatic vegetation (Yukon Ecoregions Working Group, 2004).

Vuntut National Park (VNP) was established in 1995 to conserve and protect a
portion of the North Yukon Natural Region as part of the Vuntut Gwitchin First Nation
(VGFN) Final Agreement and is co-managed by Parks Canada, the Vuntut Gwitchin
Government, and the North Yukon Renewable Resources Council (Parks Canada, 2009).
Observations and traditional knowledge of the VGFN indicate that the OCF has been
undergoing rapid changes in temperature, precipitation, vegetation cover, lake and river
water levels, along with changes in the diversity and distribution of wildlife (Wolfe et al.,
2011b). To address the complexities of climate change in northern landscapes and the
concerns about rapidly changing lake levels with the associated effects on ecological

integrity, a multidisciplinary project supported by the Government of Canada
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International Polar Year program was initiated in 2007 to study the physical and
biological components of the OCF. An important outcome was the development of a
hydrological monitoring program based on five years of water isotope data (2007-2011)
from 14 lakes (Tondu et al., 2013). These 14 lakes (Table 2.Al) are situated in
catchments that are representative of OCF land-cover and hydrological diversity and have
been categorized as: ‘rainfall-dominated’, ‘snowmelt-dominated’, and ‘intermediate’
based on the main source of input water (Turner et al., 2010; Tondu et al., 2013). Eleven
of these lakes are situated within VNP and the rest are located within the VGFN Special
Management Area; however, hereafter the data set will be referred to as VNP for ease
and consistency in reporting (Figure 2.1). Note that prior publications have listed these

lakes as ‘OCF XX’ (e.g., Turner et al., 2010, 2014, Tondu et al. 2013).

Meteorological Conditions

Meteorological conditions for this region have been monitored at the Old Crow
airport and show marked seasonal variations in temperature and precipitation (Figure 2.2;
Table 2.1; Environment Canada, 2019). A sampling ‘year’ has been defined as October to
September to capture full winter and summer records. Based on 1971-2000 climate
normals, average annual temperature is -9.0°C and temperature fluctuates substantially
between summer and winter seasons. Average annual precipitation is 265.5 mm, 62% of
which falls as rain between May and September (165.5 mm), while the remainder falls as
snow between October and April (100 mm). The monthly mean temperatures during the

study period (2007-2015) were comparable to the 1971-2000 climate normals. Maximum
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monthly summer temperatures were, on average 0.4°C warmer during the study period,
while maximum monthly winter temperatures were, on average, 0.3°C cooler.

Total annual precipitation records (Figure 2.2; Table 2.1) were not consistently
recorded over the study period, with some missing data between 2006 and 2014, thus
hampering comparisons. Total annual precipitation was variable between 2007 and 2015
with several years comparable to climate normals (2006-2007: 230.6 mm; 2008-2009:
239.5 mm; 2012-2013: 223.7 mm; and 2014-2015: 250.9 mm). There were also two wet
years in 2009-2010 and 2010-2011 (320.6 mm and 388.5 mm, respectively) and two dry
years in 2007-2008 and 2011-2012 (189.2 mm and 185.8 mm, respectively).

Seasonal precipitation was divided into 1) winter precipitation, defined as
predominantly snowfall between the months of October and April and 2) summer
precipitation, consisting of predominantly rainfall between the months of May and
September. Winter precipitation during 2006-2007 (115.9 mm), 2008-2009 (91.8 mm),
and 2014-2015 (81.7 mm) were comparable to climate normals (100 mm). However,
except for one wet winter (2010-2011; 183.9 mm), the remaining winters, 2007-2008
(27.2 mm), 2009-2010 (50.4 mm), 2011-2012 (70.1 mm), and 2012-2013 (64.1 mm), had
drier winter conditions as compared to climate normals. Summer precipitation during
2007-2008 (162.0 mm), 2008-2009 (147.4 mm), 2012-2013 (159.6 mm), and 2014-2015
(169.2 mm) were comparable to climate normals (165.5 mm). There were two wet
summers (2009-2010 — 270.2 mm; 2010-2011 — 204.2 mm) and two dry summers (2006-

2007 — 114.7 mm; 2011-2012 — 115.7 mm) compared to the climate normals.
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WESTERN HUDSON BAY LOWLANDS — WAPUSK NATIONAL PARK

The western Hudson Bay Lowlands (HBL) is a low-relief landscape between the
latitudes of 51° and 65° North and spans the transition from boreal forest in the south to
Avrctic tundra vegetation in the north (Rouse, 1991; Griffis et al., 2000; Duguay and
Lafleur, 2003). The landscape developed following the end of the Wisconsinan
Glaciation and the retreat of the Laurentide Ice Sheet (Dredge and Nixon, 1992; Klinger
and Short, 1996). As deglaciation took place, the formation of prehistoric Hudson Bay,
the Tyrrell Sea, occurred and fine-grained glaciolacustrine sediment was deposited above
the dolomitic limestone bedrock. Upon retreat of the ice sheet, the ice-free land began to
rebound. This isostatic rebound led to the recession of the Tyrrell Sea and development
of the current landscape with visible beach ridges near the coast. Rates of isostatic
rebound are ~1.3 m per century (Lambert et al., 2001).

Since this region is underlain by continuous and discontinuous permafrost and
impermeable silt-clay soils (post-glacial Tyrrell Sea deposits), water infiltration is
impeded, which leads to water pooling at the surface, creating extensive wetlands as well
as thousands of lakes (Rouse, 1991; Griffis et al., 2000). Wapusk National Park (WNP)
was established in 1996 to protect a representative portion of the western HBL (~11,475
km?), which contains the world’s second largest contiguous wetland (Figure 2.3). The
park has been divided into six unique physiographic ecotypes: coastal fen, coastal ridges
and fen, transitional fen, coastal forested fen, interior peat plateau, and forested peat
plateau (Parks Canada, 2000). This ecotype designation is used for lake classification and
has been simplified to three unique ecotypes that encompass the lakes across the

landscape and within our sample set: coastal fen, interior peat plateau, and boreal spruce
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forest. The coastal fen ecotype is dominated by sedge and rush vegetation. The lakes
within this ecotype are formed in depressions between beach ridges exposed by isostatic
rebound or in depressions caused by the thawing of permafrost in organic-rich terrain.
The interior peat plateau ecotype contains moss, lichen, and small shrubs as the dominant
vegetation types. This ecotype has 2-3 m of peat underlain by ~70 cm of continuous
permafrost (Dredge and Nixon, 1992; Parks Canada, 2000). The lakes in this ecotype are
mainly thermokarst in origin and ice-wedge peat polygons are dominant features. The
boreal spruce forest ecotype is dominated by lichens, sphagnum moss, black spruce,
tamarack, shrub willow, and birch. The lakes within this ecotype are predominantly
thermokarst in origin.

Since this area has experienced some of the greatest warming in the circumpolar
North (Smith and Burgess, 2004; Kaufman et al., 2009; Hochheim et al., 2010), ongoing
multi-disciplinary research has taken place since 2010 to address the concerns regarding
the effects of climate change on the hydrological conditions of WNP lakes. In
collaboration with Parks Canada, a long-term hydrological monitoring program was
established in 2015 that includes water isotope sampling since 2010 from 16 lakes,

spanning the three main ecotypes in WNP (Figure 2.3; Table 2.A2).

Meteorological Conditions

Meteorological conditions for this region have been monitored at the Churchill
airport since 1943 and temperature and precipitation exhibit marked seasonal variations
(Station #5060608; Environment Canada, 2016; Figure 2.4; Table 2.2). A sampling ‘year’

has been defined as October to September to capture full winter and summer records.
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Based on 1971-2000 climate normals, average annual temperature is -6.9°C and
fluctuates substantially between summer and winter seasons. Average annual
precipitation is 431.6 mm, 61% of which falls as rain between May and September (263.9
mm), while the remainder falls as snow between October and April (167.7 mm). The
mean monthly temperatures during the study period (2010-2015) were comparable to the
1971-2000 climate normals. However, monthly maximum temperatures during the
summer were, on average, 1.6°C warmer than climate normals during the entire study
period and maximum monthly temperatures during winter were, on average, 3.3°C
warmer between 2010 and 2012 and 1.2°C cooler between 2013 and 2015 as compared to
climate normals.

Total annual precipitation (Figure 2.4; Table 2.2) was variable between 2010 and
2015 with two dry years in 2010-2011 and 2012-2013 (253.1 mm and 257.7 mm,
respectively). While summer precipitation during the entire study period was, on average,
comparable to climate normals (260.2 mm), winter precipitation was very low for four of
the six study years (2009-2010, 2010-2011, 2012-2013, and 2013-2014; 4 yr. mean =

87.1 mm).

2.3 Methods
Water Isotope Sampling and Framework Development

Monitoring lakes were sampled for water isotopes in the spring, summer, and fall
from 2007-2009 in VNP and from 2010-2015 for WNP. From 2010-2014, VNP
monitoring lakes were sampled during the spring and fall. In 2015, the VNP monitoring

lakes were sampled in the spring due to poor weather conditions in the fall.
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Water samples were collected and stored in 30 mL high density polyethylene
bottles until analysis. Between 2010 and 2012, all water samples were analyzed by
conventional continuous flow isotope ratio mass spectrometry (CF-IRMS) at the
University of Waterloo Environmental Isotope Laboratory (UW-EIL), whereas water
samples from 2013 to 2015 were measured by off-axis integrated cavity output
spectroscopy (O-AICOS) at UW-EIL. Isotope compositions are expressed as variations in
the relative abundance of rare, heavy (**0, ?H) isotope species of water with respect to
the common, light (*°0, *H) isotope species. These compositions are conventionally
reported in delta () notation as per mil (%o) values. Reported values reflect the deviation
between the ratio of the sample and the ratio of a known standard (Vienna Standard Mean
Ocean Water [VSMOW]) such that 80 or 8°H = [(Rsample/Rstandard) -1] x 1000 %o, where
R is the **0/*°0 or 2H/*H ratio in the sample and standard. Results of %0 and §°H
analyses are normalized to -55.5 %o and -428 %o, respectively, for Standard Light
Antarctic Precipitation (Coplen, 1996). Analytical uncertainties are standard deviations
based on the in-run standards and are £0.2%o for %0 and +2.0%. for §°H for water
samples analyzed by CF-IRMS, and +0.2%o for §'30 and +0.8%. for 5°H for those
analyzed by O-AICOS.

A Class-A evaporation pan was deployed and maintained by Vuntut Gwitchin
Government (VNP) and Parks Canada (WNP) staff during the ice-free season from 2007-
2010 (Tondu et al., 2013) and 2010-2015, respectively, to simulate the isotopic and
hydrological behaviour of a steady-state terminal lake (e.g., closed-basin) where inflow is
equal to evaporation (dss.). Water within both evaporation pans was maintained at a

constant volume, and water samples were collected weekly for isotopic analysis.
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Lake hydrological conditions were evaluated using an isotope framework in &'%0-
8%H space (Figure 2.5; Appendix). A critical feature of an isotope framework is the
Global Meteoric Water Line (GMWL), which is represented by the linear function: §°H =
85'%0 + 10 (Craig, 1961). The slope of the GMWL (slope = 8) represents the
temperature-dependant fractionation (partial separation between two or more isotopes)
during condensation of atmospheric vapour, while the linearity of the GMW.L reflects
that atmospheric moisture primarily originates from one large water source (e.g., sub-
tropic ocean surface) and undergoes progressive distillation during atmospheric transport
from the tropics to the poles (Rayleigh distillation; Rozanski et al., 1993; Edwards et al.,
2004; Yi et al., 2008). Consequently, decreasing temperature at the site of condensation
and increasing continentality (e.g., latitude, altitude, and distance from moisture source)
will result in progressively decreasing 0 and 5°H values in precipitation. Therefore,
snow typically has lower 6 values and plots lower along the GMWL while rain typically
has higher 8 values, plotting higher along the GMWL (Rozanski et al., 1993; Wolfe et al.,
2001).

When surface water undergoes evaporation, the isotope composition diverges
from the GMWL in a systematic way due to mass-dependant fractionation (i.e.,
preferential evaporation of water molecules containing lighter isotopes). Consequently,
lake water isotope compositions will plot in a linear trend to form the Local Evaporation
Line (LEL; Edwards et al., 2004) (Figure 2.5). The LEL is controlled by local
atmospheric conditions during the thaw season including flux-weighted temperature (T)
and relative humidity (h; as per recommendations by Gibson et al. (2016) for lakes that

experience seasonal ice cover), as well as the isotope composition of atmospheric
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moisture (das; Appendix). The LEL typically has a slope between 4 and 6 (Yi et al.,
2008). Additionally, the relative position of an individual lake (5.) along the LEL is
strongly associated with the water balance of each lake (Gonfiantini, 1986; Gibson and
Edwards, 2002; Edwards et al., 2004; Yi et al., 2008). Key reference points that make up
the LEL include the mean annual isotope composition of precipitation (6p; at the GMWL-
LEL intersection), the limiting steady-state isotope composition (dss.), and the theoretical
limiting isotopic enrichment (8" of a desiccating basin during ice-free conditions (Figure

2.5; Appendix).

E/I Ratios and Hydrological Threshold Development

Lake water isotope compositions were used to derive the isotope composition of
lake-specific input water (8;) and to then calculate evaporation-to-inflow ratios (E/I;
Appendix). These values were derived using the Yi et al. (2008) coupled isotope tracer
method that assumes conservation of mass and isotopes during evaporation and
quantitatively assesses the relative influence of evaporation on lake water balances. Since
E/l ratios are a quantitative expression of the relative influence of lake-specific input
water and evaporative flux, they are useful indicators of the hydrological status of each
monitoring lake. An E/I value of 1 occurs when lake water isotope composition is at
terminal basin steady-state limiting composition (dss ), which is when inflow is equal to
evaporation. Therefore, an E/I ratio greater than 1 indicates that the lake has a negative
water balance and is experiencing net evaporative drawdown.

Hydrological thresholds of E/I ratios were established to provide a quantitative

assessment of hydrological condition. Here, a hydrological threshold is defined as a
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critical value past which a water body faces an increasing risk of evaporative loss. We
consider that elevated E/I ratios and consequent water-level drawdown potentially impair
aquatic habitats. To align with Parks Canada’s ecological reporting requirements, these
generated E/I ratio hydrological thresholds have been categorized into three conditions
(‘good’, “fair’, and ‘poor’). ‘Fair’ and ‘poor’ thresholds were established using the
statistical representations of the 68" and 95" percentiles on the average gamma
distribution of the bootstrapped E/I ratios of long-term monitoring lakes, which are
analogous to 1 and 2 standard deviations above the mean for normally distributed data, as
per protocol commonly employed by Parks Canada. ‘Good’ thresholds are a description
of central tendency, representing the middle 68% of the data. To estimate the error for
each threshold, we used a bootstrapping technique where individual seasonal
hydrological thresholds were calculated based on bootstrapping (random sampling and
resampling of the dataset with replacement) gamma distributions of E/I ratios for each
sample lake category. Gamma distributions were used since the E/I ratios are not
distributed normally, are continuous, and cannot be negative. Since our sample sizes are
small (n = 6-88), bootstrapping was applied to allow inferences to be made about the
population. We bootstrapped, or ‘resampled’, each seasonal lake category dataset 1,000
times and calculated the mean of the 68™ and 95™ percentiles for each (Appendix Figure
2.A1).

For monitoring lakes in VNP, unique E/I thresholds were established for spring
and fall for each lake category using results from 2007-2009. This generated two
thresholds per lake category and six thresholds in total (Table 2.3). For monitoring lakes

in WNP, unique E/I thresholds were established for spring, summer, and fall for each
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lake category using results from 2010-2012. This generated three thresholds per lake
category and nine thresholds in total (Table 2.3). E/I results were evaluated in the context
of these thresholds for 2007-2015 in VNP and for 2010-2015 in WNP. Further statistical
analysis (bootstrapping) identified that generating thresholds using only the first three
years of data for both parks is comparable to using the entire dataset (Appendix Figure

2.A2).

2.4 Results and Interpretations
OLD CROW FLATS — VUNTUT NATIONAL PARK
Developing an Isotope Framework

Key meteorological and isotope parameters for VNP were obtained directly from
Tondu et al. (2013) and are reported in Table 2.A3. Here, we utilize 3-year averaged
values (2007-2009) to generate the isotope framework (Figure 2.6) and to ensure
consistency with all other calculations throughout this study (WNP 3-year framework as
well as both WNP and VNP 3-year E/I threshold calculations). dss., 6*, and dp values are
similar for years 2007 to 2009, reflecting that temperature and relative humidity values

were consistent among the three years.

Lake Hydrological Variability

Lake water isotope compositions (6.) measured during 2007-2015 field seasons
were superimposed on the 3-year average isotope framework (Figure 2.7). Inter-annual
differences in the flux and isotope compositions of inputs (snowmelt, rainfall) and

outputs (evaporation) cause each year to have its own isotopic footprint in 8°H-5'20
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space. d, values span the dp-ssi. sSegment of the LEL and occasionally beyond, indicating
a broad range of hydrological conditions are captured by the monitoring lakes (8180|_ =
-25.8%o0 to -8.7%o, 82H|_ = -200.3%o to -99.9%o0). Distinct seasonal trends are evident with
lower o, values in the spring and higher . values in the fall. This change is typical of
high-latitude lakes due to input from isotopically-depleted snowmelt in spring and
subsequent evaporative enrichment throughout summer. This pattern is evident in all
years where sampling occurred more than once (2007-2014). Typically, rainfall-
dominated lakes plot above the LEL and closer to dss; reflecting greater influence from
evaporation in comparison to snowmelt-dominated lakes which fall below the LEL and
closer to dp. Due to well-below average snowfall in the winter that preceded 2008 (27.2
mm), o, values are higher in the summer and fall with multiple lakes plotting beyond dss.
compared to other years. Additionally, heavy rain during 2010 and 2011 caused 6, values
to plot above the LEL in both fall seasons. It should also be noted that 2007-2009 are the

only years with summer data.

Monitoring Lake Hydrological Conditions using Bootstrapped E/I Thresholds

The importance of evaporation on lake water balances was quantitatively assessed
by evaporation-to-inflow (E/I) ratios estimated for each lake and then examined as time-
series in relation to bootstrapped thresholds (Table 2.3; Figures 2.8, 2.9). Overall, E/I
values vary substantially among lakes and over time ranging from 0.03 to 0.78 in the
spring (mean = 0.33) and from 0.05 to 1.08 in the fall (mean = 0.50). This variability can
be attributed to snowmelt-dominated lakes having lower E/I ratios due to high input of

isotopically-depleted snowmelt, whereas rainfall-dominated lakes are more prone to
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evaporation and have higher E/I ratios (see also Turner et al., 2010, 2014 and Tondu et
al., 2013).

The bootstrapped E/I thresholds for spring and fall seasons of each lake category
reveal the vulnerability of each lake to inter-annual meteorological variations (Figures
2.8, 2.9). In the spring, rainfall-dominated lakes show the most variability in E/I ratios
during the nine-year period (Figure 2.8). VNP 06, 19, 29, 46, 49 and 58 appear to be most
prone to evaporation with multiple E/I values falling within the ‘fair’ to ‘poor’
conditions. VNP 34, 35, 37 and 38 show less influence of evaporation, with most if not
all of their E/I values falling within the ‘good’ condition. E/I ratios for intermediate lakes,
lakes with input close to dp (VNP 26 and 48), mostly fall within the ‘fair’ condition while
E/I ratios for snowmelt-dominated lakes (VNP 11 and 55) also mostly fall within the
‘good’ condition, although these lakes occasionally approach the ‘poor’ threshold.

In the fall, individual lake variability in E/I ratios increased relative to spring
(Figure 2.9). Rainfall-dominated lakes VNP 19, 46 and 49 had E/I values in both the
“fair’ and ‘poor’ conditions from 2007-2012, but during the latter three years (2013-2015)
values are mostly within the ‘good’ condition. Rainfall-dominated lakes VNP 29 and 58
were prone to evaporation during spring, but during fall most if not all E/I values are
‘good’. Rainfall-dominated lakes VNP 34, 35, 37 and 38 continue to show less influence
from evaporation during the fall season. VNP 06 is the only rainfall-dominated lake that
has several E/I values within the ‘fair’ and ‘poor’ conditions for both sampling seasons
and E/I ratios tend to be high during these years, implying that this lake is highly prone to

evaporative water loss.
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WESTERN HUDSON BAY LOWLANDS — WAPUSK NATIONAL PARK
Developing an Isotope Framework

During the three years used for isotope framework calculations (2010-2012),
isotopic enrichment of evaporation pan water occurred initially with increasing
cumulative evaporation until equilibrium with atmospheric conditions was reached
(Figure 2.10). Once equilibrium was estimated to be established, mean dsg, values were
calculated for each year. The decline in §'20 (and °H) values during the fall of most
sampling years is due to rainfall influencing the water in the evaporation pan. To
establish the 3-year LEL, 2010-2012 evaporation pan-generated dss. values were
averaged for the isotope framework (Figure 2.11). These and other values for calculating
and constructing the isotope framework are reported in Table 2.A4. dss. and 6* values
are similar for 2010-2012, reflecting similar temperature and relative humidity during the

three years.

Lake Hydrological Variability

Similar to the VNP dataset, WNP lake water isotope compositions (8,) acquired
during 2010-2015 field seasons are shown superimposed on the 3-year average isotope
framework (Figure 2.12). Strong seasonal and spatial variability in lake hydrological
conditions also exist (5'20, = -14.7%o to -0.9%o, 5°H\ = -122.4%. to -48.8%o) with isotope
compositions spanning the dp-dss.. Segment of the LEL and sometimes beyond. This can
be attributed to variable meteorological conditions and catchment characteristics, as
described below, indicating that a broad range of hydrological conditions are captured by

the 16 monitoring lakes.
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Most &, values, regardless of season, tend to plot above the LEL, suggesting a
persistent greater relative influence of rainfall relative to snowmelt. This interpretation
aligns well with the meteorological conditions during the monitoring years in which
rainfall accounted for 60-85% of the annual precipitation (Table 2.2). Seasonally, distinct
trends are evident with lower &, values in spring due to the influence of snowmelt, higher
S, values during the summer due to warmer temperatures and evaporation, and
intermediate 8, values during the fall due to late summer rainfall. Due to well-below
average snowfall in the 2012-2013 winter (45.2 mm), low summer rainfall (212.5 mm),
and temperatures ~2°C warmer than climate normals in 2013, 3, values are high in the
summer and several plot beyond dss. (Figure 2.12d). In 2014 and 2015, &, values show
contrastingly less evaporative enrichment due to large rainfall events (representing 30-
50% of all summer precipitation) directly prior to summer sampling, which dampen the
influence of evaporation.

The three main ecotypes within WNP also display different patterns of
hydrological variability. Boreal spruce forest lakes consistently have the lowest &, values
with some values plotting below the LEL, reflecting an influence from snowmelt which
offsets the influence of evaporation. In contrast, 8, values of lakes in the interior peat
plateau and coastal fen are higher and reflect stronger influences of evaporation during

the summer sampling period.

Monitoring Lake Hydrological Conditions Using Bootstrapped E/I Thresholds
Time-series of E/I ratios were calculated for the 16 monitoring lakes from WNP

and plotted in relation to bootstrapped thresholds determined for lakes in coastal fen,
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interior peat plateau, and boreal spruce forest ecotypes (Table 2.3; Figures 2.13, 2.14, &
2.15). Seasonal variability exists in WNP’s E/I ratios with a spring average of 0.08,
summer average of 0.24, and fall average of 0.14. This seasonal pattern corresponds to
the trends observed in the §°H-5"%0 plots, where spring values tend to be lower due to the
influence of snowmelt, summer values are higher due to warmer temperatures and the
influence of evaporation, and fall values are intermediate due to late summer and fall
precipitation.

Bootstrapped thresholds calculated for spring, summer, and fall seasons of each
lake category are utilized here to show responses of each lake to temporal variations in
meteorological conditions (Figures 2.13, 2.14, and 2.15). In spring, coastal fen lakes
show the greatest amount of variability in E/I ratios with WNP 05, 12, and 21 having
several values within the ‘fair’ and ‘poor’ conditions, while E/I ratios for WNP 07, 15,
and 20 are mostly within the ‘good’ condition (Figure 2.13). Interior peat plateau lakes
WNP 32 and 34 E/I values mostly fall within the ‘fair’ to “poor’ condition indicating that
these lakes start the ice-free season off in a relatively vulnerable state. WNP 37 and 39
E/I values are within the ‘good’ condition and are less vulnerable to evaporation. E/I
ratios for boreal spruce forest lakes mostly fall within ‘good’ and ‘fair’ conditions, due to
the strong snow trapping ability of the forest. However, the E/I ratio for WNP 23 plots
within the ‘poor’ condition during 2013, indicating that the low snow accumulation in the
preceding winter was enough for a typically resilient boreal spruce forest lake to cross the
‘poor’ threshold.

In summer, coastal fen lakes WNP 05, 12, and 21 have multiple E/I values in the

“fair’ and ‘poor’ conditions during 2010-2013 and E/I ratios are high, implying that
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evaporation has a large effect on these lakes (Figure 2.14). However, during the wet
summers of 2014 and 2015, E/I ratios for these lakes correspondingly transitioned to
falling within the ‘good’ condition. WNP 07, 15 and 20, similarly to E/I results from
spring, continue to show less influence of evaporation. Interior peat plateau lakes WNP
32 and 34 continue to be strongly influenced by evaporation with most E/I values falling
within the ‘fair’ to “poor’ condition during 2010-2013 summers. However, similar to the
vulnerable coastal fen lakes, E/I values for these lakes decreased during the wet 2014 and
2015 seasons into the ‘good’ condition. WNP 33, 37, and 39 continue to be resilient to
evaporation and most E/I values fall within the ‘good’ condition. E/I ratios for the boreal
spruce forest lakes also continue to stay within the ‘good’ to ‘fair’ conditions, indicating
more resistance to evaporative drawdown as compared to lakes in other ecotypes.
However, as previously mentioned, when dry winters occur prior to sampling (e.g., 2010,
2012, and 2013), boreal spruce forest lakes approach the ‘poor’ condition, but E/I ratios
remain low and therefore these lakes remain far from experiencing extensive lake-level
drawdown.

During fall, coastal fen lakes WNP 05, 12, and 21 show comparable patterns to
the spring and summer with ‘poor’ E/I values during the dry 2011 summer season and
then mostly ‘good’ to ‘fair’ values during 2012-2015, reflecting the influence of high
amounts of rainfall at the end of the ice-free season (Figure 2.15). WNP 07, 15, and 20
also show similar patterns as compared to the earlier seasonal intervals with ‘fair’ / ‘poor’
E/I values during the 2013 dry year but then lower E/I values for 2014 and 2015 due to
the influence of fall precipitation. Most interior peat plateau lakes return to E/I values

within the ‘fair’ to ‘good’ conditions due to the end of summer and fall precipitation.
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Boreal spruce forest lakes also continue to show little influence from evaporation, with
most E/I values staying within the ‘good’ to ‘fair’ conditions, with WNP 23 showing the

strongest influence preceding low winter precipitation.

2.5 Discussion
Development of novel hydrological thresholds using water isotopes to monitor the
Ecological Integrity of northern shallow lakes

Rapid and dramatic climate-induced shifts in freshwater ecosystems are of major
concern across the arctic and subarctic, leading to the need for increased understanding
and monitoring of the impacts of such change (Smith et al., 2005; Smol et al., 2005;
Schindler and Smol, 2006; Prowse et al., 2006; Riordan et al., 2006; Labrecque et al.,
2009; Avis et al., 2011; Carroll et al., 2011). Thresholds have been used as a critical tool
in successful environmental management, where measurements can be made in an
environment as a motivation for management decisions, and defined thresholds, once
crossed, will move the system away from a ‘desired’ or baseline state (Groffman et al.,
2006). Yet, thresholds used in environmental research are difficult to define and quantify
since they represent a complex series of interacting variables, not just distinct boundaries
in time and space (Briske et al., 2005; Revenga et al., 2005; Capon et al., 2015).
Inadequate temporal and spatial resolution often prevents change from being accurately
quantified since ecosystem variability is not measured or addressed (Capon et al., 2015).

Parks Canada has identified that the hydrological condition of the freshwater
resources within both VNP and WNP are a crucial ‘Ecological Integrity Measure’, since

freshwater resources are essential for entire ecosystem health. Detecting and anticipating
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the varying hydrological responses to climate warming is challenging in northern
landscapes, however, both VNP and WNP have now adopted thresholds as points of
management concern within their ‘Ecological Integrity’ monitoring program (Parks
Canada, 2011). Previous isotope-based studies in VNP and WNP have used a static and
universal model to designate E/I thresholds (e.g., where E/I values > 0.5 represents the
threshold for defining lakes that are more influenced by evaporation versus inflow;
Turner et al., 2010, 2014; Tondu et al., 2013; MacDonald et al., 2017). Additionally,
MacDonald et al. (2017) used static E/I thresholds to compare lake water balances across
multiple northern lake-rich landscapes. However, our research focuses on monitoring
individual northern lake-rich landscapes to identify changes in the local hydrology of
lakes over time in response to varying meteorological conditions. Since hydrology (e.g.,
‘snowmelt-dominated’ vs. ‘rainfall-dominated’ or coastal fen vs. boreal spruce forest)
and seasonality (spring vs. summer vs. fall) influence lakes in a variety of ways, this
study provides an alternative to the static E/I threshold of > 0.5 and defines thresholds
specific to lake categories and seasons. Operationally, this facilitates a more sensitive
approach to detect lake hydrological change.

An excellent example of the utility of this lake category and season-specific
threshold approach is that two boreal spruce forest lakes in WNP (WNP 23 and 25)
approach and cross the ‘poor’ threshold every ice-free season from 2010-2013. The E/I
ratios for boreal spruce forest lakes during the summer are so low and consistent among
all lakes in all years that the thresholds are very close together and very low. This results
in very small variations in lake E/I values leading to a change in condition (‘poor’, ‘fair’,

‘good’), even if the water balance has shifted only subtly. Additionally, lakes in the
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boreal spruce forest category are the most consistent. However, it should be noted that
while several boreal spruce forest lakes fall into ‘fair’ and ‘poor’ conditions, their E/I
values never exceed 0.26, which represents a lake that is experiencing a strongly positive
water balance (i.e., not undergoing drying and potentially growing in size). While these
boreal spruce forest lakes are resilient to evaporative loss, they are still shown to be
somewhat sensitive to changes in meteorological conditions (e.g., low amount of snow in
the preceding winter). Thus, the lake category and season-specific approach to defining
thresholds is a more sensitive way to detecting hydrological change, but it may not
always signal aquatic ecosystem impairment.

Based on statistical analysis of the current datasets, generating thresholds using
only the first three years of data for both parks is comparable to using the entire dataset
(Figure 2.A2). Additionally, these three-year hydrological thresholds encompass
meteorological variability that span both above and below the climate normals of
temperature and precipitation. Therefore, it would appear to be justifiable to continue to
use the bootstrapped thresholds reported in this study for future monitoring (Table 2.3).
This is an extremely useful aspect to the monitoring program since it has long-term
applicability and thus, time consuming, yearly recalculation of specific thresholds may
not be necessary. Once a more sufficient baseline (~10 years, as preferred by Parks

Canada) has been determined, re-evaluation of hydrological thresholds should take place.
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Integration of novel thresholds to assess the hydrological ‘Ecological Integrity Measure’
condition within two subarctic Canadian National Parks

A key contribution of this work is the establishment of hydrological thresholds to
align with Parks Canada’s usage of thresholds as 1) a tool to evaluate ‘Ecological
Integrity’ and 2) to establish the ‘condition’ of an individual ecosystem (Parks Canada,
2011). This contribution is critical to parlay scientific research into metrics that serve
Parks Canada and their reporting requirements. The lake status designations (‘good,’
“fair,” and ‘poor’) have been generated for each lake category and season to represent
easily quantifiable Ecological Integrity conditions, which Parks Canada can then
incorporate into their ‘State of the Park’ report to quantify fluctuations in the
hydrological status of lakes in response to climate change. Two summary tables (Tables
2.4 and 2.5) have been generated to enable a more efficient assessment of lake
hydrological conditions across both Parks.

Variability in the condition (‘good’, ‘fair’, ‘poor’) of VNP monitoring lakes exists
between lake category (rainfall-dominated, snowmelt-dominated, intermediate) as well as
by season (spring, fall). However, rainfall-dominated lakes show the most variability in
lake condition, spanning from lakes that fall entirely within the ‘good’ condition to lakes
that are almost entirely in ‘fair’ to ‘poor’ conditions. Within VNP, rainfall-dominated
lakes occupy poorly drained and sparsely vegetated areas that are not effective in
promoting snow accumulation as compared to other lake categories (Turner et al., 2010,
2014; Bouchard et al. 2013; Tondu et al., 2013). Five rainfall-dominated lakes (VNP 06,
19, 29, 46, 49, and 58) in particular are more prone to evaporation with multiple E/I

values falling within the ‘fair’ to ‘poor’ conditions (Table 2.4). This implies that some
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rainfall-dominated lakes will be more sensitive to changes in precipitation than others.
Also, VNP 06 & 19 E/I ratios are mostly within the ‘fair’ and ‘poor’ conditions, implying
that these lakes are the most sensitive within the VNP monitoring lakes to evaporation
(Table 2.4). Additionally, in 2007, VNP 06 experienced a thermokarst lake drainage
event and has since stabilized as a shallow, residual waterbody prone to eutrophication
and lake level drawdown (Turner et al., 2010; Tondu et al., 2017). Since the frequency of
thermokarst lake drainages has increased during recent decades in response to changing
climatic conditions, this landscape will likely see a corresponding increase in remnant
shallow waterbodies that will be prone to increased evaporation and higher E/I ratios
(Lantz and Turner, 2015; Tondu et al., 2017).

In WNP, variability in lake condition exists between lake category (coastal fen,
boreal spruce forest, interior peat plateau) and season (spring, summer, fall) from 2010 to
2013. However, during the spring and summer of 2014 and the entire ice-free season of
2015, these lakes improved to ‘fair’ or ‘good’ conditions, reflecting an increase in the
precipitation/evaporation ratio and a strong sensitivity to meteorological conditions.
There was a large amount of rainfall during the month of July prior to and during
sampling (117.9 mm) in 2014. This rainfall likely caused the homogenization of
hydrological conditions between the lakes. Although there were no large rain events prior
to the other sampling periods in 2014 and 2015, precipitation/evaporation ratios were
evidently sufficient for lakes to maintain ‘good’ or ‘fair’ status. Most interior peat plateau
lakes fall within ‘good’ and ‘fair’ conditions, however, WNP 32 and 34 mostly fall within
the “fair’ to “poor’ conditions from 2010-2013, indicating that these lakes are more

vulnerable to evaporation as compared to other lakes within the same ecotype. WNP 32
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and 34 are the smallest (by both depth and surface area; Appendix Table 2.A2) compared
to the rest of the interior peat plateau lakes, implying that smaller (by depth and/or
surface area) lakes may be the most affected by factors that lead to increased evaporation.
Many boreal spruce forest lakes fall within ‘good” and ‘fair’ conditions due to the
stronger snow trapping ability of the forest, indicating more resistance to evaporative
drawdown compared to lakes in other ecotypes. However, the extreme low snow amount
in 2009-2010, 2010-2011, and 2012-2013 did lead several boreal spruce forest lakes
(WNP 23, 25, 27) to approach or cross the ‘poor’ threshold, despite snow-trapping effects
of their forested catchments. While their E/I ratios remain low, boreal spruce forest lakes
may become more vulnerable to evaporation under a climate change scenario of low
snowfall as previously discussed. Several studies have recently documented and
predicted that decreasing snowfall as well as warming climate and longer ice-free seasons
will potentially lead to increased lake desiccation as well as having a profound influence
on wildlife habitat, carbon behaviour and overall aquatic ecosystem function (van der
Molen et al., 2007; Abnizova et al., 2012; Derksen and Brown, 2012; Bouchard et al.,

2013; MacDonald et al., 2017).

2.6 Conclusions and Recommendations

Through this research, a common approach for a sustainable hydrological
monitoring program has been developed and applied within VNP and WNP. This
approach can be readily adapted and applied to other northern lake-rich parks. However,
a key component for the sustainability of this monitoring program is the commitment

from both researchers and Parks Canada that future water isotope monitoring will
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continue to provide critical hydrological information for Parks Canada ‘State of the Park’
reports. Four major recommendations have been established to ensure that this approach
continues to be an effective, collaborative, and long-term hydrological monitoring
program within VNP and WNP. Firstly, if financially feasible, water isotope sampling
should be completed every spring and fall with summer sampling added every three years
to capture a broad spectrum of hydrological conditions. Water isotope samples were only
consistently collected during the spring and fall at VNP since 2010. While this was
reported to capture the full scope of seasonal isotope evolution by Tondu et al. (2013),
our recommendation is to sample during the summer ever three years, since mid-ice-free
season (summer) is when the most evaporation typically occurs as shown by 2007-2009
VNP and 2010-2015 WNP records. Not including the summer sampling period within
VNP means that the maximum influence of evaporation on the lakes may not be
captured. However, with the difficulties in securing reliable funding sources every year in
mind, spring and fall sampling may be deemed sufficient since there was only one lake
isotope value (8,) from the summer during 2007-2009 that fell outside the range captured
by the spring and fall seasons.

Secondly, an evaporation pan should be maintained every ice-free season if it is
easily accessible for Parks Canada staff. The evaporation pan is helpful to simulate the
isotopic and hydrological behaviour of a steady-state terminal lake where inflow is
equivalent to evaporation (dss ). This value is an important component of the Local
Evaporation Line and helps to constrain das (the isotopic composition of the ice-free
season atmospheric moisture) which is an important component for calculating E/I ratios,

the basis of our lake thresholds.
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Thirdly, the partnership between Parks Canada staff and researchers needs to
remain strong and long-term. Funding needs to be secured, field collection and
processing needs to be carried out efficiently and accurately, data collection and the
corresponding isotope framework calculations need to be completed, and E/I values
plotted within the Ecological Integrity thresholds is necessary. This seems like an
obvious recommendation, however without this partnership commitment, this monitoring
program would not be viable.

Lastly, a yearly report and a complete data file should be created by both
researchers and Parks Canada staff to ensure the science is understandably portrayed and
can inform policy and land-management decisions. Summary figures, similar to Tables
2.4 and 2.5, should be included as data continues to accumulate, since they are a quick
and easy way to explore the temporal and spatial hydrological trends. This report and the
corresponding data should be made public as government open files so this research and
monitoring on the effects of climate change can be viewed by the general public as well.

As a final comment, it has been predicted that large summer storms/precipitation
events will increase in frequency and magnitude (Sauchyn and Kulshreshtha, 2008;
Kaufman et al., 2009). This could lead to these subarctic landscapes becoming inundated
with water and therefore lake water levels would rise above ‘normal’. Our use of
thresholds within this study has solely focused on the concern of lake desiccation and
therefore our methodology would need to be modified to address concerns of increasing

lake water levels if the need arises.
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2.7 Figures
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Figure 2.1 Map showing locations of the 14 lakes selected for hydrological monitoring
within the Old Crow Flats (Tondu et al., 2013, p. 596). The grey-shaded area north of Old
Crow River represents Vuntut National Park, while the southern portion represents the
Vuntut Gwitchin First Nation Special Management Area.
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Figure 2.2 VNP meteorological data from a weather station at the Old Crow Airport
Station (Station ID 2100800 and 2100805; Environment Canada, 2019); a) mean monthly
air temperature from 2006-2015 compared to climate normals (1971-2000) and b) total
monthly precipitation from 2006-2015 compared to climate normals (1971-2000). No
precipitation data were missing from 2006-2007, 2007-2008, 2011-2012 and 2012-2013
sampling years. Less than 1% of the precipitation data were missing from 2008-2009,
2009-2010, and 2014-2015 sampling years. Less than 10% of the precipitation data were
missing from the 2010-2011 sampling year. For 2013-2014, > 85% of the precipitation
data were missing; therefore, no data for this year are displayed. Annual and seasonal
precipitation totals are the sum of all observations.
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Figure 2.4 WNP meteorological data based on Environment and Climate Change Canada
Historical Weather data from the Churchill Airport weather station (Station 1D 5060608;
Environment Canada, 2019); a) mean monthly air temperature from 2009-2015 compared
to climate normals (1971-2000) and b) total monthly precipitation from 2009-2015
compared to climate normals (1971-2000). Annual totals are the sum of all observations.
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Figure 2.5 A schematic 8*30-8°H diagram illustrating two hypothetical lakes (lake 1 and
lake 2; from Tondu et al., 2013, p. 601). Each lake plots along a lake-specific evaporation
line and intersects the Global Meteoric Water Line (GMWL). Key reference points in
relation to the Local Evaporation Line (LEL) include mean annual isotope composition of
precipitation (dp), the limiting steady-state isotope composition (dss), and the limiting
isotopic enrichment of a desiccating lake (6*). Evaporation to inflow (E/I) ratios are
calculated using isotope mass-balance models of lake water isotope compositions (3, ),
input water isotope compositions (3;), and isotope compositions of evaporated vapour
from each lake (dg; see Appendix for calculations). VSMOW represents the Vienna
Standard Mean Ocean Water.
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Figure 2.6 Three-year mean Local Evaporation Line (LEL; 5°H = 4.85'%0 — 68.7) for
VNP using 2007-2009 values from Tondu et al. (2013; Table 2.A3), (6p = isotope
composition of mean annual precipitation, dss. = isotope composition of a terminal lake
at steady-state, 8 = limiting isotopic enrichment of a desiccating basin).
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Figure 2.7 Isotope composition of VNP monitoring lakes (6.) superimposed on the 3-year monitoring isotope framework for each
sampling year: (a) 2007, (b) 2008, (c) 2009, (d) 2010, (e) 2011, (f) 2012, (g) 2013, (h) 2014, and (i) 2015. Seasonal differences are
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mean annual isotope composition of precipitation, 8ss. = isotope composition of a terminal lake at steady-state, 5 = limiting isotopic
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Figure 2.8 VNP E/I results for the spring sampling period. Red dash line represents ‘poor’ threshold and the yellow dash line
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Figure 2.9 VNP E/I results for the fall sampling period. Red dash line represents ‘poor’ threshold and the yellow dash line represents
“fair’ threshold. The monitoring lakes were not sampled in the fall of 2015 due to poor weather conditions.
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Figure 2.11 Three-year mean Local Evaporation Line (LEL; 8°H = 5.18"0 —
41.6) for WNP using 2010-2012 values reported in Table 2.5 (dp = isotope
composition of mean annual precipitation, dss. = isotope composition of a
terminal lake at steady-state, 8" = limiting isotopic enrichment of a desiccating

basin).
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Figure 2.13 WNP E/I results for the spring sampling period. Red dash line represents ‘poor’ threshold and the yellow dash line

represents ‘fair’ threshold. Note that the y-axis scale is from 0.00-0.30.



1.0
0.8 4
0.6 1
0.4
0.2

WNP 21 (coastal fen)

10
08
08
04
0.2

(WNP 20 (coastal fen)

Tl
TN o

T

0.0 T T T T ]

2010 2011 2012 2013 2014 2015
1.0 4
08 1
06 1
04 A

oo a0

0.0

2010 2011 2012 2013 2014 2015
1.0 4
0.8 A
0.6 A
0.4 5
0.2 4

0.0 T T
2010 2011 2012
10
0.8
0.6 1

WNP 39 (interior peat-plateau)

WNP 37 (interior peat-plateau)

2013 2014 2015

0§

WNP 34 (interior peat-plateau)

E/l Ratio

00 -
20

10 2011 2012 2013 2014

2015

WNP 15 (coastal fen)

0.4

02
0.0
2010 2011

2012 2013 2014

TWNP 12 (coastal fen)

\0‘\-0

2012 2013 2014 2015

2010 2011
|WNP 07 (coastal fen)

2013

2014

10 2011 2012 2015

WAP 05 (coastal fen)

04 -
0.2

00
20
1.0 1

10 2011 2012

0.6
04 A
0.2
0.0 - T T T
2010 2011 2012 2013

1.0 JWNP 26 (boreal spruce forest)
0.8
06
04
024

2013 2014 2015
WNP 23 (boreal spruce forest) /
0.8 -

08
06
04
02

O

10 'WNP 25 (boreal spruce forest)

————e e G — —— — — -
e —o—0
T

1.0 WNP 27 (boreal spruce forest)
08

06
04
0.2
00 A — . ‘ ‘

0.0 + T T T T 1
2010 2011 2012 2013 2014 2015

0.0 +
20

2011 2012 2013

10 2014

2015 2010 2011

2012 2013 2014 2015

00 T T T T |
2010 2011 2012 2013 2014 2015

WNP 33 (interior peat-plateau)

10 2011 2012 2013 2014 2015

02 A

0.0 WNP 32 (interior }'Jeal»}')lateauﬁ}*—/O
2010 2011 2012 2013 2014 20156

1.0 JwNp 24 (boreal spruce forest)

0.8

06

04

024

00 ’—7777@‘17—:“;:;:“‘—%7:0:6
2010 2011 2012 2013 2014 2015

Figure 2.14 WNP E/I results for the summer sampling period. Red dash line represents ‘poor’ threshold and the yellow dash line
represents ‘fair’ threshold. Note that the y-axis scale is from 0.00-1.00.
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Figure 2.15 WNP E/I results for the fall sampling period. Red dash line represents ‘poor’ threshold and the yellow dash line represents
“fair’ threshold. Note that the y-axis scale is from 0.00-0.30.



2.8 Tables

Table 2.1 VNP precipitation values from the Old Crow Airport weather station (Station
ID 2100800 and 2100805; Environment Canada, 2019) listed along with the 1971-2000
climate normals. A sampling ‘year’ has been defined as October to September in order to
capture full winter and summer records. No precipitation data were missing from 2006-
2007, 2007-2008, 2011-2012 and 2012-2013 sampling years. Less than 1% of the
precipitation data were missing from 2008-2009, 2009-2010, and 2014-2015 sampling
years. Less than 10% of the precipitation data were missing from the 2010-2011 sampling
year. For 2013-2014, > 85% of the precipitation data were missing. Annual totals are the

sum of all observations.

Year Total Precipitation ~ Winter (Oct-Apr) S
(winter-winter) (mm) Precipitation (mm) P (_I\/I_ay—_Sept)
recipitation (mm)
C'}Tg‘;igggg)a's 265.5 100.0 165.5
2006-2007 230.6 115.9 114.7
2007-2008 189.2 27.2 162.0
2008-2009 239.5 91.8 147.4
2009-2010 320.6 50.4 270.2
2010-2011 388.5 183.9 204.6
2011-2012 185.8 70.1 115.7
2012-2013 223.7 64.1 159.6
2013-2014 - - -
2014-2015 250.9 81.7 169.2
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Table 2.2 WNP precipitation values based on Environment and Climate Change Canada
Historical Weather data from the Churchill Airport weather station (Churchill Climate,
#5060608; Environment Canada, 2019) listed along with the 1971-2000 climate normals.
A sampling ‘year’ has been defined as October to September to capture full winter and
summer records. Annual and seasonal totals are the sum of all observations.

Year Total Precipitation ~ Winter (Oct-Apr) S
(winter-winter) (mm) Precipitation (mm) P (_I\/I_ay-_Sept)
recipitation (mm)
C';T;;igggg)a's 4316 167.7 263.9
2009-2010 423.8 62.9 360.9
2010-2011 253.1 46.0 207.1
2011-2012 417.0 164.9 252.1
2012-2013 257.7 45.2 2125
2013-2014 344.1 66.9 277.2
2014-2015 387.7 136.5 251.2
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Table 2.3 VNP and WNP 3-year E/I ratio thresholds. ‘Fair’ and ‘poor’ thresholds are
statistical representations of the 68™ and 95™ percentiles, respectively, on the mean, and
are analogous to 1 and 2 standard deviations above the mean for normal data. Separate
thresholds are set for the three lake categories in VNP (rainfall-dominated, snowmelt-
dominated, and intermediate) and the three lake categories in WNP (coastal fen, interior
peat plateau, and boreal spruce forest).

Lake Category Season ‘Good’ ‘Fair’ ‘Poor’

VNP  Rainfall-dominated Spring <045 045-0.63 >0.63

(R-D) Fall <066 066-091 >0091
Snowmelt-dominated  Spring <014 014-021 >021
(S-D) Fall <036 0.36-063 >0.63
Intermediate Spring <019 019-0.26 >0.26

0] Fall <027 027-046 >0.46

WNP Coastal fen Spring <0.09 0.09-016 >0.16
(CF) Summer <026 0.26-051 >051

Fall <010 0.10-0.16 >0.16

Interior peat plateau Spring <010 0.10-016 >0.16
(1PP) Summer <0.23 0.23-049 >049

Fall <010 0.10-0.15 >0.15

Boreal spruce forest Spring <0.06 0.06-0.08 >0.08
(BSF) Summer <0.09 0.09-0.13 >0.13

Fall <008 0.08-011 >0.11
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GS

Table 2.4 Summary of VNP E/I values per lake and season from 2007 to 2015. Green values represent lake E/I ratios that fall within
the ‘good’ condition, yellow represents lake E/I ratios that fall within the ‘fair’ condition, and red values represents lake E/I ratios that

are within the ‘poor’ condition.

2007 2008 2009 2010 2011 2012 2013 2014 2015
Lake Lake . . . . . . . . -
. Category Spring | Fall | Spring | Fall | Spring | Fall | Spring | Fall | Spring | Fall | Spring | Fall | Spring | Fall | Spring | Fall | Spring
06 R-D 0.78
19 R-D 0.72
29 R-D
34 R-D
35 R-D
37 R-D
38 R-D
46 R-D
49 R-D
58 R-D
26 I
48 |
11 S-D
55 S-D




Table 2.5 Summary of WNP E/I values per lake and season from 2010 to 2015. Green values represent lake E/I ratios that fall within
the ‘good’ condition, yellow represents lake E/I ratios that fall within the ‘fair’ condition, and red values represents lake E/I ratios that
are within the ‘poor’ condition.

2010 2011 2012 2013 2014 2015

Lake Lake

4 Category Spring | Summer | Fall | Spring | Summer | Fall | Spring | Summer | Fall | Spring | Summer | Fall | Spring | Summer | Fall | Spring | Summer | Fall

05 CF 1.28 \ 0.19\ 0.30 \ 0.45 017 075
o | o Fois | ot0 [R9EN o15 | ows~
0.26

12 CF 020  0.60 - ose 020 [JEERR] o4 0.81 |
s | o “om o | o Coon
0| o osz | ot m
21 CF 1.52 | 009 | 042 (KRN o011 | o038 0.23
32 Tl o013 275 019 o079 o016 EERIIAN 015 o021 099 |

33 IPP | 011 012 | 0.15 014
34 Tl 023 073 022 [JEEE o2 EERIEER 06 o022 om
5w Lon o] o [Jow o LR \
39 IPP | 1010 | 0.0 | 0.12
23 | BSF 0.26 o016 XY ooo 018 015 016 013 [EEEN
| o oon | otz o] 06
25 | BsF  [EOXCIMECEN 009 |
26 | BSF | 010 | 009 |

27 BSF 0.15 . 0.12 \

99




2.9 Chapter 2 Appendix
ISOTOPE FRAMEWORK
Meteorological Calculations

Temperature (T) and relative humidity (h) were calculated as the average
evaporation-flux-weighted values for VNP from 2007 to 2009 and for WNP from 2010 to
2012. In both cases utilized climate data was from Environment Canada (VNP: Station
ID 2100800 and 2100805; WNP: 5060608; Environment Canada, 2019). The average
ice-free season T and h values were flux-weighted based on estimates of potential

evapotranspiration following Thornthwaite (1948):

Traux (CC) =Z (Ta X E)/(Ey) [E.1]
haux (%) =X (h x E)/(Ey) [E.2]
where T, represents the monthly average temperature and h represents the monthly
average humidity. The value of E; represents the monthly potential evapotranspiration for
ice-free months using:

E; (cm)= 1.6 x (L/12) x (N/30) x ((10xT,)/)* [E.3]
where L represents average day length in hours in a month and N represents the number
of days in the month. 7 represents the thaw season heat index and a is a calculated
coefficient. | was calculated as:

1(°C) =2 ((Ta")/5) [E.4]

and the coefficient a is calculated as:

a=0.49239 + 0.01792 x /- 7.7 x 10° x /2 +6.75 x 107 x /® [E.5]
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Isotopic Framework Calculations

The isotopic framework parameters were calculated based on the linear resistance
model of Craig and Gordon (1965) as well as the approaches outlined in detail in
Gonfiantini (1986), Gibson and Edwards (2002), Edwards et al. (2004) and Yi et al.
(2008).

The LEL for both VNP and WNP was determined using a 3-year average (2007-
2009 and 2010-2012, respectively) of environmental conditions as well as calculated
flux-weighted values and pre-existing isotopic data. The LEL was determined as a
regression of the mean annual isotope composition of precipitation (dp), the limiting
steady-state isotope composition (Jss), and the theoretical limiting non-steady-state
composition of a water-body approaching complete desiccation (6*). For VNP
calculations, 6p was estimated from the intersection of the evaporation pan-predicted LEL
and the GMWL (Turner et al., 2010, 2014; Tondu et al., 2013). For WNP calculations, op
was obtained from the Canadian Network for Isotopes in Precipitation (CNIP). Mean dss.
was determined once equilibrium was estimated to be established within the deployed
evaporation pan for each year (refer to Figure 5a in Tondu et al., 2013 for VNP and

Figure 7 for WNP). &* was calculated from Gonfiantini (1986):

8 =(hdastex+e /a)/(h-ex-€ /a) [E.6]

where das Is the isotope composition of atmospheric moisture for the ice-free season, €x
is the kinetic enrichment factor, €” is the equilibrium enrichment factor and o is the

equilibrium liquid-vapour isotope fractionation factor.
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o for *80 and 8°H were derived using equations reported in Horita and Wesolowski
(1994):

1000Ina” = -7.685 + 6.7123 (10*/T) — 1.6664 (10°/T?) + 0.35041 (10%/T°)

for §*%0 and [E.7]

1000Ina” = 1158.8 (T3/10% — 1620.1 (T#10°) + 794.84 (T/10%) — 161.04 + 2.9992
(10%T3) [E.8]

for §°H, where temperature (T) represents flux-weighted temperature in Kelvin. The

equilibrium (€) enrichment factor was calculated as:

e =q -1 [E9]

and the kinetic (ex) enrichment factor was calculated as:

£ =0.0142 (- h) [E.10]
for *%0 and
£ = 0.0125 (1 - h) [E.11]

for §°H (Gonfiantini, 1986). Isotope composition of the ice-free season atmospheric
moisture (das) was calculated using the equation from Gibson et al. (1999):

Sas = [(BssL- €) /o - €k - 8p(L - h + €4)] / h [E.12]

Results of the isotope framework calculations are reported in Table 2.A3 for VNP and
Table 2.A4 for WNP.
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Calculating Evaporation to Inflow Ratios

The isotope compositions of individual lake input water and evaporative flux
were derived based on isotope mass-balance equations and the Yi et al. (2008) coupled
isotope tracer method. This includes balancing the volume of evaporative flux (6g) with
outflow (8.) to input water (8)). o, Is isotopically equivalent to lake water since liquid
outflow does not fractionate (Gibson and Edwards, 2002). Therefore, utilizing an isotope-
mass balance, isotope data can be quantified in terms of an evaporation to inflow (E/I)

ratio:

E/l = (8, —6L) / (0 — dL) [E.13]
where 9, can then be estimated by determining the point of intersection between the
GMWL and the lake-specific LEL (consisting of 8¢, 8., and & ) and where Sg represents

the isotope composition of the vapour derived from an evaporating lake. 6 was

calculated using Craig and Gordon (1965):

Se=[((BL-€)/a)-hdas-ex]/(1-h+ex) [E.14]
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BOOTSTRAPPING STATISTICAL ANALYSIS

Since the sample size for each category is relatively small, the random sampling and
resampling of a dataset with replacement, or bootstrapping, was applied to gamma
distributions of E/I ratios to establish ‘good’, ‘fair’, and ‘poor’ hydrological thresholds.
We bootstrapped or ‘re-sampled’ each seasonal lake category dataset 1,000 times and

calculated the mean 68™ and 95™ percentiles for each (Figure 2.A1).

10 4

count

0.0 0.1 0.2 03
E/l

Figure 2.A1 Sample of a bootstrapped dataset (WNP June Coastal Fen) where 200/1000
bootstrapped models are shown in grey, the red line represents the mean of all
bootstrapped models, and the blue lines represent the 68™ and 95™ percentiles used to
generate the thresholds.
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Figure 2.A2 The 3-year threshold calculations used for this research are accurate
representations of the data for both VNP and WNP. (a) Threshold calculations based on 1
to 9 years of data for spring samples of rainfall-dominated lakes in VNP. Dashed line
represents the mean threshold value (mean E/I = 0.63). (b) Threshold calculations based
on 1 to 7 years of data for spring samples of coastal fen lakes in WNP. Dashed line
represents the mean threshold value (mean E/I = 0.16).
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Table 2.A1 Select lake characteristics for VNP, modified from Tondu et al. (2013, p.
598). Lake categories were defined by Turner et al. (2010) and Tondu et al. (2013).

Approximate  Surface
Lla ; € Call_tgggry Latitude Longitude ppDepth Are?
(cm) (km?)
VNP 06 Rainfall 67°55°N  139°56’W 33 5.01
VNP 11 | Snowmelt  68°01’N  140°34°’W 78 0.07
VNP 19 Rainfall 68°17°N  140°31’W 86 0.11
VNP 26 | Intermediate  67°50°N  139°59°W 169 0.42
VNP 29 Rainfall 67°54°N  139°48°W 118 6.86
VNP 34 Rainfall 67°53°’N  139°27°W 154 6.11
VNP 35 Rainfall 67°58°N  139°37°'W 116 0.14
VNP 37 Rainfall 68°05°N  139°81’W 119 5.14
VNP 38 Rainfall 68°19°N  140°08°W 105 12.67
VNP 46 Rainfall 68°09°N  139°36’W 48 0.12
VNP 48 | Intermediate  98°11°N  139°52°W 70 1.31
VNP 49 Rainfall 68°04°’N  139°39°’W 124 1.15
VNP 55 | Snowmelt  67°50°N  139°45°W >500 0.02
VNP 58 Rainfall 67°32°N  139°51’W 255 -
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Table 2.A2 Select lake characteristics for WNP. Surface area was calculated by
Farquharson (2013). WNP 12 surface area is not reported due to low-resolution satellite
imagery. Lake depths are average values estimated from multiple field season (2010-
2015) observations.

Lake Approximate Surface

Lake ID Category Latitude Longitude [zce:r[;t)h (ﬁ:ﬁ%
WNP 05 Coastal fen  58.34223  -93.2645 15 2.29
WNP 07 Coastal fen  58.42721  -93.1782 30 25.84
WNP 12 Coastal fen  58.42558 -93.2689 15 -
WNP 15 Coastal fen  58.62001 -93.1710 30 93.72
WNP20 Coastal fen  58.66995  -93.4437 40 23.06
WNP 21 Coastal fen  58.66515  -93.4409 25 0.70
WNP 23 Boreal forest 57.83547  -94.1827 >200 1,087.51
WNP 24 Boreal forest 57.73882  -94.0051 >200 98.20
WNP 25 Boreal forest 57.70476  -94.0465 >300 2,686.41
WNP 26 Boreal forest 57.69803  -94.1149 >200 177.37
WNP 27 Boreal forest 57.61421  -93.9695 >300 1,196.03
WNP 32 '”tslr;’gaﬁ’fat 57.99007  -93.4593 60 0.53
WNP 33 '”tslr;?ga%eat 5805161  -93.5329 60 12.61
WNP 34 '”tslr;?ga%eat 58.04637  -03.6592 10 0.13
WNP 37 '”tslr;?ga%eat 58.0782  -93.6610 100 1,366.13
WNP 39 '”tslr;?ga%eat 5821463  -93.7076 >500 7,613.78
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Table 2.A3 Modified from Tondu et al. (2013), flux weighted ice-free season temperature
and relative humidity based on data from the Old Crow Airport weather station (Station
ID 2100800 and 2100805; Environment Canada, 2019) as well as parameters used to
construct the 3-year average isotope framework for VNP lakes.

Parameter 2007 2008 2009 3-yr average
T (K) 287.7 286.3 285.8 286.6
h (%) 62.6 64.0 66.5 64.4
o* (*0,%H)  1.0103,1.0910 1.0104,1.0927 1.0105,1.0934 1.0104, 1.0924
e* (**0, *H) %o 10.3,91.0 10.4,92.7 10.5,93.4 10.4, 92.4
ex (*°0, 2H) %o 5.3,4.7 5.1, 4.5 4.8,4.2 5.1,4.5
s (*O,?H) %0 -28.8,-216 -29.5, -220 -27.8, -216 -28.7,-217
dssL (PO, °H) %0 -11.8,-127 -12.4, -129 -11.7, -127 -12.0, -128
8* (**0, *H) %o -4.1, -87 -5.6, -93 -5.2, -94 -5.0, -91
s (**0, 2H) %o -24.1, -183 -24.2, -184 -24.1, -183 -24.1, -183
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Table 2.A4 Flux weighted ice-free season temperature and relative humidity based on
Environment and Climate Change Canada Historical Weather data from the Churchill
Airport weather station (Churchill Climate, #5060608; Environment Canada, 2019) as

well as parameters used to construct the 3-year average isotope framework for WNP
lakes.

Parameter 2010 2011 2012 3-yr average
T (K) 283.3 284.4 283.7 283.8
h (%) 80.2 77.4 78.1 78.6
o* (*0,?H)  1.0107,1.0968 1.0106,1.0952 1.0107,1.0963 1.0107, 1.0961
e* (*°0, °H) %o 10.7, 96.8 10.6, 95.2 10.7, 96.3 10.7, 96.1
ek (*°0, H) %o 28,25 32,28 31,27 3.0,2.7
Sas (PO, 2H) %0 -20.0, -183 -19.8, -185 -21.2, -200 -20.3, -189
Sss. (*°0, °H) %o -5.4, -66 -4.8,-63 -5.7,-70 -5.3, -66
8* (**0, *H) %o -1.9, -41 -0.9, -43 -2.0, -55 -1.6, -46
5 (%0, %H) %0  -17.2,-129 -17.2, -129 -17.2, -129 -17.2, -129
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Chapter 3: Use of water chemistry and carbon isotopes to assess effects
of Lesser Snow Geese disturbance on lakes in Wapusk National Park,

northern Manitoba

3.1 Introduction

Shallow lakes are abundant within many arctic and subarctic landscapes. These
aquatic ecosystems are considered highly productive northern oases, providing necessary
resources and habitat for wildlife and the traditional practices of indigenous cultures
(Rouse et al., 1997; Prowse et al., 2006; Schindler and Smol, 2006). However, they are
particularly responsive to environmental changes since small shifts in climate and
wildlife populations can substantially alter their hydrological, limnological, and
biogeochemical conditions via changes in water balance, nutrient cycling, and aquatic
habitat (Handa et al., 2002; Gregory-Eaves et al., 2004; Lim et al., 2005; Van Geest et al.,
2007; Coté et al., 2010; Sun et al., 2013; MacDonald et al., 2014). For example, shallow
lakes of Wapusk National Park (WNP) within the western Hudson Bay Lowlands (HBL)
of northern Manitoba provide important habitat and resources for a variety of wildlife,
particularly waterfowl populations, yet are considered vulnerable to environmental
stressors (Parks Canada, 2011; Wolfe et al., 2011a; Bouchard et al., 2013; MacDonald et
al., 2015).

During the past ~40 years, there has been a rapid increase (5-14% per year) in the
population density and nesting area range of the Lesser Snow Goose within WNP (LSG;
Chen caerulescens caerulescens; Batt et al., 1997; Jefferies et al., 2006; Alisauskas et al.,

2011; Peterson et al., 2013). This rapid population growth has been attributed to several
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factors that increase the amount of energy LSG can allocate to reproduction and survival
including: 1) nutrient subsidies at their wintering grounds and stopover locations due to
modifications in agricultural practices, 2) the creation of conservation refuges along
migratory flyways (e.g., Western Central and Mississippi flyways), and 3) warmer
nesting locations within Canada’s central Arctic and subarctic, adjacent to southern
Hudson Bay during the past ~50 years (Boyd et al., 1982; Batt, 1997; Abraham et al.
2005b; Jefferies et al., 2006; Peterson et al., 2013). This region has experienced some of
the greatest warming in the circumpolar North during the past ~50 years (Smith and
Burgess, 2004; Kaufman et al., 2009; Hochheim et al., 2010), which has the potential to
exacerbate LSG-disturbance on the HBL landscape. Parks Canada (2011) acknowledged
that the combination of expanding LSG population and climate warming may drastically
alter the ecological integrity of lakes in WNP, emphasizing the need for effective aquatic
ecosystem monitoring.

Due to the recent population growth, grubbing, nesting, and defecating activities
of LSG have increased in spatial coverage from <5 km?in 1969 to >300 km? in 2008,
extending farther inland from the coastal fen into the interior peat plateau ecotype of
WNP (Parks Canada, 2011). LSG arrive in WNP during early spring and alter the
landscape by extensive removal of vegetation cover through grubbing (the removal of
plant roots and rhizomes), therefore eliminating the important root system that binds soil
(Hik et al., 1992; Jefferies et al., 2003, Peterson et al., 2013). Between 1973 and 1993,
LSG activities led to the loss of >2,000 ha of coastal habitat along the northern La
Perouse Bay portion of WNP and >35,000 ha of habitat within the HBL (Jefferies et al.,

2006; Peterson et al., 2013).
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Removal of catchment vegetation and deposition of feces substantially alters the
limnology of affected lakes in WNP (MacDonald et al., 2014; 2015). Based on the
analysis of water chemistry from one lake disturbed by LSG compared to 15 undisturbed
lakes, MacDonald et al. (2014; 2015) identified a suite of limnological and carbon
isotope variables sensitive to catchment disturbance by LSG including specific
conductivity, 8"*Cpissolved inorganic Carbon (d1¢)» and A*Cpic-phytoplanton Particulate Organic Matter
eHyTorom). Results indicated that high values of specific conductivity were likely due to
the influx of dissolved ions from LSG-disturbed catchments (MacDonald et al., 2014;
2015). Additionally, high dissolved inorganic carbon demand and increased aquatic
productivity were inferred from the carbon isotope data (MacDonald et al., 2014). These
variables have been recommended for use in a long-term monitoring program for tracking
effects of LSG disturbance over a broader landscape within WNP. Here, we apply these
approaches to assess the effects LSG have on the WNP lakes within an ~1,800 km? sector
of the coastal fen and interior peat plateau landscapes where LSG disturbance is clearly
evident from field observations in portions of this landscape. This research focuses on
limnological and carbon isotope lake data collected in July 2015 and July 2016 and
specifically aims to 1) characterize how lake hydrology, limnology, and carbon behaviour
vary spatially across a gradient of LSG disturbance within a portion of WNP, 2) assemble
and synthesize data to identify spatial patterns and degree of LSG disturbance to lakes
within WNP, and 3) provide recommendations for continued monitoring of LSG

disturbance to lakes within WNP.
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3.2 Study Area

Wapusk National Park (WNP) was established in 1996 to protect a representative
portion of the western HBL. The park spans approximately 11,475 km?, containing the
transition between discontinuous and continuous permafrost and the boundary between
boreal forest and arctic tundra vegetation (Parks Canada, 2000). While WNP is covered
extensively by wetlands (~80%), the park includes six physiographic ecotypes: coastal
fen, coastal ridges and fen, transitional fen, coastal forested fen, interior peat plateau, and
forested peat plateau (Parks Canada, 2000). This study focuses on lakes located within
the coastal fen and interior peat plateau ecotypes since LSG population has expanded in
size, density and geographic location within these ecotypes (Figure 3.1). The fen
ecotypes are dominated by sedge and rush vegetation, with sparse terrestrial plant cover.

The interior peat plateau ecotype contains moss, lichen, and small shrubs.

Lake Locations and LSG Disturbance Classification

Forty-five lakes (WNP 42-86) were chosen to provide a spatial assessment of
LSG disturbance in the northern portion of WNP (Figure 3.1), which included 40 lakes in
the coastal fen and 5 lakes in the interior peat plateau. Lakes of similar size (average area
= 0.5 km?) and depth (< 1 m) with limited inflow and outflow were selected across the
study area to avoid confounding influence of lake size and basin hydrology. In 2016,
Parks Canada staff deemed that lake WNP 76A was too close to the coast since it was
experiencing salt water inundation and a replacement lake was selected farther inland
(WNP 76B; Figure 3.1a). Based on observations and specific conductivity values from

previous field campaigns (2010-2014), a preliminary gradient of LSG disturbance was
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identified across the WNP landscape from undisturbed (little to no LSG presence) to
actively-disturbed (LSG present, evidence of feces, nesting, and grubbing) to severely-
disturbed (barren landscape and lack of vegetation, potential past LSG presence) (Table
3.1, Figures 3.1, 3.2, Table 3.Al, and 3.A2). From these data, 29% of the study lakes
were considered disturbed (eight lakes were classified as actively-disturbed and five lakes
were classified as severely-disturbed), while the remainder (32, 71%) were considered

undisturbed.

Meteorological Conditions

Meteorological conditions for this region have been monitored at the Churchill
airport (Meteorological Service of Canada Station #5060608) since 1943, and air
temperature and precipitation values show marked seasonal variations (Environment
Canada, 2019; Figure 3.3). Based on 1971-2000 climate normals, annual mean air
temperature is -6.9°C. Monthly mean air temperature fluctuates substantially between
summer and winter seasons during the study period (2014-2016), comparable to the
1971-2000 climate normals (Figure 3.3a). However, maximum monthly summer and
winter temperatures were on average ~1.0°C warmer during the entire study period.

Average annual precipitation is 431.6 mm, 61% of which falls as rain between
May and September (263.9 mm), while the remainder falls as snow between October and
April (167.7 mm). Total annual precipitation was comparable between 2014-2015 and
2015-2016 seasons, with total winter and summer precipitation values below climate
normals (Table 3.2). However, almost 50% of summer rainfall (117.9 mm) in 2015

occurred in July prior to sampling (Figure 3.3b).
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3.3 Methods

Water samples were collected from each of the 45 study lakes via helicopter once
per summer (July 29-31, 2015, July 27-28, 2016) to characterize processes influencing
hydrology, limnology, and carbon behaviour of lakes undisturbed and disturbed by LSG

activities.

Hydrology

Water samples were collected at the edge of all 45 lakes at ~10 cm below the
water surface and stored in 30 mL high density polyethylene bottles for oxygen and
hydrogen stable isotope analysis. Samples were analyzed at the University of Waterloo
Environmental Isotope Laboratory (UW-EIL) via off-axis integrated cavity output
spectroscopy (O-AICOS). Isotope compositions are expressed as 8-values of 0 and ?H
in per mil (%o) relative to the Vienna Standard Mean Ocean Water (VSMOW) standard
(Osample = [(Rsample/Rvsmow) — 1] x 10% %o, where R is the **0/*°0 or ?H/*H ratio in sample
and VSMOW). Values of 5*°0 and ¢?H are normalized to -55.5 %o and -428 %o,
respectively, for Standard Light Antarctic Precipitation (Coplen, 1996). Analytical
uncertainties are standard deviations based on the in-run standards and are £0.2 %o for

8'%0 and 0.8 %o for 5°H (See Section 2.9 Chapter 2 Appendix for more details).

Limnology and Carbon Behaviour
In-situ measurements of water temperature, pH, and specific conductivity were
made at ~15 cm water depth using a YSI 600QS multiparameter probe. Water samples

were collected from the edge of each lake and stored in a 5 L carboy for nutrient
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analyses. After sample collection, all lake water samples for nutrient analyses were
transported by helicopter to the Churchill Northern Studies Centre (CNSC) for initial
processing, where water was passed through an 80 um mesh to remove large particles
that can interfere with concentration estimates and then stored in the dark at 4°C until
further analysis. The concentration of total Kjeldahl nitrogen (TKN, preserved with
0.02% H,SO,) and total phosphorus (TP) were measured at the Biogeochemistry Lab,
University of Waterloo, following standard methods (TKN = Bran Luebbe, Method No.
G-189-097; TP = Bran Luebbe, Method No. G-188-097; Seal Analytical, Seattle). For the
determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC),
water was filtered within 12 hours of collection (cellulose acetate filters: 0.4 um pore
size, 47 mm diameter) and stored in the dark at 4°C until analysis at Environment
Canada’s National Laboratory for Environmental Testing (NLET), Burlington, Ontario,
using standard methods (Environment Canada, 1994).

The carbon isotope ratio of dissolved inorganic carbon (613CD|C) was measured
from samples collected while in the field in 125 mL glass serum bottles with rubber
stoppers and needles to expel any excess air. Samples were then transported by helicopter
to the Churchill Northern Studies Centre (CNSC) and stored in the dark and at 4°C prior
to analysis at the UW-EIL. Samples for measurement of the carbon isotope ratio of
phytoplanktonic particulate organic matter (5*CpryTopom) Were collected by multiple
horizontal tows of a phytoplankton net (mesh size of 25 um). Water samples were then
passed through a 63 um mesh net to remove zooplankton and other large particles,
filtered onto pre-ashed Whatman® (GE Healthcare UK Limited, Little Chalfront, UK)

quartz filters (CAT no. 1851-047), and dried at 60 °C for 24 h in an oven, following
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MacDonald et al. (2014, 2015). HCI (12N) fumes were then used to remove carbonates
from the filters (Lorrain et al., 2003). The acidified filters were analyzed

for 8**CpryTorom at the UW-EIL. Stable carbon isotope ratios are reported as 5™>C (%o)
relative to the Vienna-PeeDee Belemnite (VPDB) standard. Additionally, the carbon
isotope fractionation was approximated by the difference between §"*Cp,c and
8BCpryTorom as per MacDonald et al. (2015) and is reported as ABCpic-pryToPOM (Fry,

2006; Coplen, 2011).

Numerical and Statistical Analyses

Multivariate ordinations by principal components analysis (PCA) were used to
assess variation among lakes in limnological conditions and carbon isotope values of
water and particulate organic matter during 2015 and 2016 (pH, TP, TKN, DIC, DOC,
§2Cp\c, and 813CpHYTop0M). To accomplish this, the ‘prcomp’ function in R Statistical
Environment was used (R Core Team, 2015). In the resulting ordination biplots, sample
scores for the study lakes were colour-coded according to their LSG-disturbance
categories (undisturbed, actively-disturbed, severely-disturbed) to explore for
limnological differences among the categories. Then, a series of ANOSIM tests, a
multivariate equivalent to 1-way ANOVA tests, with associated pairwise comparisons,
were run to determine if limnological conditions differed among the three LSG
disturbance categories. ANOSIM tests were performed separately for the 2015 and 2016
sampling years and were run using a function of the ‘vegan’ package in R Statistical
Environment (Oksanen et al., 2019). The ANOSIM test statistic, global R, ranges from 0

to 1 and represents the observed differences between groups of samples compared with
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the differences among replicates within each group. A test statistic (R value) of 0
indicates that the similarity between and within LSG disturbance categories is on average
the same, whereas a value of 1 indicates that replicates within a LSG disturbance
category are more similar to each other than to replicates of the other LSG disturbance
categories. P-values were generated by comparing the distribution within and across LSG
disturbance category rank (999 permutations) to the initial rank similarity (reported by
the global R value). Then, using univariate Kruskal-Wallis tests, we tested if each
limnological variable differed among the three LSG-disturbance categories. For Kruskal-
Wallis tests that produced a significant p-value, Dunn’s post-hoc pairwise comparisons
were run, which do not assume equal variances of limnological variables among the LSG
disturbance categories. For all statistical tests, alpha was set to 0.05. For both sampling
years, boxplots were used to compare the distribution of lake limnological variables
among lakes in the three LSG-disturbance categories. The Kruskal-Wallis tests and
Dunn’s post-hoc-tests and boxplots were all performed using SigmaPlot version 14.0

software (Systat Software Inc., San Jose, California).

Spatial interpolation

The level of spatial association among limnological results (specific conductivity,
pH, §*Coic, §**Cpryrorom, ACoic-pryTorom, and concentrations of TP, TKN, DIC, and
DOC) in 2015 and 2016 was assessed through calculation of Moran’s I coefficient, a
local indicator of spatial association expressed on a scale from 0 (weakest) to 1
(strongest) (Anselin, 1995). To explore spatial patterns of LSG disturbance across WNP,

inverse-distance-weighted (IDW) interpolated contour prediction maps of selected
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limnological data (variables with Moran’s I > 0.5) were generated following methods of
Turner et al. (2010, 2014).

To synthesize the spatial data into a single metric of LSG disturbance, minimum
and maximum values of variables with Moran’s I > 0.5 (specific conductivity, 8"*Cpyc,
8" Cpryrorom, and concentrations of TP and TKN) were individually scaled from 0 to 1

per lake using the following equation:

X=Xy
Xscaled = — [eq 1]

Xmax~Xmin
The scaled data for these five measures were then averaged at each lake to obtain a single
integrated measure of LSG disturbance for every sampling lake, where values
approaching 1 represent areas of higher LSG disturbance and values approaching 0
represent areas undisturbed by LSG. The averaged scaled value for each lake was

calculated using the following equation:

xscaled_WNP# = [eq 2]

(xscaled_cond + Xscaled_TP + Xscaled_TKN + Xscaled_8613CDIC + xscaled_SlBCPHYTOPOM)
5

Finally, an inverse-distance-weighted (IDW) interpolated contour prediction map of these
scaled limnological data was generated following methods of Turner et al. (2010, 2014).
The ArcGIS (ESRI) suite as well as the Spatial Statistics and Spatial Analyst toolboxes

were used for all spatial interpolations (ESRI, 2017).
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3.4 Results
Hydrology

Water isotope values for July 2015 do not show substantial variability among the
study lakes. Instead, values narrowly range from -11.5 to -8.1%o and -95.3 t0 -80.4%o for
80 and 8%H, respectively, and values for several lakes plot above the Local Evaporation
Line (LEL; Figure 3.4a). Both the low variability and positioning of lake water isotope
compositions above the LEL in 2015 are most likely due to a large amount of rainfall
during the month of July, just prior to and during sample collection (117.9 mm; Figure
3.3b). This rainfall likely caused a lowering of lake water isotope compositions,
homogenizing the hydrological conditions among the lakes. In July 2016, water isotope
compositions show considerably greater variability of values among lakes and values are
generally higher than in 2015 (-9.4 to -4.9%o and -86.6 t0 -65.8%o for '°0 and §°H,
respectively; Figure 3.4b). Greater influence of evaporation led to several lakes partially
desiccating in 2016 (WNP 51-56). Less rainfall occurred in summer 2016 compared to
2015 and no major rainfall events took place prior to sampling, yet some influence of
rainfall is evident because several of the lake water isotope compositions plot above the

LEL.

Comparison of limnological conditions and carbon behaviour among LSG-disturbance
categories

In 2015, the first two PCA axes explain 66.8% of the total variation in the
measured variables. Axis 1 explained 45.8% and separated sample scores based mainly

on pH, concentrations of nutrients (TP, TKN, DIC, DOC), and 8"*Cppyrorom (Figure
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3.5a). Axis 2 captured 21.0% of the variation and separated samples based on carbon
isotope values (8"3Cpjc). PCA axis 1 separated lakes in the severely-disturbed category
from those in the actively- and undisturbed categories (Figure 3.5a). Lakes in the
severely-disturbed category possessed relatively higher pH and concentrations of
nutrients (TP, TKN, DIC, DOC) than lakes in the other two categories. ANOSIM tests on
the 2015 limnological data identified that limnological conditions differ significantly
between at least one the three LSG disturbance categories (R = 0.649, P = 0.001).
Pairwise ANOSIM tests identify that limnological conditions within severely-disturbed
lakes differ significantly from conditions in the other two categories (undisturbed,
actively-disturbed; Table 3.3). However, the difference between undisturbed and
actively-disturbed lake categories are not significant (Table 3.3).

Univariate Kruskal-Wallis tests (Table 3.4) and Dunn’s post-hoc tests (Table 3.5)
identified that distributions of all the limnological variables (pH, §**Cpic, and
concentrations of TP, TKN, DIC, and DOC), except 8" *Cprytorowm, differ significantly
between severely-disturbed lakes and lakes in the other two categories, but they do not
differ significantly between actively-disturbed and undisturbed lakes (Figure 3.6, Table
3.5). The distribution of 8**CpryTtorom differs significantly between severely-disturbed
lakes and undisturbed lakes, but it does not differ significantly between lakes in the
actively-disturbed and undisturbed categories (Table 3.5).

In 2016, the first two PCA axes explain 70.7% of the total variation in the
measured limnological variables (Figure 3.5b). Axis 1 captured most of the total variation
(58.5%). Lakes with relatively high pH, nutrient concentrations (TP, TKN, DIC, DOC),

and 5"*Cphytorom Were positioned to the right along axis 1, whereas lakes with lower
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values of these variables and relatively higher values of 53Cpic Were positioned to the
left along axis 1. Sample scores were distinctly separated by the PCA ordination for lakes
in the three LSG-disturbance categories. The severely-disturbed lakes were positioned
farthest to the right along axis 1, associated with relatively high concentrations of
nutrients and high pH, and the highest §"*CpryTopom Values, as well as the lowest values
of 3%3Cpyc. In contrast, the undisturbed lakes possessed the highest values of 8*Cpic and
the lowest values of pH, nutrient concentrations (TP, TKN, DIC, DOC), and

8" Cprytorom. The lakes in the actively-disturbed category were characterized by
intermediate values of all the limnological variables. Sample scores for only two lakes
plot outside the range of the others in their disturbance category. ANOSIM tests on the
2016 limnological data identified that limnological conditions differ significantly among
the three LSG disturbance categories (R = 0.879, P = 0.001). Pairwise ANOSIM tests
identify that limnological conditions differ significantly among all three LSG disturbance
categories (Table 3.3).

Univariate Kruskal-Wallis tests (Table 3.4) and Dunn’s post-hoc tests (Table 3.5)
identified that distributions of all the limnological parameters (pH, TP, TKN, DIC, DOC,
8"Cpic, and 8 *CpryTopom) differ significantly among all three LSG-disturbance
categories in 2016 (Figure 3.6, Table 3.5). Interestingly, boxplots illustrate that
concentrations of TP, TKN, DIC and DOC span a much larger range in the severely-
disturbed lakes than the lakes in the other two categories (Figure 3.6).

A13CD|C-pHYTop0M values for the severely-disturbed category are lower than both
undisturbed and actively-disturbed lakes during both 2015 and 2016 (Figure 3.7a).

Comparable to limnological trends observed for 2015, there is no significant difference
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between the undisturbed and actively-disturbed categories (Figure 3.7a). However,
A¥Cpic.pryTorom Values during 2016 sequentially decrease along the gradient of
increasing LSG disturbance and show a significant difference between all three LSG
disturbance categories. C-isotope fractionation values around -20%o are expected when
there is sufficient dissolved CO, to support aquatic photosynthesis (Rau, 1978; Herczeg
and Fairbanks, 1987; Bade et al., 2004; Fry, 2006; MacDonald et al., 2014). In a
scatterplot of 8*3Cp)c versus 8*CpryTorom, severely-disturbed lake values fall above the
A =-20%o line, signifying isotope fractionation under conditions where dissolved CO,
concentrations are not in excess. In contrast, lakes in the undisturbed category and many
actively-disturbed categories fall below the A =-20%o line, signifying isotope

fractionation where dissolved CO; concentrations are in excess (Figure 3.7b).

Spatial Interpolation

All water chemistry parameters were explored for spatial associations, but only
those that achieved high Moran’s I levels (values above 0.5) are considered here (Figure
3.8). In 2015 and 2016, lakes with high specific conductivity located in the northern
portion of WNP, by La Perouse Bay, have been identified using inverse-distance-
weighted interpolation (Figure 3.8b, c). This area corresponds to lakes within actively-
and severely-disturbed LSG categories. Since the severely-disturbed lakes (WNP 52-56)
have substantially higher specific conductivity (2-year range = 3,872 to 7,066 uS/cm)
compared to other lakes (2-year range = 94 to 1,727 uS/cm), their signal is particularly

dominant within the inverse-distance-weighted interpolation. However, during the
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summer of 2016, lakes north/northwest of Thompson Point also had relatively high
specific conductivity values (average = 1,514 uS/cm; Figure 3.8¢c).

Three areas of elevated nutrient (TP, TKN) concentrations can be identified
(Figure 3.8d, e, f, g): 1) the northern region by La Perouse Bay, 2) north/northwest of
Thompson Point, and 3) the southern inland portion of the sampling area. The spatial
distribution of TP values is similar for 2015 and 2016 with elevated concentrations in
lakes close to La Perouse Bay (WNP 52-56; severely-disturbed), two lakes closer to
Thompson Point (WNP 72, actively-disturbed and 74, undisturbed), and two lakes in the
southern portion of our study area (WNP 85 and 86) both of which fall into the
undisturbed category (Figure 3.8d, €). TKN concentrations show similar spatial patterns
as TP concentrations, however, the three areas of elevated nutrient levels are more
pronounced in 2016 (Figure 3.8g) compared to 2015 (Figure 3.8f). Severely-disturbed
and actively-disturbed lakes within the La Perouse Bay area (WNP 52-46, 48, 50, and
51), an actively-disturbed lake north of Thompson Point (WNP 72) and several
undisturbed lakes located within the southern inland portion of our study area (WNP 78-
81, 85, and 86) all have elevated TKN concentrations.

In 2015, 8*3Cpc values do not show much spatial variability across the study area
(Moran’s I = 0.589, Figure 3.8h). However, spatial trends are more evident in 2016 with
lower 8"3Cpc values near La Perouse Bay (severely-disturbed lakes WNP 52-56 and
actively-disturbed lakes WNP 48, 50, 51, 57, 58, 59), by Thompson Point (actively-
disturbed lake WNP 72), and in the southern inland portion of the study area (undisturbed

lakes WNP 79, 80, 85, 86; Figure 3.8i).
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8" Cpryrorom Values during 2015 also do not show much spatial variability across
the study area (Moran’s I = 0.586), except for elevated values in lakes near La Perouse
Bay (actively-disturbed lakes, WNP 52-56; Figure 3.8j). However, spatial trends are
clearly visible in 2016 with higher 8"*CpryTrom Values especially by La Perouse Bay
(severely-disturbed lakes WNP 52-56 and actively-disturbed lakes WNP 48, 50, 51, 57,
59) and also along the coast, north/northwest of Thompson Point (actively-disturbed lake

WNP 72 and undisturbed lakes WNP 69, 70; Figure 3.8k).

3.5 Discussion

During the past ~40 years, WNP has experienced a rapid increase in LSG
population and a corresponding expansion in the LSG-disturbed geographic region (Batt
etal., 1997; Jefferies et al., 2006; Alisauskas et al., 2011; Peterson et al., 2013; Figures
3.1, 3.2). Previous studies have found that using standard limnological measurements
(e.g., specific conductivity) combined with carbon isotope variables (813CD|C,
8"Cprvrorom, ACoic.pryTorom) is Very informative and effectively captures differences
in limnological and carbon behaviour in LSG-disturbed lakes compared to unaffected
lakes (MacDonald et al., 2014, 2015). This research compiles two years of mid-summer
limnological and carbon isotope data from 45 lakes that span a LSG disturbance gradient
(undisturbed, actively-disturbed, severely-disturbed; Figure 3.2) across a portion of WNP
(Figures 3.1, 3.6, & 3.7). Spatial variability was found for several of the limnological and
carbon isotope variables corresponding to differing degrees of LSG disturbance. As
discussed below, three different areas of LSG disturbance were found representing

established, active, and emerging areas of LSG disturbance. Therefore, continued
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monitoring of LSG disturbance within WNP is critical to understand how freshwater

environments in WNP will respond to historical, active, and new LSG disturbance.

Variation of limnological conditions and carbon behaviour in relation to LSG
disturbance

Previous research on LSG disturbance within WNP compared results during an
entire ice-free season (summer) between 15 lakes that had minimal to no LSG
disturbance and one lake that had been subject to substantial LSG activity (MacDonald et
al., 2014). Results identified that carbon isotope measurements (e.g., 5-*Cpic) were more
informative than the standard water chemistry measurements (e.g., pH, concentrations of
TP, TKN, DOC) and captured marked differences in carbon behaviour between the
undisturbed lakes and the LSG-disturbed lake. In their study, lakes with little to no LSG
activity had mid-summer increases in 5:*Cpyc values, as expected, due to increasing
primary productivity and the preferential uptake of *2C by algae during photosynthesis
(Quay et al., 1986; Keeley and Sandquist, 1992; Wachniew and Rozanski, 1997,
MacDonald et al., 2014). However, the lake exposed to LSG disturbance showed a
marked difference in dissolved inorganic carbon behaviour with mid-summer declines in
83Cp\c values. MacDonald et al. (2014) attributed this difference in carbon behaviour to
chemically-enhanced CO, invasion, where LSG disturbance promoted high algal
production, high inorganic carbon demand, and high pH — conditions that led to strong
kinetic carbon isotope fractionation and a subsequent decrease in 813CD|C values as
reported elsewhere for lakes under similar conditions (Wanninkhof, 1985; Herczeg and
Fairbanks, 1987; Takahashi et al., 1990; Wanninkhof and Knox, 1996; Bade et al., 2004

Bade and Cole, 2006). It remained unknown, however, if this difference in carbon
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behaviour at the one LSG disturbed lake was typical or representative of other lakes
subjected to LSG disturbance.

In this study, higher mid-summer values of specific conductivity, pH,
concentrations of TP, TKN, DIC, and DOC, and 8"*Cppyropom paired with lower mid-
summer values of 8*3Cp,c and A™*Cpic.prvTorom Values were characteristic of severely-
disturbed lakes when compared to undisturbed and actively-disturbed lakes (Figures 3.6,
3.7). However, results from 2016 indicate a clear LSG disturbance gradient with
increasing values of specific conductivity, pH, concentrations of TP, TKN, DIC, and
DOC, and §Corvtorom paired with decreasing values of §Cpic and A¥®Cpic-payTorom,
as LSG disturbance increased from undisturbed to actively-disturbed to severely-
disturbed lakes (Figures 3.6, 3.7). Reduced evidence of sensitivity to LSG disturbance
during 2015 can be attributed to substantial rainfall that occurred during the month of
July prior to and during sampling (117.9 mm; Figure 3.3). This high amount of rainfall
not only caused lowering of lake water isotope compositions and homogenized the
hydrological conditions of the lakes (Figure 3.4a), but it also homogenized the
limnological conditions, evidently dampening the signal of LSG disturbance on the
sampling lakes (Figures 3.6, 3.7). As observed, substantial precipitation is ineffective at
influencing the limnological conditions and carbon behaviour at the severely-disturbed
lakes (Figures 3.6, 3.7)

Even with the dampening effect of heavy rainfall prior to sampling in 2015, this
study has identified clear differences in nutrient concentrations between severely-
disturbed lakes and the remaining sampled WNP lakes (undisturbed and actively-

disturbed lakes). Furthermore, in 2016, a stronger gradient in nutrient concentrations is
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observed between all three LSG-disturbance categories. Previous studies did not find
differences in the concentrations of major nutrients (e.g., TKN, TP) when comparing one
sampled LSG-disturbed lake with non-LSG disturbed sites. However, in this study,
observed higher nutrient levels in LSG-disturbed lakes can likely be attributed to the
input of nutrients derived from feces and soil erosion/runoff from the catchment. We
speculate that the one LSG-disturbed lake chosen by MacDonald et al. (2014) was not
indicative of all LSG-disturbed lakes and did not capture the full spectrum of
limnological differences caused by LSG disturbance.

In contrast to the nutrient concentration results, patterns in the carbon isotope data
align with the findings of MacDonald et al. (2014). Lower 8*Cp\c, higher 8"*CpryTopom,
and lower A™Cpc.pryTorom Values were observed with increasing LSG-disturbance
(Figure 3.6, 3.7). These patterns, paired with high pH (>9) and high aquatic productivity,
indicate demand for CO, exceeds rates of supply, consistent with the hypothesis of
MacDonald et al. (2014) of chemically-enhanced CO, influencing carbon behaviour in
the severely disturbed lakes.

Another possible explanation for the lower 53Cpic values within LSG-disturbed
lakes is an elevated supply of soil-derived isotopically-depleted DIC from the catchment
(Figure 3.6). This hypothesis was previously discounted by MacDonald et al. (2014) due
to dry climate conditions during their 2010 mid-summer sampling period (e.g., lake
desiccation, no surface inflow). However, desiccation was not observed during the 2015
and 2016 mid-summer sampling periods and a large amount of rainfall occurred directly
prior to 2015 sampling (~50% of summer rainfall). Indeed, runoff could provide an

overarching mechanism that explains the observed decrease in §*Cp\c values, increase in
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DIC concentrations, increased nutrient (TP, TKN) concentrations, as well as increased
specific conductivity (Figure 3.6, 3.8). This increase in specific conductivity is likely
associated with increased erosional input of dissolved ions caused by LSG grubbing and
the removal of catchment vegetation and root systems within the saline HBL soils
(Jefferies and Rockwell, 2002; Parks Canada, 2011; MacDonald et al., 2014, 2015).
Despite the increasing supply of carbon from the catchment, intense aquatic productivity
likely accounts for the low A™*Cpic.prvTorom Values in the LSG-disturbed lakes. Thus,
based on our results, both chemically-enhanced CO, invasion and catchment runoff may
explain observed patterns in the limnological and carbon isotope data among LSG-

disturbance categories.

Spatial patterns of LSG disturbance

From a spatial perspective, the limnological and carbon isotope variables
collectively identify three distinct areas of LSG disturbance: 1) the area by La Perouse
Bay, 2) the landscape to the north and northwest of Thompson Point, and 3) the inland
area in the southern portion of the study region (Figure 3.8). Both La Perouse Bay and
Thompson Point are areas that have been previously identified by researchers and Parks
Canada staff as regions of extensive LSG nesting and disturbance (Jefferies and
Rockwell, 2002; Rockwell et al., 2009; Parks Canada, 2011). The La Perouse Bay region
has sustained the longest and most intense disturbance by LSG (Jefferies and Rockwell,
2002; Parks Canada, 2011; Rockwell et al., 2009; Koons et al., 2014). This region is
characterized by elevated concentrations of specific conductivity and nutrients as well as

low values of 8*3Cp)c. The coastal region near Thompson Point was the location of a
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LSG short-stop in 2001, caused by harsh weather. Consequently, a large number of geese
were forced to nest at Thompson Point (Parks Canada, 2011; Rockwell et al., 2009). The
offspring of these geese now consider this location home and have increasingly nested
there since 2003 with >10,000 nesting pairs returning to this location every spring (Parks
Canada, 2011; Rockwell et al., 2009). This area is characterized by slightly elevated
specific conductivity (compared to the La Perouse Bay region), low values of §**Cpc,
and elevated concentrations of nutrients.

Field observations in the third area of apparent LSG disturbance located within
the southern portion of the study area indicated the presence of LSG feces and feathers,
but no signs of grubbing. These lakes are designated as undisturbed lakes since they did
not show elevated specific conductivity levels and there was minimal goose presence.
This area did, however, have elevated concentrations of nutrients and low values of
8"Cpic in 2016 (Figure 3.8e, g). These elevated nutrient concentrations, coupled with
low 8"Cpc values, could be the first indication that LSG disturbance is expanding from
the traditional LSG nesting locales (e.g., La Perouse Bay, Thompson Point) and these
lakes could potentially be transitioning from undisturbed to actively-disturbed. LSG
disturbance is a plausible explanation for the high nutrient concentrations in this southern
portion of our study area, especially since field observations detected the presence of
geese.

To synthesize the spatial patterns of LSG disturbance, scaled specific
conductivity, TP, TKN, §*Cp\c, and 8"*CpryTopom Values from 2016 were aggregated
using equations 1 and 2. Results are displayed using inverse-distance-weighted

interpolations (Figure 3.9). Note that 2015 data were not used for this synthesis due to the
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reduced sensitivity to LSG disturbance attributed to substantial rainfall prior to and
during sampling. Based on this metric, La Perouse Bay, the area north/northwest of
Thompson Point, and the southern portion of our study area all show elevated scaled
values and indicate areas of LSG disturbance within our study area (Figure 3.9). The
oldest, established location of LSG disturbance by La Perouse Bay is characterized by the
highest scaled values, which approach 1. The location of the 2001 LSG short-stop, where
LSG are known to be currently active, is indicated by elevated scaled values
north/northwest of Thompson Point. Finally, the newly emerging area of LSG can be
identified by elevated scaled values in the inland area in the southern portion of the study
area. From a monitoring perspective, Figure 3.9 on its own depicts the compilation of
effects of all limnological and carbon isotope variables that are deemed sensitive to LSG
disturbance and identifies old, current, and emerging areas of LSG disturbance (La
Perouse Bay, north/northwest of Thompson Point, and inland area in the southern portion
of study area, respectively).

Two important assumptions for this technique are 1) that each variable is equally
responsive to LSG disturbance, and 2) outliers can exert control on the final product.
Additionally, it is important to note that a suite of limnological and carbon isotope
variables (specific conductivity, TP, TKN, 813CD|C, 613CpHYTop0M) was critical to identify
these three different areas of LSG disturbance. Specific conductivity, while perhaps the
easiest variable to measure more frequently, would not, on its own, capture the other two
areas of supposed disturbance (Thompson Point and the southern portion of our study

area).
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3.6 Conclusions and Recommendations

This research aimed to track and identify the degree of LSG disturbance on the
freshwater lakes within an ~1800 km? sector of WNP. A suite of limnological and carbon
isotope variables supported a gradient of LSG disturbance where increasing LSG
disturbance corresponds to increasing values of specific conductivity, pH, nutrient
concentrations (TP, TKN), DIC and DOC concentrations, and §*Cpryropom as well as
decreasing values of 8*Cpic and A™Cpic.pryTorom, representing increased productivity,
chemically-enhanced CO; invasion, and catchment runoff. These patterns were more
evident in 2016 as compared to 2015 because of reduced sensitivity to LSG disturbance
attributed to substantial rainfall that occurred prior to and during the 2015 sampling trip.
Through spatial analysis, three distinct areas affected by LSG disturbance were identified
that represent established (La Perouse Bay), current (north/northwest of Thompson
Point), and emerging (inland area in the southern portion of the study region) areas of
LSG disturbance. Baldwin et al. (2018) recently reported that the growth rate of the LSG
population has decreased simultaneously with static or increasing adult survival,
implying that recruitment rates themselves must be decreasing. While this is good news
for the landscape, Baldwin et al. (2018) also mentioned that there is incomplete
knowledge regarding the carrying capacity of arctic habitats as well as how much habitat
has been negatively affected by the influences of LSG disturbance. Results presented
here provide other researchers as well as Parks Canada with improved knowledge of
areas and degree of aquatic disturbance from LSG activities and will aid in determining
how these LSG-affected freshwater habitats evolve through ongoing monitoring.

Recommendations for LSG disturbance monitoring within WNP are described below.
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Sampling lakes once per season

We propose that one sampling of water chemistry as well as carbon isotope
compositions of DIC and phytoplankton at peak primary productivity (e.g., mid-summer)
is sufficient to delineate a range of conditions and influence of LSG disturbance on WNP
lakes. Although sampling multiple times during the ice-free season, as suggested by
MacDonald et al. (2014), would be ideal for tracking seasonal variability, it is not always
sustainable and feasible (e.g., financial, time, available personnel constraints). The results
of this research were able to capture major differences in limnology and carbon
behaviour among three unique LSG-disturbance categories (when not masked by the
effects of rainfall, as occurred in 2015). This finding is important considering the desire
to sustain a cost-efficient and long-term LSG-disturbance monitoring program led by

WNP (Parks Canada, 2011; Baldwin et al., 2018).

A suite of limnological variables are necessary to measure the degree of LSG disturbance
This study substantiates the utility of a suite of limnological variables sensitive to
catchment disturbance by LSG including pH, specific conductivity, total phosphorus
(TP), total Kjeldahl nitrogen (TKN), and carbon isotope measures (813CDi550|\,ed Inorganic
Carbon (DIC)> '~ Cphytoplanktonic Particulate Organic Mater (PHYToPOM), and A Cpic.pryTopom). Previous
research found differing nutrient concentration trends than our own research and
suggested that they may not be as important to monitor (MacDonald et al., 2014).
However, our research across 45 lakes found that increasing nutrient concentrations
paired with decreasing 83Cp\c values corresponded with increasing LSG disturbance and

can identify potential early stages of disturbance within WNP lakes.
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For a sustainable, long-term monitoring program, we propose obtaining specific
conductivity and field observations from all 45 lakes annually since they are simple and
cost-effective measures and then sampling the full suite of water chemistry and carbon
isotope variables from all lakes every other or every three years depending on funding.
We also suggest the incorporation of yearly water isotope measurements given the
potential confounding effects of rainfall on detecting limnological consequences of LSG

disturbance, as occurred in 2015.

Spatial monitoring of LSG disturbance within WNP: A work in progress

It should be noted that these 45 lakes were chosen as part of a preliminary
assessment of the spatial extent of LSG disturbance. It is not unreasonable to add new
lakes to the sampling list as LSG disturbance continues to shift and change across the
WNP landscape. However, repeated sampling over several years of the same lakes
provide the basis for examining LSG disturbance trends over time and the potential to
identify new areas of disturbance, areas of increasing disturbance, or perhaps even the
first signs of post-disturbance recovery, especially since LSG populations may be
stabilizing (Baldwin et al., 2018). Finally, one of the most important contributions of this
work is the generation of a single map that synthesizes data to identify areas and the
degree of LSG disturbance. This synthesis map can be used as a management tool to
address and track LSG disturbance within WNP, especially after multiple years of data
have been compiled. Trends in the cumulative scaled data could then be compared over

time as well as spatially.
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3.7 Figures
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Figure 3.1 a) Map showing the location of sampling sites within Wapusk National Park.
Black circles represent sampling lakes spanning the coastal fen (CF) and interior peat
plateau-palsa bog (IPP) ecotypes. The approximate boundary between these two ecotypes
is represented by the black dashed line. Shaded areas represent the area of Lesser Snow
Goose (LSG) nesting habitat over time and include potential areas for LSG nesting
location expansion (Parks Canada, 2009). b) An estimate of WNP LSG population over
time based on surveys; the solid line represents a 3-year running average (modified from
Abraham et al., 2005b pg. 843). Photographs showing evidence of LSG disturbance: c)
LSG grubbing (photo credit: L. MacDonald), d) LSG feces, e) vegetation removal
adjacent to a sampling lake, and f) large-scale vegetation removal in a LSG-disturbed
area.
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Figure 3.2 Gradient of LSG disturbance within WNP based on extensive observations
and conductivity values from 2010-2014 field campaigns: a) undisturbed landscape; b)
undisturbed lake (photo credit: L. MacDonald); c) actively-disturbed landscape; d)
actively-disturbed landscape adjacent to a sampling lake, depicting grubbing (photo
credit: L. MacDonald); e) severely-disturbed landscape; f) severely-disturbed landscape,
no vegetation adjacent to a sampling lake.
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Figure 3.3 Wapusk National Park meteorological data compared to 1971-2000 climate
normal; a) 2014-2015 sampling year and b) 2015-2016 sampling year. Data were
compiled using Environment and Climate Change Canada Historical Weather data from
the Churchill Airport weather station (Churchill Climate, #5060608).
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Figure 3.4 5'0-8%H graphs showing the lake water isotope values (black circles) for a)
July 2015 and b) July 2016. Isotope values are plotted with the Global Meteoric Water
Line (GMWL; Craig, 1961) and the Local Evaporation Line, which is comprised of 6p
(mean annual isotope composition of precipitation), dss. (Steady-state limiting - isotope
value of lake water where inputs equal outputs), and 6* (the theoretical isotope value of
the last drop of water in a lake prior to desiccation). Refer to Chapter 2 for the
methodology on how these values are calculated.

95



N
1

PC2 (21.0% explained var.)
o

@  Undisturbed
@ Actively disturbed
@ Sewerely disturbed

4 -2 0 2 4 6
PC1 (45.8% explained var.)

PC2 (12.2% explained var.)

@ Undsturbed

o Actively disturbed
® Sewrely disturbed

4 2 0 2 4 6 8
PC1 (58.5% explained var.)

Figure 3.5 Principal components analysis (PCA) ordination biplot comparing
limnological conditions among lakes in the three categories of Lesser Snow Goose
disturbance: a) July 2015 and b) July 2016.
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Figure 3.6 Boxplots depicting data for limnological parameters; a) pH, b) TP, c) TKN, d)
DIC, e) DOC, f) 8*3Cpic, and g) 6**CpryTorom. Each plot contains data from all three
categories of Lesser Snow Goose disturbance: undisturbed (n = 32), actively disturbed (n
= 8), and severely disturbed (n = 5) for the two sampling years (2015-2016). Capital
letters are used to present results of the Dunn’s post-hoc tests that display statistically
significant differences or not between LSG-disturbance categories.
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Figure 3.7 a) Boxplots depicting A" Cpc.pryTorom Values for 2015 and 2016. Data are
from all three categories of Lesser Snow Goose (LSG) disturbance; undisturbed (n = 32),
actively disturbed (n = 8), and severely disturbed (n = 5). Horizontal dashed line
represents the photosynthetic isotope fractionation of -20%o, representing sufficient
dissolved CO, concentrations (Rau, 1978; Herczeg and Fairbanks, 1987; Bade et al.,
2004; Fry, 2006; MacDonald et al., 2014). Letters A, B, and C represent statistically
defined groupings. b) 8*3Cp\c versus 8**CpryTorom depicting the 20%o offset representing
the theoretical value of photosynthetic isotopic fractionation (dashed line represents A = -
20%o). Lake values are separated by defined LSG disturbance category; green =
undisturbed, yellow = actively disturbed, red = severely disturbed. Circles represent 2015
and triangles represent 2016 values.
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Figure 3.8 a) From Figure 1, the location of sampling sites within WNP. Maps showing the inverse-distance-weighted interpolation
values of b) 2015 conductivity (range = 94 to 7,066 uS/cm), ¢) 2016 conductivity (range = 119 to 7,056 puS/cm), d) 2015 total
phosphorus (TP; range = 0.004 to 0.208 pg/L), e) 2016 TP (range = 0.017 to 0.936 ug/L), f) 2015 total Kjeldahl nitrogen (TKN; range
=0.132 t0 3.972 mg/L), g) 2016 TKN (range = 0.686 to 29.601 mg/L), g) 2015 5"*Cpc (range = -15.29 to -2.22 %o VPDB), h) 2016
8"Cpic (range = -8.45 t0 -1.47 %o VPDB), i) 2015 8"*Cppyropom (range = -28.22 to -23.09 %. VPDBY), and j) 2016 "*CpryTorom
(range =-28.62 to -17.37 %o VPDB). Lower values are represented by blue and higher values represented by red.



Figure 3.9 Map showing the inverse-distance-weighted interpolations of scaled values
(conductivity, TP, TKN, 8**Cpjc and 8"*Cpryropom; range = 0.029 to 0.856) for 20186.
Lower values are represented by blue and higher values represented by red.
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3.8 Tables

Table 3.1 Field-based classification used to distinguish the three categories of Lesser
Snow Goose disturbance to lakes in WNP (See Appendix Table Al for a complete list of
lakes and field observations).

Undisturbed  Actively Disturbed  Severely Disturbed

. LSG on-site, Barren landscape,
Pristine . . A
. actively using the soil visible, few
Visual landscape, land ite but |
indicators lack of LSG andscape, some LSG on-5|te_ ut less
on-site dead vegetation than Actively
(grubbing) Disturbed sites
Conductivity g4 5/em  500-3000 pS/em >3000 pS/cm
Values
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Table 3.2 Wapusk National Park precipitation values compared to 1971-2000 climate
normals. Data were compiled using Environment and Climate Change Canada Historical
Weather data from the Churchill Airport weather station (Churchill Climate, #5060608;
Environment Canada, 2019).

Year Total precipitation ~ Winter (Oct-Apr) SHEr
(winter-winter) (mm) Precipitation (mm) S,
Precipitation (mm)
Climate Normals
(1971-2000) 431.6 167.7 263.9
2014-2015 387.7 136.5 251.2
2015-2016 345.8 106.0 239.8
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Table 3.3 Results of the analysis of similarity (ANOSIM) pairwise test between the three
LSG disturbance categories (undisturbed, actively-disturbed, severely-disturbed) for 2015
(R =0.649, p = 0.001, r* = 0.62) and 2016 (R = 0.879, p = 0.001, r* = 0.77) data. All P-
values are statistically significant at alpha = 0.05 (bold values represent statistical
significance).

2015 2016

R statistic P-value R statistic P-value

Undisturbed vs.

Actively disturbed 0.652 0.667 0.856 0.009
Actively disturbed vs.

Severely disturbed 0.603 0.042 0.844 0.037
Undisturbed vs. 0.601 0.013 0.937 0.001

Severely disturbed
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Table 3.4 P-values from Kruskal-Wallis tests that compared values of limnological
variables among lakes within the Lesser Snow Goose disturbance categories
(undisturbed, actively disturbed, and severely disturbed). All P-values are statistically
significant at alpha = 0.05 (bold values represent statistical significance).

Limnological Parameters 2015 2016
pH 0.001 0.001

TP 0.002 0.001

TKN 0.001 0.001

DIC 0.001 0.001

DOC 0.001 0.001

8"*Coic 0.004 0.001

8" CrryTopom 0.015 0.001
A"Cpic-pHyTOPOM 0.002 0.000
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Table 3.5 P-values from post-hoc Dunn’s test to determine which specific lake categories
(undisturbed, actively disturbed, severely disturbed) were significant from the others in
2015 and 2016. The three different comparison columns are: undisturbed vs. actively
disturbed, actively disturbed vs. severely disturbed, and undisturbed vs. severely
disturbed. P-values < 0.05 represent significant difference. Bold values represent
statistically significant values.

. . Undisturbed Actlvely Undisturbed
Limnological . disturbed
Parameters Vs'.ACtIVEIY vs. Severely vs..Severer
disturbed . disturbed
disturbed
2015
pH 1.000 0.016 0.010
TP 1.000 0.004 0.002
TKN 0.410 0.001 0.001
DIC 0.395 0.001 0.001
DOC 0.786 0.004 0.000
8Coic 1.000 0.008 0.004
8 CrryTorom 0.153 0.293 0.027
A¥Cpic.prvToroMm 1.000 0.043 0.001
2016
pH 1.000 0.016 0.010
TP 1.000 0.004 0.002
TKN 0.410 0.001 0.001
DIC 0.395 0.001 0.001
DOC 0.786 0.004 0.000
8Coic 1.000 0.008 0.004
83CrhvyTtorom 0.153 0.293 0.027
AYCpicprvToroM 1.000 0.043 0.001
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3.9 Chapter 3 Appendix

Table 3.A1 Key July 2015 field observations and conductivity values of Lesser Snow

Goose (LSG) disturbance for the 45 sampling lakes within Wapusk National Park.

Yellow represents lakes within the actively disturbed LSG-disturbance category, red
represents lakes within the severely disturbed LSG-disturbance category, and green

represents lakes that fall within the undisturbed LSG-disturbance category.

Lake ComtIEigy Field Observations
(US/cm)
240 Few feathers and feces
215 Feces
220 Few feathers and feces
200 Feces
274 Feces
298 Feces
809 Feces, tracks, geese present
108 Feces
971 Feces
926 Feces, tracks, geese present
No geese present, lack of vegetation,
3872 .
exposed sediment
5714 No geese present, lack of vegetation,
exposed sediment
5356 No geese present, lack of vegetation,
exposed sediment
6948 No geese present, lack of vegetation,
exposed sediment
7066 No geese present, lack of vegetation,
exposed sediment
WAP 57 606 Feces, geese present
WAP 58 672 Feces
WAP 59 1207 Feathers, feces, tracks
450 Few feathers and feces
301 no LSG presence
324 no LSG presence
458 Feathers, feces, tracks
787 Feathers, feces, tracks, grubbing,
geese present
452 Feathers, feces, tracks, geese present
187 Few feathers and feces
343 Few feathers and feces
164 no LSG presence
98 no LSG presence
913 no LSG presence
151 Few feathers and feces
1998 Feathers, feces, grubbing,
geese present
247 Few feathers and feces
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WAP 86

370

Few feathers and feces

979 no LSG presence
332 Few feathers and feces
170 feathers

243 no LSG presence

94 Feathers and fresh feces present
160 Few feathers and feces
166 Feces

257 Few feathers and feces
334 Few feathers and feces
473 Few feathers and feces
111 Few feathers and feces
177 Feathers, feces, grubbing,

geese present
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Table 3.A2 Key July 2016 field observations and conductivity values of Lesser Snow
Goose (LSG) disturbance for the 45 sampling lakes within Wapusk National Park.
Yellow represents lakes within the actively disturbed LSG-disturbance category, red
represents lakes within the severely disturbed LSG-disturbance category, and green
represents lakes that fall within the undisturbed LSG-disturbance category.

Lake e a7 Field Observations
(US/cm)
248 Few feathers and feces
258 Few feathers and feces
252 Few feathers and feces
254 Few feathers and feces
183 Few feathers and feces
145 Some feathers, feces, tracks
WAP 48 2872 Feces, tracks, geese present,
grubbing
383 Few feathers and feces
WAP 50 2203 Feces, grubbing
WAP 51 2154 Feces, tracks, geese present, possible
grubbing
No geese present, lack of vegetation,
6146 )
exposed sediment
6958 No geese present, lack of vegetation,
exposed sediment
7056 No geese present, lack of vegetation,
exposed sediment
6433 No geese present, lack of vegetation,
exposed sediment
7023 No geese present, lack of vegetation,
exposed sediment
WAP 57 1193 Feathers, feces, geese present
WAP 58 1307 Few feathers
WAP 59 1275 Feathers, feces, tracks
480 Few feathers and feces
296 no LSG presence
361 no LSG presence
483 Feathers, feces, tracks
386 Few feathers, feces, grubbing,
geese present
119 Feathers, feces, tracks, grubbing,
geese present
189 Feathers, feces, tracks
440 Few feathers and feces
376 Few feathers and feces
195 no LSG presence
303 Few feathers and feces
121 Few feathers and feces
WAP 72 1727 Feathers, feces, grubbing,
geese present
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WAP 86

373 Few feathers and feces
256 Feces, tracks, and grubbing
410 Few feathers and feces
1301 Few feathers and feces
261 Feces

371 Few feathers and feces
516 Few feathers and feces
329 Feces, tracks

306 Few feathers and feces
261 Few feathers and feces
282 Few feathers and feces
118 Few feathers and feces
128 Few feathers and feces
573 Few feathers and feces
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Chapter 4: Translating science into a sustainable, long-term monitoring program

Canada is the second-largest polar nation in the world and recently, much
attention has focused on social, economic, and governance development in the North,
Arctic sovereignty, as well as concerns related to northern environmental changes in
response to climate warming (Government of Canada, 2009; Bush and Lemmen, 2019).
The Government of Canada has taken steps to ensure that northern ecosystems are
protected for future Canadian generations through the creation of Canada’s Northern
Strategy (Government of Canada, 2009). This strategy emphasizes becoming a global
leader in Arctic science and focuses on the importance of community-oriented and
collaborative science and technology leadership and research in the North by
incorporating the people and institutions that reside, utilize, and study the landscape year-
round that we, as researchers, only typically visit for episodes of field work (Government
of Canada, 2009). As southern scientists, we can recognize the significance of this strong
governmental message on northern climate-related research and are typically motivated
to answer the unending questions that arise throughout the scientific process. In recent
years, a new research paradigm in northern Canada has emerged, where collaborative,
interdisciplinary, and community-driven research reflects northern priorities and leads to
action (Graham and Fortier, 2005; Wolfe et al., 2007a, 2011; Balasubramaniam, 2009;
ISAC, 2012; Tondu et al., 2014; Adams et al., 2014).

Conducting northern, collaborative, and interdisciplinary research to address the
priorities of communities and tackle the large environmental problems (e.g., climate
warming, permafrost thaw, change occurring to freshwater resources) is often complex

and challenging due to financial constraints, timeline limitations (e.g., short field seasons,
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graduate student program lengths), and coordinating southern-based university research
efforts with northern priorities. My research directly addresses two other challenges
associated with the new northern research paradigm: *developing and maintaining
partnerships and collaboration with local governmental agencies (Parks Canada) and
community-based organizations and “operationalizing agency-led monitoring in
collaboration with university-based researchers.

My own field work and data collection led to the discovery of important changes
to the lakes within Wapusk National Park as a result of multiple, complex stressors
(including climate warming, changing precipitation patterns, waterfow! disturbance). For
example, limnological trends indicative of chemically-enhanced CO; invasion, elevated
catchment runoff of nutrients, carbon and ions, as well as enhanced aquatic productivity,
increasingly influenced the nutrient and carbon balance of lakes along a Lesser Snow
Goose disturbance gradient. These trends can be exacerbated if ice-free season duration,
summer water temperatures, and lake water evaporation increase due to climate warming.
| realized that strictly completing research science for the sake of improving our own
scientific knowledge was not enough. It became a goal and passion to create long-lasting,
collaborative relationships with local governmental (e.g., Parks Canada) and community-
based (Churchill Northern Studies Centre) organizations and to translate our research
methods and findings into an applicable product to be reproduced and shared with the
local community if and/or when our research team was no longer involved.

Monitoring and anticipating lake hydrological and limnological change is
challenging in the North due to its remoteness and the sensitivity of shallow northern

lakes to multiple environmental stressors. Often, due to the lack of alignment and
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effective communication of research priorities between researchers and northern
agencies, the short duration of funding or continued funding, as well as the high turnover
rates of staff and graduate students, the science and training necessary to create the
foundations for agency-led monitoring is not always feasible. However, through an
incredible amount of time and hard work, as well as the collaboration and commitment
from myself, other graduate students and professors at Wilfrid Laurier University and
University of Waterloo, and Parks Canada, a long-term lake monitoring program within
Wapusk National Park, titled the Hydroecology Monitoring Program, was successfully
established in 2015. This monitoring program has been developed in a format that fits
into Parks Canada’s mandate, can be utilized for their reporting requirements, and is
designed to focus on two major threats to aquatic ecosystems: 1) Pond Water
Dynamics/Lake Hydrology monitoring and 2) Goose Aquatic Impact monitoring.
Establishing these monitoring activities was an iterative process that began with
reaching out and fostering a relationship with Parks Canada staff, instilling the
significance of our research to Park’s staff and the local community of Churchill,
providing the necessary training and knowledge transfer, and providing ongoing
assistance and guidance as the monitoring program transitioned from graduate student-led
to Parks Canada-led. Along the way, | was able to generate several key contributions to
transform our research science into action and application. These contributions fall under
three main categories (operationalizing agency-led monitoring, communicating
monitoring results with science practitioners, communicating research with the general

public) and are outlined with examples below.
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Operationalizing Agency-led Monitoring

During the summer of 2015, myself and a M.Sc. student from Wilfrid Laurier
University (Stephanie Roy) spent a week working hands-on with Parks Canada staff to
train them on lab and field protocols. This involved multiple lectures as well as hands-on
training sessions both in the classroom and in the field, on how to utilize field equipment,
how to collect samples, how to process samples, and how to store, package, and ship
samples. The main purpose of this training was to give Parks Canada staff the knowledge
and confidence to conduct the Hydroecology Monitoring Program sampling through an
understanding of how to collect and interpret the generated data. Two important
schematics were created to achieve this purpose (Figures 4.1, 4.2). With all this in mind,
these training sessions allowed our field and research methods to be accessible and
reproducible for new Parks staff (since there is a high turnover rate) and for other
northern lake-rich national parks. Additionally, during the summer of 2015, | spent a
tremendous amount of time developing Standard Operating Procedures (SOP) for the
Hydroecology monitoring program to ensure that our research methods fit within Parks
Canada guidelines and reporting requirements. Working closely with Park ecologist
Chantal Ouimet, multiple SOP documents were generated and due to their collective
length, only a short extract of these is included here (See Section 4.A). | played a large
role in writing SOP 1, Pond Water Dynamic/Lake Hydrology; SOP 2-4, Goose Aquatic
Impact SOP 2-4, SOP 5, and SOP 6 (Figure 4.3). The SOPs are now in the hands of Parks

Canada to finalize.
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Figure 4.1 Schematic depicting hydrological processes that influence lake water isotope
composition (designed in collaboration with University of Waterloo Ph.D. candidate,
Pieter Aukes).
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LESSER SNOW GEESE (LSG) MONITORING
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Figure 4.2 Schematic depicting the difference in nutrient (TKN, TP) concentrations,
carbon isotope composition of dissolved inorganic carbon, and pond conductivity
resulting from catchment erosion, in response to LSG disturbance (designed in
collaboration with University of Waterloo Ph.D. candidate, Pieter Aukes).
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Figure 4.3 Schematic showing the organization of Wapusk National Park’s,
Hydroecology Monitoring Program Standard Operating Procedures (SOPS).
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4.A. Sample of Generated SOPs for Parks Canada

Standard Operating Procedure # 3: Field and Laboratory Procedures

Draft — September 20, 2015

This SOP gives step-by-step instructions for conducting hydrological and limnological
monitoring. This SOP describes:

1. The field and laboratory equipment required.
2. The timing and sequence of data collection in the field.

3. Detailed methods on pre-field preparation, safety, field protocols, lab protocols and post-field
work tasks.

4. The procedure for filling in the field notes form that appears in Appendix 3-1.

3.1. Required Equipment and Forms

3.1.1. Field equipment

3.1.1.1. Hydrological monitoring field equipment
e 17 x 30mL high density polyethylene bottles (HDPB)
e YSI Multi Meter
e Black Sharpie markers
e Colourful electrical tape
e Waterproof notebook/data sheets
e Pens/pencils
e Ziploc bags for sample bottle storage (1 each for empty and full bottles)
e GPS with pond locations
e Booklet with map of ponds and photos for identification
e Camera
e Extra batteries

3.1.1.2. Limnological (Lesser Snow Goose) monitoring field equipment
e 35X 5L carboys
e 35x 2L bottles
e 35 x glass serum hottles
e 35 x glass serum stoppers
e 5xneedles
e 70 x 90mL plastic sample bottles (yellow lid)
e Milk jug for ease of pouring pond water into bottles
e Fishing rod
e 25 micron yellow phytoplankton tow net (to attach to fishing rod)
e Emergency fishing rod and net supplies
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e YSI Multi Meter

e Black Sharpie markers

e Colourful electrical tape

e Waterproof notebook/data sheets

e Pens/pencils

e XXL zip lock bags for sample bottle storage and easy transport

e 1 x Rubbermaid bin to store collected glass sample bottles for protection in
the helicopter

e GPS with ponds locations

e Booklet with map of ponds and photos for identification

e Camera

e Extra batteries

3.1.2. Lab equipment

3.1.2.1. Hydrological monitoring lab equipment
e No corresponding lab equipment
3.1.2.2. Limnological (Lesser Snow Goose) monitoring lab equipment
e 40 x crucibles
e Desiccator and desiccant
e Small whirlpak bags
e Oven for drying
e Filtering pump and units
e Graduated cylinders
e Pre-screen and funnel
e 35x 125mL square glass bottles
e 35 x 1mL sulphuric acid (30% concentration) per pond
e 35x125mL round glass bottles
e 35 x GF/Ffilters
e 35 x Cellulose acetate filters
e 35 x 30mL high density polyethylene bottles (HDPB)
e Red pre-screen net
e 35X Quartz filters
e 35 x 60mm Petri Dishes

3.1.3. Forms
The hydrological and limnological monitoring field notes form template (Appendix 3-1).

3.2. Timing and Sequence of Events

3.2.1. Monthly schedule of sampling periods

3.2.1.1. Hydrological monitoring
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This sampling takes place three times a thaw season; typically, in June, July, and
September. The purpose for sampling three times is to capture the pond water signature
directly after the pond ice melts (June), during prime summer with peak evaporation
(July), and before the pond freezes (September). The exact dates within June, July, and
September are not critical as long as the ponds are sampled close to these indicators.
Previous sampling over the past 6-7 years have occurred consistently around mid to late
June, late July, and mid to late September. If field dates are much different than these,
contact research partners (WLU) to discuss options.

3.2.1.2. Limnological (Lesser Snow Goose) monitoring

This sampling takes place once a thaw season at the same time as the July hydrological
monitoring; typically, in late July.

3.2.2 Length of sampling

For each hydrological monitoring pond, sampling will take ~8 minutes. For each
limnological (Lesser Snow Goose) monitoring pond, sampling will take ~15 minutes.

3.2.2.1. June sampling trip

In June, only the 16 hydrological ponds will be sampled. Ideally, all 16 of the ponds
should be sampled on the same day. This decreases as much variability as possible within
the dataset. If this is not possible, sampling over two consecutive days is acceptable as
long as the weather between the two days is not drastically different. For example,
sampling before and after a heavy rain event could skew the values considerably.

3.2.2.2. July sampling trip

In July, both the hydrological and limnological monitoring ponds will be sampled (46
ponds in total). For this sampling period, ponds will need to be sampled over 2-3
consecutive days (weather dependant). Sampling with similar weather over the multiple
days is ideal, however, it is completely uncontrollable.

Additionally, hydrological ponds WAP 5, 7, 12, and 15 can be sampled following the
limnological protocol for a more complete data set since they fall along the limnological
sampling transect lines (pushing total number of sampled ponds for limnology/Lesser
Snow Goose sampling to 34).

3.2.2.3. September sampling trip

In September, only the 16 hydrological ponds will be sampled. Ideally, all 16 of the
ponds should be sampled on the same day. This decreases as much variability as possible
within the dataset. If this is not possible, sampling over two consecutive days is
acceptable as long as the weather between the two days is not drastically different. For
example, sampling before and after a heavy rain event could skew the values
considerably.

119



3.2.3. Tasks to complete during the winter months

Prepare Whatman quartz filters (CAT no. 1851-047) for Particulate Organic Matter
(POM), 1 filter per sample as follows (done at CNSC):

e Quartz filters need to be pre-combusted or burnt to ensure all
contaminants have been removed. Filters should only be handled
carefully with tweezers.

e Crucibles

a. Clean 40 crucibles with deionized water and a brush

b. Dry in drying oven for 2 hours

c. Ash the crucibles in the furnace for 2 hours at 550°C

d. Remove crucibles from furnace and allow to cool in non-acid
desiccator with desiccant

a. Place 40 quartz filters into their own clean, dry large crucible

b. Combust (burn) the filters at 450°C for 4 hours in the furnace

c. Remove crucibles and filters from muffle furnace and allow to
cool in non-acid desiccator

d. Label 40 small whirlpak bags (Quartz filter # |, date)

e. Place filters in a labelled small whirlpak bag

3.2.4. Month before tasks

1) Check in with Hudson Bay Helicopters regarding solidified sampling dates and
helicopter model
2) Check in with LeeAnn Fishback at the Churchill Northern Studies Centre
regarding fridge space for sample storage, lab bench space for processing
samples, as well as deionized water and other miscellaneous lab supplies (i.e.
sulphuric acid/fume hood use)
3) Prepare YSI Multi Meter:
a. Plan A: Ensure Parks Canada’s YSI is properly calibrated and instrument
is fully functional
b. Plan B: If Parks Canada’s YSI is unable to be properly calibrated and/or
is broken, contact an instrument rental provider and schedule an
appropriate delivery date for YSI

3.2.5. Week before tasks

The field trip plan should be solidified with potential back up plans. Additionally,
supplies for hydrological and limnological monitoring are stored in Storage Room M05
in the CNSC old building and must be transferred to the work space in the allotted CNSC
laboratory before field and laboratory preparation can begin.
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3.2.5.1. Trip Plan

Typically, sampling starts at the farthest south pond for both hydrological and
limnological monitoring. Ponds would then be sampled working your way back to the
CNSC. This plan may be changed depending on logistical and weather restraints.

3.2.5.2. Field preparation for hydrological monitoring (June, July, and September)

1) Label 17 x 30mL HDPB bottles using colourful electric tape. Label “WAP
_____and Month/year” (pond name will be filled when at the pond).

2) Place bottles into large Ziploc bag with a black sharpie marker. Label a
second large Ziploc bag, “FULL Hydrological Monitoring Samples”, for
filled water bottles in the field.

3) Prepare ‘emergency supply kit” with spare batteries, pens/pencils, Sharpies,
and tape.

4) Check YSI Multi Meter calibration and ensure battery is charged.

5) Ensure GPS has correct coordinates and batteries are fully charged.

6) Prepare field notes binder/clipboard Ensure there are enough waterproof
hydrological and limnological monitoring field notes forms.

3.2.5.3. Field and Laboratory preparation for Limnological (Lesser Snow Goose)
monitoring (July)

Field:

1) Label 31 x 5L carboys, 31 x 2L bottles, 31 x 90mL plastic sample bottles
with yellow lid (2 per pond), and 31 x glass serum bottles, using colourful
electric tape. Label “WAP _ and Month/year” (fill in pond name once
getting to pond).

e Complete set of sample bottles required for one pond =1 x 5L
carboy, 1 x 2L bottle, 1 x glass serum bottle, and 2 x 90mL plastic
sample bottles with yellow lid

2) Prepare ‘grab bags’ for sampling: place bottles for five ponds in each XXL
Ziploc bag (one bag will have six because of extra bottle set).

3) Prepare ‘emergency supply kit” with spare batteries, pens/pencils, Sharpies,
tape, glass serum lids and needles, and extra fishing rod and net supplies.

4) Check YSI Multi Meter calibration and ensure battery is charged.

5) Ensure GPS has correct coordinates and batteries are fully charged.

6) Prepare field notes binder/clipboard. Ensure there are enough waterproof
hydrological and limnological monitoring field notes forms.

Lab:
1) Prepare bottles for each pond for water filtration for water isotopes, nutrients,
and all carbon parameters as follows:

e Label 16 square glass bottles, 16 petri dishes, 16 30mL HDPB
bottles with electrical tape stating WAP ‘name’ and date
(month/year)

e Label 16 round glass bottles for DIC/DOC using NLET labels.
(Refer to labelling picture)

121



2) Prepare filtering pump and units by ensuring the pump hoses are attached
and units have been washed with DI water.

3.2.6. Day before tasks

Gather all required supplies for the first helicopter day and place them in one spot, ready
to be checked and grabbed the morning prior to sampling:

Table 3-1. Packing lists for helicopter sampling

Hydrological Monitoring Limnological Monitoring
GPS GPS
Pond picture booklet Pond picture booklet
Camera Camera
YSI Multi Meter YSI Multi Meter
Field note binder/clipboard Field note binder/clipboard
Sharpies Sharpies
Ziploc bag with empty sample Grab bags of sample bottles
bottles Milk Jug
Ziploc bag for full sample bottles Glass serum lids and needles
Emergency supply kit Fishing rod and net
Rubbermaid bin (glass sample storage)
Emergency supply kit

3.2.7. Thirty minutes before departing for sampling

Double check that you have all the supplies needed for the days sampling. If you are
missing anything, you are NOT able to return to the CNSC to grab anything!

3.2.7.1. Helicopter Day Checklist

O I1tems in packing lists (Section 3.2.6, Table 3-1)
O Trip plan confirmed with helicopter company
O Trip plan filed with resource conservation manager or public safety specialist

3.2.8. Upon return to CNSC — same day as sampling

3.2.8.1. Hydrological monitoring samples

Ziploc bag of 16 full hydrological samples should be placed in fridge directly after
returning to the CNSC. There is no corresponding laboratory work.
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3.2.8.2. Limnological monitoring samples

1) Place all water samples into the fridge directly after returning to the
CNSC. They will be stored here until all the water filtering is finished
within the two days after field work.

2) Particulate Organic Matter (POM) filtering must be completed on the
same day as sample collection (See 3.4.2 for POM laboratory
protocol). If this is not done, the samples will be ruined.

3.3. Hydrological and Limnological Monitoring Field Protocols

3.3.1. Hydrological monitoring field work protocol

1) In Helicopter
a. ldentify pond using a combination of GPS point, map, and pond photo.
b. Prep 30 mL bottle in helicopter — write pond name on bottle and place it
in an easily accessible location to grab when at the pond (i.e. pocket).
c. Take a photo of the pond from the helicopter.
d. Take photo of pond number before getting out of helicopter, this enables
you to know that all of the following photos are from that pond.
2) On the ground at pond
a. Take photos of pond, take three shots from left to right, covering the
whole pond area.
b. Take 30 mL bottle and rinse with pond water three times. Fill to very
brim and tightly cap. Place in Ziploc bag for filled bottles.
c. Turnon YSI, submerge probe into water making sure that it is not
touching sediment. Wait until numbers stabilize before recording.
d. Record values of temperature (°C), pH and conductivity (uS/cm?) in
waterproof field notes.
e. Fill out field notes (3.3.3.)

3.3.2. Limnological monitoring field work protocol

1) In Helicopter
a. ldentify pond using a combination of GPS point, map, and pond photo.
b. Take a photo of the pond from the helicopter.
c. Take photo of pond number before getting out of helicopter, this enables
you to know that all the following photos are from that pond.
2) On the ground at pond
a. Take photos of pond, take three shots from left to right, covering the
whole pond area.
b. Label all bottles with pond number upon reaching pond, this includes: 5L
carboy, 2L bottle, 2x90mL bottles and glass serum bottle.
c. Rinse 5L carboy with pond water three times. Fill to the brim using milk
jug and tightly cap.
d. Rinse 2L bottle with pond water three times. Fill to the brim and cap
tightly.
e. Rinse two 90mL sample bottles three times. Fill using yellow
phytoplankton tow net clipped to the end of the fishing rod. Do this by
gently swishing the fishing rod back and forth, keeping the tow net in the
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top 5-10cm of the water column. Fill two 90mL sample bottles with the
water that filters through the tow net.

f. Rinse glass serum bottle three times. Fill glass serum by completely
submerging bottle until full of water. Once full, keep bottle submerged,
place rubber stopper on top of bottle and expel any extra air by inserting
needle into the middle of the rubber stopper. This must all be completed
underwater to ensure no air bubbles are left in bottle. The rubber
stopper lid is sensitive so be sure to safely store the bottles in the
Rubbermaid bin for transport back to the CNSC.

f.  Turn on YSI, submerge probe into water making sure that it is not
touching sediment. Wait until numbers stabilize before recording.

g. Record values of temperature (°C), pH and conductivity (uS/cm?) in
waterproof field notes.

h. Fill out field notes (3.3.3.)

3.3.3. Field note data collection

Fill in the field note data collection sheet at each pond (Appendix 3-1)

Lake ID: lake number (i.e. WAP 05)

Date: record the month, day, and year (MM-DD-YYY)

Time: record time of arrival at pond in 24 hour clock (hh:mm)

Sampling Crew: identify who is collecting samples.

Weather: note things like precipitation, wind strength and direction, cloud cover.

Evidence of geese: note if there are geese present, if there are signs of grubbing,

feces, feathers, tracks, etc.

e Water depth: record in meters (m); approximate depth at sampling point and the
pond as a whole.

e Hydrology: indicate lake level compared to previous seasons/years (if possible)
and give a pond sediment description (colour and texture).

e Water quality: record if colour of the pond water and whether the water is clear
or murky. Indicate if the sediment has been stirred up (turbidity).

e Evidence of pond connectivity: indicate how wet the adjacent landscape is and

whether or not ponds are connected to other ponds, streams, rivers, etc.

e Other: record the vegetation cover in and around pond (shrubs, trees, grasses,
macrophytes, etc.). Note if there is any shoreline erosion or if there is any other
wildlife present.

e YSI Multi Meter

= Temperature: record in degrees Celsius (°C)
= _Conductivity: record in micro Siemens per centimeter (S/cm)
= pH: record unit-less value

3.4. Laboratory work Protocol

3.4.1. Hydrological monitoring laboratory protocol

There is no corresponding laboratory work for the hydrological monitoring.

3.4.2. Limnological laboratory protocol
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3.4.2.1. Same day as field sampling (Particulate Organic Matter filtering)

1) Prepare a filtering unit with a pre-combusted quartz filter
a. Place circular filter holder firmly on the neck of the filtering unit.
b. Using tweezers, place the filter in the centre of the circular filter
holder (do not touch the filter with your hands)
c. Place the filtering unit lid on carefully, firmly pushing down, and
ensuring that you are screwing the lid on straight and tightly.

2) Remove the two 90mL plastic sample bottles (yellow lid) for a single pond
and obtain the corresponding petri dish for the same pond.

3) Shake the 90mL plastic sample bottles to ensure a homogenous water
sample.

4) Place the red pre-screen net over the prepared filtering unit in the sink,
ensure that the pre-screen is indented into the filtering unit so water will pour
IN to the unit and NOT over the edges and OUT of the unit...

5) Pour both 90mL plastic sample bottles through the pre-screen net, ensuring
all water goes through.

6) Carefully transfer the filtering unit to the lab bench and attach to the pump.
Turn the pump on and ensure that the air flow is correct.

7) Once all the water has filtered through, turn off the pump and carefully
unscrew the lid.

8) Open the petri dish and using your tweezers (DO NOT TOUCH WITH
YOUR HANDS), carefully transfer the filter into the petri dish.

9) Transfer the petri dish (still open with the lid underneath) into the oven at
60°C for at least 24 hours (it is okay if they stay in longer but it needs to be at
least 24 hours).

10) Discard filtered water and rinse entire filtering unit with de-ionized water.
Rinse red pre-screen net with tap water.

11) Repeat for all 16 ponds. (*It is possible to do 2 samples at once but always
ensure you know which pond water sample is in which filtering unit!!!*)

12) Remove tape and clean/rinse the 90mL plastic sample bottles and lids with
hot water.

3.4.2.2. Within two days of field sampling (Processing of water isotope, nutrient, and
Dissolved Inorganic Carbon parameters)

1) Remove a 5L carboy from the fridge and obtain all the sample bottles for the
same pond number.

2) Shake the carboy to ensure a homogenous water sample and rinse the
graduated cylinders with pond water.

3) Fill one graduated cylinder with un-filtered and un-pre-screened pond water
and fill the 30mL HDPB to the brim (water isotope sample). With this same
water, fill the 125mL square glass bottle to just below the neck of the bottle
and add 1mL 30% sulphuric acid (phosphorus and nitrogen sample). Ensure
lids are screwed on tightly.

4) Pre-screen the pond water, by pouring pond water through funnel with the
pre-screen mesh attached to the bottom (for Dissolved Inorganic Carbon
Sample).

5) Prepare two filtering units, one unit with a GF/F filter (coarser filtering) and
one unit with a cellulose acetate filter (finer filtering). Keep track of which
unit has which filter!!!!
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6) Pour ~300mL of pre-screened pond water into the filtration unit with the
GF/F filter for the initial coarse filtration and turn on the pump (ensuring that
the flow of air is correct).

7) When all of the water has filtered through (absolutely no water left on the
filter), turn off the water pump, unscrew the filtering unit lid off of the GF/F
filter, remove the circular filter holder with filter, and transfer the water into
the top of the second filtering unit.

8) Turn on the pump (ensuring air flow is correct) and filter water through the
cellulose acetate filter for a finer filtration.

9) Once all of the water has been filtered, turn off the water pump, unscrew the
filtering unit lid off of the cellulose acetate filter, remove the circular filter
holder with filter, and transfer the water to the 125mL round glass bottles (It
is easiest to pour the water out of the small spout on the side of the filtering
into the mouth of the 125mL round glass bottles). Fill bottle just above the
neck but not all the way to the brim.

10) Transfer the 30mL HDPB, 125mL square glass bottle, and 125mL round
glass bottle to the fridge.

11) Discard the GF/F and cellulose acetate filters as well as the excess water in
the filtering units, graduate cylinder, and 5L carboy (ONLY DO THIS
AFTER EVERYTHING HAS BEEN FILTERED AND PLACED INTO
SAMPLE BOTTLES CORRECTLY!)

12) Rinse all parts of the filtering units (base, filter holder, and lid) thoroughly
with de-ionized water.

13) Repeat these steps for all of the ponds.

14) When all samples have been filtered and placed into sample bottles, the 2L
bottles can be dumped and cleaned/rinsed with hot water. Clean/rinse 5L
carboys with hot water as well. Make sure to remove all labelling tape.

3.5. Post-collection Processing and Storage

3.5.1. Post-collection tasks and procedures

1) Data Entry: Transfer data from field note sheets to the excel file template
provided by research partner (WLU). The excel file can be found at [archive data
within a Parks Canada database]. Although all the data will be transcribed to a
datasheet or a computer spreadsheet equivalent, original field notes should be
preserved at least one year, and preferably indefinitely as part of the weather
record.

2) Ship samples: All filtered samples (water and petri dishes) should be packaged
and shipped to research partner at 75 University Ave. N., Wilfrid Laurier
University, Department of Geography and Environmental Studies, Waterloo,
Ontario, N2L 3C5 after each sampling trip.

a. Wrap electrical tape around the glass serum lids to ensure they stay on
through transport

b. Wrap bottles with NLET labels with clear packaging tape to ensure label
is secure.

c. Wrap all glass bottles in newspaper and place in a cooler
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Place all other samples (petri dishes and 30 mL HDPE bottles) on top
Ship cooler in a way where they can stay cold and arrive in Waterloo fast
f.  Send an email to the research partners regarding the shipment and also
attach the field notes file.
3) Inventory: Do a complete inventory of all the supplies and store in an excel
spreadsheet for easy access to order for next season
4) Storage: Package and store all of the supplies back into CNSC old building
storage room MO5 in an organized fashion. Ensure the lab bench is clean when
finished.

3.6. Safety and Loqgistics

3.6.1. Trip Plan Logistics

A trip plan must be filed with the visitor safety and resource management specialist
and/or the resource conservation manager. This includes location of sites, planned route,
estimated time for each task and calling-in procedures. This should be saved in:
G:\Resource Conservation Function\Visitor Safety\Check-In for Field Work.

3.6.1.1. Helicopter

Your exact trip plan should be confirmed with the helicopter company well in advance.
Ensure your handheld GPS is fully charged and put on the compass screen for the
helicopter pilot. Handheld GPS units should be programmed appropriately for the region.
NAD 87 is the most accurate setting for Wapusk. Use UTM format for co-ordinates.

Use booklet of pond photos and aerial imagery in combination with the handheld GPS for
accuracy and speed while navigating to ponds. Idle time while the helicopter is running
results in considerable expense.

Be prepared to mark down waypoints and details in a waterproof field book and handheld
GPS unit, if you spot a polar bear or other wildlife of interest. The rest of the information
can be filled out on an observation form afterwards.

3.6.2. Check-in Procedures

Staff must check-in twice daily while in the field. Satellite phone is the primary means
for field staff communicating with the Visitor Safety Coordinator, the Administration
Office or Asset Management staff.

You can contact the Visitor Safety Coordinator or designate 24 hours a day when staff
are in the field (204-675-0144), or during operational hours call the Administration
Office (204-675-8863). The on-call phone is monitored 24 hours per day all year. You
should call this number if you have questions related to the operation of equipment at the
site. If the on-call phone (204-675-0082) cannot be reached, your manager should be
phoned at his or her contact number.
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Jasper Dispatch can be contacted 24 hours, 7 days / week, in the case of emergencies
877-852-3100 or 780-852-3100 when calling from a satellite phone. Jasper Dispatch has
contact information for various PCA staff in Churchill.

3.6.3. Mode of Travel

3.6.3.1. Helicopter Safety

Prior to your arrival, a safety briefing will be given to passengers by the pilots. All rules
must be obeyed, for your safety and the safety of others. Staff should familiarize
themselves with safe practices of enplaning and deplaning a rotary wing aircraft. Safe
work practices around helicopters including enplaning/deplaning and door-off operations
with a helicopter are available in: G:\OSH\SWPs approved locally\SWPs approved by
Marilyn.

The following hazards should be taken into consideration when dealing with helicopters:

¢ Injury due to inclement weather conditions;

Injury resulting from inexperience or inadequate training

Injury resulting from insufficient or inadequate equipment

Injury due to wildlife encounters, particularly polar bears

Injury due to slip, trip, fall, joint strains/sprains, muscle sprains, strains

No briefing given, or is incomplete/not understood

Injury due to slip, trip, fall, joint strains/sprains, muscle sprains, strains

(path to helicopter is wet, icy, uneven terrain, fuel spills, debris, etc.)

Cuts, contusions, abrasions

e Injury or death as a result of contact between person/equipment with
main or tail rotor, exhaust exposure, or hit by other aircraft or vehicle.

e Hearing or eye Injuries

e Load too heavy, not balanced or secured (potential flight
complications)

e Dangerous Goods on board (potential flight complications)

e Injury due to improper lifting, handling and transportation of
equipment.

e Injury due to improper inspection and storage of equipment

The guidelines for flying over national parks is 2,000 AGL, to minimize the
impact on wildlife and other park users. It is possible to fly lower than 2,000 for
specific reasons (i.e. research, weather, length of travel). The pilot will ultimately
make the call on the elevation in inclement weather and that will trump other
factors.

Helicopter emergency Kkits are located in dry bags in the basement of the administration
office. Staff should always take one when travelling by air. Helicopters have had to land
in the past, due to mechanical difficulties or low cloud ceiling/poor visibility. The
emergency kit should always be with staff and researchers if dropped off by the
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helicopter. Weather conditions can change suddenly which can result in the helicopter
being delayed or cancelled for pick-up, leaving researchers stranded.

3.6.3.2. Fuel considerations

There are currently 5 permanent and 1 temporary fuel caches in Wapusk and 1 at York
Factory National Historic Site. There are multiple types of fuel that can be found at these
sites: aviation fuel, jet A or B; diesel and natural gas. It is important to know which kind
of fuel it is and who the drum belongs to. The helicopter may need to land to refuel
depending on the distance travelled and weather conditions. Talk to Jill or the resource
conservation manager about fuel availability and locations before allowing the pilot to
refuel. It is important to keep track of how much fuel is used and from where, so that
others do not become stranded due to miscommunication.

More information is available in: G:\Resource Conservation Function\Resource
Management\Fuel Cache, Park Clean-up & Contaminated Sites\Fuel Cache.

3.6.3.3. Recommended emergency packing list

Wapusk is a northern and coastal wilderness park, which means weather
conditions can vary in extremes in a matter of hours. It is important to be well-
prepared for rapid changes in temperature, wind and rain. It is a good idea to
consult with experienced staff members on what to pack during the summer field
season. However, the following list provides some of the basic necessities:

e Helicopter emergency kit (includes first aid Kkit) for day trips
Communication device and extra batteries (bring alternate if spending
nights in the field)

Firearm and ammunition (slugs)

Water filter

Bug spray and sunscreen

Hat and sunglasses

Rubber boots

Good quality packable rain gear

Extra clothing layers

AA3 key — the Broad River shed is padlocked.

Bug jacket

1L water bottle x2

Water purification tablets

3.6.4. Health Risk Potential

This field work involves working in severely Lesser Snow Goose disturbed
landscapes and ponds where there is an abundance of goose feces. The chance of
contact is high while working in these areas. Additionally, one of the field
protocols involves using a small needle to release excess air from a sample bottle.
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In cold temperatures and water with numb hands, the potential to injure oneself
with the needle is a possibility.

3.7. Appendices

Appendix 3-1: Hydrological and Limnological Monitoring Field Notes

| Wapusk National Park Hydrological and Limnological Monitoring

Lake ID: Date: Time:

Sampling Crew:

Weather (precipitation, wind, cloud cover):

Evidence of geese (are there geese present? signs of grubbing, feces, feathers, tracks, etc.):

Water depth (m; at sampling point and whole pond depth approximation):

Hydrology (lake level compared to other seasons/vears, pond sediment description):

Water clarity (clear, murky, is the sediment stirred up/turbid, lake colour):

Evidence of pond connectivity (how wet is the adjacent landscape, are ponds connected):

Other (vegetation cover in and around pond, any shoreline erosion? other wildlife?):

YSI:
Temp. (°C):

Conductivity (nS/cm):

pH:
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Communicating monitoring results with science practitioners

As part of the Hydroecology Monitoring project with Parks Canada, reports for
each section (Pond Water Dynamics/Lake Hydrology and Goose Aquatic Impact) were
generated annually starting in 2016 (see Section 4.B and 4.C for sample reports). These
documents are a critical piece in the knowledge translation from scientific data to a
concise report that can be used by Parks Canada’s management staff to help protect and
manage the park. These reports also serve as a model for reporting long-term monitoring
data that can be adapted elsewhere.

As a final contribution of this work, all the data that we helped generate within the
Hydroecology monitoring program (Pond Water Dynamics/Lake Hydrology and Aquatic
Goose Impact), has become public domain through the Open Governmental Portal
(Section 4. D, 1 and 2). This is an excellent scientific contribution since our research and
the research that staff at Wapusk National Park will continue through the Hydroecology

Monitoring program is transparent and accessible to the public.

131



4.B. 2018 Pond Water Dynamics/Lake Hydrology Report

2018 Wapusk National Park
Lake Hydrology Report

Hilary White & Brent Wolfe

Department of Geography and Environmental Studies
Wilfrid Laurier University
January 14, 2019

LAURIER ¥

1l = Inspiring Lives.

132



Table of Contents

1.0 Executive Summary
2.0 Introduction
2.1 General Introduction
2.2 Tracking Lake Hydrology using Water Isotopes
3.0 2018 WNP Field Sampling
4.0 Water Isotope Results
4.1 Evaporation Pan Data
4.2 Precipitation Bucket Data
4.3 Seasonal Variability
4.4 Ecotype Variability
5.0 Contextualizing Water Isotope Results

5.1 Evaporation to Inflow Ratios as a Tool for Tracking Lake
Hydrology

5.2 Alignment of Hydrological Threshold Analysis with
Wapusk National Parks’ Monitoring Protocol

5.3 Calculation of ‘Lake Hydrology’ Scores
A. Coastal
B. Wetland
5.4 Tracking Hydrological Health Over Time
A. Coastal
B. Wetland
6.0 Appendix

7.0 References

133

137
138
138
139
141
142
142
143
144
145

146

146

149
150
150
151
152
152
153
154

160



List of Figures

Figure 1: ‘5'%0-8%H space’ Explanation Schematic
Figure 2: Hydrological Processes Schematic
Figure 3: Site Map

Figure 4: Evaporation Pan Data

Figure 5: Precipitation Bucket Data

Figure 6: Seasonal Variability of Lake Hydrology
Figure 7: Ecotype Variability of Lake Hydrology
Figure 8: Coastal Hydrological Health Over Time
Figure 9: Wetland Hydrological Health Over Time
Figure Al: Three-year E/I Threshold Justification
Figure A2: WNP Meteorological Data from 2009-2018

134

140
141
142
143
144
145
146
152
153
157
159



List of Tables

Table 1: E/l Thresholds for Hydrological Assessment of WNP Lakes 147

Table 2: Hydrological Threshold Analysis for Coastal Fen
Monitoring Lakes 148

Table 3: Hydrological Threshold Analysis for Interior Peat-Plateau
Palsa Bog Lakes 148

Table 4: Hydrological Threshold Analysis for Boreal Spruce Forest Lakes 148

Table 5: 2016-2017 Meteorological Conditions within WNP 149
Table 6: E/I Thresholds for Hydrological Assessment of WNP Lakes 150
Table 7: Coastal Measure Condition for 2018 Field Season 150
Table 8: Wetland Measure Condition for 2018 Field Season 151
Table Al: Evaporation Pan Water Isotope Compositions 154
Table A2: Precipitation (rainfall) Bucket Water Isotope Compositions 155
Table A3: Lake Water Isotope Compositions and E/I Ratios 156
Table A4: 5-year threshold values based on 2010-2014 E/I ratios 158

135



1.0 Executive Summary

All sixteen ‘Lake Hydrology’ lakes across the three main ecotypes (boreal
spruce forest, interior peat plateau-palsa bog, coastal fen) were successfully
sampled for lake water isotopes (5'%0, 5°H) three times during the 2018
sampling period (spring/June, summer/July, fall/September). Additionally, the
evaporation pan and precipitation bucket were successfully maintained and
sampled for water isotopes by Parks Canada staff throughout the ice-free
season.

The water isotope results from the evaporation pan, precipitation bucket,
and each ‘Lake Hydrology’ lake was then evaluated to assess the hydrological
conditions of the lakes with respect to ecotypes and seasons. Similar to previous
years, the influence of both ecotype and seasonality were identified in water
isotope results. Lakes begin the ice-free season influenced by inputs (e.g.,
snowmelt), become more influenced by evaporation during the summer, and are
again influenced by inputs (e.g., rainfall) in the fall. Additionally, lakes within the
boreal spruce forest ecotype are the most stable due to the higher amount of
snow storage during the winter, which leads to higher amounts of snowmelt
replenishing the lakes in the spring. Interior peat-plateau palsa bog and coastal
fen lakes show a stronger influence of evaporation during the spring and summer
seasons.

Evaporation to Inflow (E/I) ratios were then calculated to depict the relative
influence of evaporation and inputs on each lake. Hydrological thresholds of E/I
ratios were also established to provide a quantitative representation of lake
hydrological health. Three states (‘poor’, ‘fair’, and ‘good’) have been used to
define the hydrological thresholds within two of Wapusk National Park’s
ecological measures (coastal and wetland) to align with identifying status and
trends for State of the Park reports. While E/I ratios of both coastal and wetland
measure lakes were generally within the ‘fair’ to ‘poor’ categories from 2010 to
2013, lake E/I ratios have now consistently been within the ‘good’ to ‘fair’
categories since 2014. In 2018, fall precipitation (rainfall) had a large influence on

these lakes, contributing to all sampling lakes ending the ice-free season within

137



the ‘good’ category. The long-term dataset that is now emerging as well as the
shifting trends, demonstrate the value of continuing to monitor these lakes to
track their hydrological trajectory.

2.0 Introduction

2.1 General Introduction

Wapusk National Park (WNP), northern Manitoba, contains thousands of
shallow ponds and lakes (hereafter referred to as lakes) that provide important
habitat for a variety of wildlife (Parks Canada, 2011). During the past ~50 years,
this region has experienced some of the greatest warming in the circumpolar
North and is considered one of the most sensitive regions in northern Canada to
permafrost thaw (Smith and Burgess, 2004; Kaufman et al., 2009; Hochheim et
al., 2010). Therefore, these freshwater resources are particularly sensitive to
accelerating climate change which is causing pronounced variation in
hydrological conditions (conditions of and relating to lake water) that have the
potential to substantially alter aquatic ecosystems (Smol et al., 2005; Schindler
and Smol, 2006; Prowse et al., 2006). Throughout the subarctic and arctic,
declines in both the abundance and size of lakes due to warmer temperatures,
longer ice-free seasons, and increased evaporation (Labrecque et al., 2009;
Turner et al., 2010; Bouchard et al., 2013) have been observed as well as the
increasing susceptibility of permafrost thaw (Marsh et al., 2009; Jones et al.,
2011). Detecting and anticipating these hydrological responses to climate
warming are challenging in northern landscapes due to the speed in which
changes are occurring and the remoteness of the landscape that impedes
conventional monitoring approaches. Within Wapusk National Park, in
collaboration with Wilfrid Laurier University and University of Waterloo, water
isotopes have been utilized as a practical and affordable monitoring tool to track
hydrological conditions at the landscape scale since samples can be easily
collected in the field, are broadly applicable, sensitive and diagnostic (Gibson
and Edwards, 2002; Brock et al., 2007; Wolfe et al., 2007; Turner et al., 2010;
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Tondu et al., 2013; Anderson et al., 2013; Brooks et al., 2014; Remmer et al.,
2018).

2.2 Tracking Lake Hydrology using Water Isotopes

Previous research has successfully utilized water (chemical symbol: H,0)
isotopes to characterize lake hydrology (e.g., Tondu et al., 2013, MacDonald et
al., 2017). An isotope is an element that contains the same number of protons,
but different number of neutrons in its nucleus. Specifically, the water isotopes,
80 and 2H, are very useful since the oxygen and hydrogen isotope compositions
of water vary in a systematic and predictable manner as water passes through
the hydrological cycle (Clark and Fritz, 1997; Edwards et al. 2004). Water isotope
compositions are expressed as variations in the relative abundance of rare,
heavy (*?0, ?H) isotope species of water with respect to the common, light (*°O,
'H) isotope species. These ratios are conventionally reported in delta (3) notation
as per mil (%o) values.

Lake water isotope results are reported with respect to the Global
Meteoric Water Line (GMWL) and the Local Evaporation Line (LEL) (Figure 1).
The GMWL is a linear representation of all global precipitation, where values
higher up on the GMWL are typically rainfall and values lower down are typically
snow. The LEL is based on local meteorological factors (i.e., temperature,
relative humidity) and can be calculated from &p, 8ss, and &* (read as ‘delta P’,
‘delta steady-state limiting’, and ‘delta star’, respectively). dp represents the mean
annual isotope composition of precipitation, which can be determined from the
Canadian Network for Isotopes in Precipitation (CNIP). &ss,, calculated using
evaporation pan data, represents steady-state where inputs (precipitation) equal
outputs (evaporation) and &* is the isotopic representation of a last drop of water
in a lake before it completely desiccates or dries up. &* is calculated utilizing local
atmospheric conditions including the isotope composition of atmospheric
moisture, temperature, and relative humidity. Where the sampled lake water
values (5.w) fall within this “3*®0-8°H space” gives us information about how a
lake is influenced by precipitation (inputs) and evaporation (outputs). For

example, if the blue circle in Figure 1 were to be positioned closer to &%, it is
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isotopically “enriched” and is highly influenced by evaporation. Whereas, if the
blue circle plotted closer to &p, that particular lake would be considered
isotopically “depleted” and more influenced by rainfall or snowmelt. Figure 2
provides a schematic illustrating how changes in lake hydrology influence lake

water isotope composition.

8%H (%o VSMOW)

5'°0 (%0 VSMOW)

Terminology Legend

GMWL = Global Meteoric Water Line
LEL = Local Evaporation Line

&°H = isotope composition of hydrogen
5'%0 = isotope composition of oxygen

Op = Delta P = mean annual isotope
composition of precipitation

O.w = Delta Lake Water = sampled lake water
isotope value

Oss. = Delta Steady State Limiting = isotopic
value of lake water where inputs equal outputs

0* = Delta Star = isotopic value of the last drop
of water in a lake before it dries

Figure 1. Schematic illustrating the potential hydrological processes that
influence the isotope composition of lake water (S.w) within “5*20-8°H space”.

140



HYDROLOGY
WATERISOTOPES

EERERERERN
EENN)

)

EVAPORATIONDOMINATED
S More enriched

6120 t l ‘l‘ isotopic values

MORE "0

LESS"0 oo approaching o*

\ J

INPUTDOMINATED

nput  evzparatian

3 More depleted
6180 l _— isotopic values
approaching 6,

LESS™0

Figure 2. Schematic depicting hydrological processes that influence lake water
isotope composition.

3.0 2018 WNP Field Sampling

Sixteen WNP monitoring lakes spanning the three main ecotypes (coastal
fen, interior peat plateau-palsa bog, boreal spruce forest) were sampled for water
isotope three times during the field season (spring, summer, fall) (Figure 3). A
Class-A evaporation pan was also deployed and maintained by Parks Canada
staff throughout the ice-free season to simulate the isotopic and hydrological
behaviour of a steady-state terminal lake (i.e., closed-basin) where inflow is
equal to evaporation (dss). Water within the evaporation pans was maintained at
a constant volume on a weekly basis and water samples were collected weekly
for isotopic analysis. Additionally, a precipitation bucket was maintained and
sampled after significant rainfall events took place. All water samples were

collected and stored in 30 ml bottles until analysis at the University of Waterloo
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Environmental Isotope Laboratory (UW-EIL). Raw isotope data for lake and

evaporation pan water samples can be found in the Appendix.

Nunavul

Wapusk Hudson Bay
National
Park
|

\ Manitoba Ontario
Datum: NAD 83

Projection: UTM Zone 15N 1
Data: Natural Resources Canada (CanVec) u-:s-:uo:w_t%
Field Observations

t

lometers

Figure 3. a) Map showing the location of 16 lakes selected for the WNP
hydrological monitoring program. Red circles are lakes within the coastal fen
ecotype, green circles are lakes within the interior peat plateau-palsa bog
ecotype, and blue circles are lakes within the boreal spruce forest ecotype; b)
WNP 5 within the coastal fen ecotype; ¢c) WNP 33 within the interior peat plateau-
palsa bog ecotype; d) WNP 26 within the boreal spruce forest ecotype.

4.0 Water Isotope Results
4.1 Evaporation Pan Data

As previously mentioned, an evaporation pan was maintained by Parks
Canada staff throughout the ice-free season to simulate a steady-state terminal
lake (Table Al for raw data). The weekly sampling of evaporation pan water
allows us to see when the pan reaches an isotopic ‘steady-state’ where inflow is
equivalent to evaporation. We use these values (see Figure 4) to calculate &ss,

a critical component of the Local Evaporation Line.
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Figure 4. Isotope compositions (5*20) of evaporation pan water samples during
the 2018 ice-free season. Isotopic ‘steady-state’ was reached by July 10, 2018

and values from July 10 to August 28, 2018 were averaged to generate 5*®0sg.
values. The same approach was used to estimate 5°Hss.

4.2 Precipitation Bucket Data

Most precipitation bucket water isotope results fall close to the Global
Meteoric Water Line (GMWL) (Figure 5; Table A2). This supports the coupled-
isotope tracer method used to calculate E/I ratios (discussed in this report), which
uses the GMWL to constrain &, (the isotope composition of lake-specific input
water; Yi et al., 2008). Some rainfall events show evidence of evaporation, either
during descent or prior to sampling (July 19, 24, August 4, 23; Figure 5).
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Figure 5. 2018 ice-free season isotope compositions of precipitation bucket
samples plotted in “6*%0-5°H space.”

4.3 Seasonal Variability
Figure 6 contains all 2018 lake water isotope values plotted by season

superimposed upon the GMWL and LEL (Table A3 for raw data). While there is

large variability between lakes seasonally, there are a few general trends to

report. Lakes generally begin the ice-free season more isotopically depleted
(e.g., input dominated), plotting closer to &p, due to the influence of spring
snowmelt. During the summer, the height of evaporative drawdown, isotopic
compositions are more isotopically enriched (e.g., evaporation dominated) and
plot closer to &*. Fall values are between spring and summer compositions due

to the influence of late ice-free season rainfall.
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Figure 6. Isotope compositions of WNP ‘Lake Hydrology’ lakes during the 2018
ice-free season.

4.4 Ecotype Variability
Variability exists between ecotypes (coastal fen, interior peat-plateau, and
boreal spruce forest) during all three of the sampling periods. Boreal spruce

forest lakes are consistently more isotopically depleted and stable, due to the

higher amount of snow storage during the winter, thus, higher amounts of
snowmelt enter the lakes. Interior peat-plateau and coastal fen lakes are more
isotopically-enriched, reflecting a stronger influence of evaporation. Additionally,
interior peat plateau palsa bog and coastal fen lakes are on average, more
shallow than boreal spruce lakes and thus are more sensitive to small climatic
shifts (i.e., precipitation, temperature). However, in the fall, lakes from all three

ecotypes group closer together due to late ice-free season precipitation.
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Figure 7. Isotope compositions of WNP ‘Lake Hydrology’ lakes separated by
ecotype for each sampling season during the 2018 ice-free season.

5.0 Contextualizing Water Isotope Results

5.1 Evaporation to Inflow Ratios as a Tool for Tracking Lake Hydrology

Evaporation to inflow (E/I) ratios were calculated from lake water isotope
compositions using an isotope-mass balance model (Yi et al., 2008; Turner et al.,
2010; Table A3). This metric is a quantitative expression of the relative influence
of lake-specific input water and evaporation; thus, they are excellent indicators of
the hydrological health of each monitoring lake. An E/I value of 1 is equal to the
terminal basin steady-state limiting composition (dss.) where inflow is equal to
evaporation. Therefore E/I ratios greater than 1 provide a clear indication for
lakes that have a negative water balance and are experiencing net evaporative
drawdown.

Interim hydrological thresholds of E/I ratios were established based on
2010-2012 data, to provide a quantitative representation of hydrological status
(see Appendix for 3-year threshold justification; Figure Al, Table A4). Here, a
hydrological threshold is defined as a critical value past which a water body faces

an increasing risk of evaporative loss. Three states (‘poor’, ‘fair’, and ‘good’) have
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been used to define the hydrological thresholds to align with identifying status
and trends for Wapusk National Park’s State of the Park reports. “Fair’ and
“poor” thresholds are statistical representations of the 68™ and 95" percentiles on
the average, analogous to 1 and 2 standard deviations above the mean for
normal data. “Good” thresholds are a description of central tendency,
representing ~68% of the data. Separate thresholds are set for the coastal fen,
interior peat-plateau, and boreal spruce forest ecotypes and are shown in Table
1. Assessments are based on the most recent year of field data (2018).

Table 1. E/I thresholds for hydrological assessment of WNP lakes.

Category

Coastal fen Spring <0.09 0.09-0.16 >0.16

Summer <0.26 0.26 -0.51 >0.51

Fall <010 010-0.16 >0.16

Peatplateau- o <010 010-0.16 >0.16
palsa bog

Summer <0.23 0.23-0.49 >0.49

Fall <010 010-015 >0.15

Boreal Spring <006 0.06-0.08 >0.08

spruce forest
Summer <0.09 0.09-0.13 >0.13

Fall <0.08 0.08-0.11 >0.11

These thresholds were applied to 2018 E/I ratios for each of the three sampled
ecotypes (coastal fen, interior peat-plateau palsa bog, boreal spruce forest;
Tables 2-4). Overall measure condition is determined as follows:
e If E/l ratios per lake are beneath the green thresholds, the condition is
GOOD
o If E/l ratios per lake are within the yellow thresholds, the condition is

e If E/l ratios per lake exceeds the red thresholds, the condition is POOR
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Note that elevated E/I ratios and consequent water-level drawdown is considered
to impair aquatic habitats with potential impacts on surrounding terrestrial

ecosystems.

Table 2. Hydrological threshold analysis for coastal fen monitoring lakes.

Lake Spring Summer Fall
WAP 05

WAP 07
WAP 12

WAP 15
WAP 20

WAP 21

Table 3. Hydrological threshold analysis for interior peat-plateau palsa bog lakes.

Lake Spring Summer Fall
WAP 32 0.14 0.24
WAP 33
WAP 34
WAP 37
WAP 39

Table 4. Hydrological threshold analysis for boreal spruce forest lakes.

Lake Spring Summer Fall
WAP 23 0.06 0.10
WAP 24
WAP 25
WAP 26
WAP 27

Coastal fen lakes are entirely within the ‘good’ category, implying that
these lakes were not overly influenced by evaporation. Peat-plateau palsa bog
and boreal spruce forest ecotypes had E/I values spanning ‘good’, ‘fair’, and
‘poor’ categories during the spring and summer seasons. However, there is a

strong influence of fall precipitation since all of the lakes were in the ‘good’
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category at the end of the ice-free season. While winter (October to April)
precipitation during the 2017-2018 sampling year was 45.6 mm less than the
1971-2000 climate normals, the ice-free season (May to September) precipitation
was similar to climate normals (Table 5). However, an above normal amount of
precipitation fell during the month of August (90 mm), prior to the fall sampling
period (Table 5). This explains the strong influence of rainfall on all sampling
lakes by the end of the ice-free season. Average winter and ice-free season
temperatures were comparable to climate normals (Table 5).

Table 5. 2017-2018 meteorological conditions within WNP compared to climate
normal (Environment Canada, 2018). A sampling ‘year’ has been defined as
October to September in order to capture full winter and summer records. See
Appendix Figure A2 for a graphical representation of WNP meteorological
conditions.

Mean Air 1971-2000 Climate Total 1971-2000 Climate
Month Temperature Normals Precipitation Normals
(°C) Temperature (°C) (mm) Precipitation (mm)
October -1.1 -1.7 70.6 46.9
November -14.9 -12.6 134 33.1
December -23.1 -22.8 11.8 20
January -25.0 -26.7 2.5 16.9
February -26.9 -24.6 3.3 15.7
March -16.1 -19.5 7.3 16.1
April -10.2 -9.7 13.2 19
May -1.9 -0.7 13.3 31.9
June 8.5 6.6 37.9 44.3
July 14.5 12 53.9 56
August 12.6 11.7 90 68.3
September 3.9 5.6 58 63.4

5.2 Alignment of Hydrological Threshold Analysis with Wapusk National Parks’

Monitoring Protocol

Two unique ‘measures’ are used for Wapusk National Park’s current long-
term hydrological monitoring: coastal (equivalent to the coastal fen ecotype) and
wetland (equivalent to the interior peat plateau-palsa bog ecotype). Therefore, for
ease in reporting monitoring results, interim threshold values have been
recalculated and averaged for the entire field season to create one set of
thresholds for the two reported Parks Canada ‘measures’ (Table 6).
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Table 6. E/I thresholds for hydrological assessment of coastal and wetland WNP

lakes.

Lake Category/

Measure
Coastal <0.15 0.15-0.28 > 0.28
Wetland <0.14 0.14 -0.27 >0.27

Overall measure condition is determined as follows (Tables 7 and 8):

e |If E/l ratios per lake are beneath the green thresholds, the condition is
GOOD; designated as 2
e If E/l ratios per lake are within the yellow thresholds, the condition is

e |If E/l ratios per lake exceeds the red thresholds, the condition is POOR;
designated as 0

Note that elevated E/I ratios and consequent water-level drawdown is considered
to impair aquatic habitats with potential impacts on surrounding terrestrial

ecosystems.

5.3 Calculation of ‘Lake Hydrology’ Scores

A. Coastal

Table 7. Coastal measure condition for 2018 field season.

L ake E/l Condition

Score

WAP 05

WAP 07
WAP 12
WAP 15
WAP 20

WAP 21

Detailed calculations to quantify lake hydrological health:
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Average score for the ‘Lake Hydrology’ measure: 2.0
(((6 sites X 2) + (O sites X 1) + (0 sites X 0)) / 6 sites in total)
Average score scaled 0-100: 100

(Measure average score X 50 = 2 X 50)

Scaled score: 100 -> Good EIl (green)
(0-33 = Red (Poor El); 34-66 = Yellow (Fair El); 67-100 = Green
(Good EI))

In the Coastal Ecosystem El indicator, lake hydrology displays no
significant change based on calculated baseline thresholds and the 2018 field
data. Therefore, the Coastal Ecosystem ‘Lake Hydrology’ score is considered to
be good (green).

B. Wetland

Table 8. Wetland measure condition for 2018 field season.

L ake Nl Condition
Score
WAP 32 0.15 1
WAP 33
WAP 34 0.16 1
WAP 37
WAP 39

Detailed calculations to quantify lake hydrological health:
Average score for the ‘Lake Hydrology’ measure: 1.6

(((3 sites X 2) + (2 sites X 1) + (0 sites X 0)) / 5 sites in total)
Average score scaled 0-100:

(Measure average score X 50 = 1.6 X 50)

Scaled score: 80 - Good El (green)
(0-33 = Red (Poor EIl); 34-66 = Yellow (Fair El); 67-100 = Green
(Good EI))
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In the Wetland Ecosystem El indicator, lake hydrology displays no
significant change based on calculated baseline thresholds and the 2018 field
data. Therefore, the Wetland Ecosystem ‘Lake Hydrology’ score is considered to
be good (green).

5.4 Tracking Hydrological Health Over Time

E/l ratios for each lake have been seasonally averaged to generate one
E/l value per sampled year. This enables us to see how the hydrological health of

a lake has changed over the entire sampling period.

A. Coastal

Over the 9 sampling years, similar trends stand out within the coastal lake
measure. From 2010 to 2013, coastal lakes had generally higher E/I ratios with
values ranging between the ‘fair and ‘poor’ categories. However, from 2014 to
present most E/I ratios are within the ‘good’ category.

Evaporation to Inflow Ratio

Sampling Year

Figure 8. Averaged E/I ratios from 2010 to 2018 for lakes within the coastal
measure. Dashed lines delineate thresholds; lake E/I values that fall below the
yellow dashed line are categorized as ‘good’, lake E/I values between the yellow
and red dashed lines are categorized as ‘fair’, and lake E/I values above the red
dashed line are categorized as ‘poor’.
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B. Wetland

WAP 32 and 34 have trends similar to the coastal measure lakes, with
values falling within mainly ‘fair’ to ‘poor’ categories between 2010 and 2013 and
values within the ‘good’ to ‘fair’ categories from 2014 to the present. WAP 33, 37,
and 39 have very consistent E/I ratio values showing that these lakes have more

resilience to annual variability in changing meteorological conditions.

Evaporation to Inflow Ratio

Sampling Year

Figure 9. Averaged E/I ratios from 2010 to 2018 for lakes within the wetland
measure. Dashed lines delineate thresholds; lake E/I values that fall below the
yellow dashed line are categorized as ‘good’, lake E/I values between the yellow
and red dashed lines are categorized as ‘fair’, and lake E/I values above the red
dashed line are categorized as ‘poor’.
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6.0 Appendix
Evaporation Pan, Precipitation Bucket, and Lake Water Isotope Results

Table Al. Evaporation Pan Water Isotope Compositions from 2018
ice-free season. Blue shading represents interval used to determine &ss. (-6.68, -
74.90 %o).

Date Sampled 5'°0 (%o)  &°H (%o)
June 12, 2018 -11.35 -101.14
June 19, 2018 -9.21 -101.17
June 26, 2018 -7.69 -85.96
July 10, 2018 -6.71 -78.64
July 17, 2018 -6.92 -76.90
July 24, 2018 -6.47 -74.94
July 31, 2018 -5.90 -69.77
August 7, 2018 -6.91 -74.61

August 14, 2018 -6.69 -73.17

August 21, 2018 -6.80 -74.23

August 28, 2018 -7.03 -76.98

September 4, 2018 -8.89 -90.82
September 11, 2018 -9.26 -97.34
September 18, 2018 -9.18 -97.97
Averaged value for dss. -6.68 -74.90
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Table A2. Precipitation (rainfall) Bucket Water Isotope Compositions from 2018
ice-free season.

Date Sampled 5'%0 5°H
June 12, 2018 -10.18 -66.36
June 16, 2018 -8.75 -62.21
July 15, 2018 -15.81 -117.01
July 19, 2018 -10.38 -92.37
July 24, 2018 -8.11 -64.71

August 4, 2018 -13.20 -102.73

August 23, 2018 -13.56 -111.84

August 26, 2018 -16.16 -118.99

August 31, 2018 -15.00 -111.25

September 2, 2018 -15.27 -115.95
September 6, 2018 -15.67 -116.32
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Table A3. 2018 Lake Water Isotope Compositions and E/I Ratios.

99T

Spring Summer Fall

Lake 50 5°H E/l 580 5°H E/l 580 5°H E/l
WAP 05 | -10.86 -89.85 0.08 | -7.27 -7325 020 | -10.88 -90.73  0.09
WAP 07 | -11.30 -91.00 0.06 -9.39 -84.07 0.13 -10.11 -85.21 0.09
WAP 12 | -11.23 -92.79 0.08 -7.86 -75.15 0.17 -12.21 -96.76 0.05
WAP 15 | -11.96 -93.45 0.04 -9.04 -77.09 0.10 -10.43 -85.17 0.07
WAP 20 | -14.34 -111.47 0.04 -9.67 -86.65 0.14 -11.07 -93.33 0.09
WAP 21 | -10.93 -90.93 0.08 -9.01 -83.22 0.16 -12.90 -101.56 0.05
WAP 23 | -13.82 -110.94 0.06 -11.65 -98.91 0.10 -11.84  -100.59 0.06
WAP 24 | -13.95 -110.09 0.05 -11.99 -99.06 0.08 -12.27 -100.81 0.06
WAP 25 | -14.10 -112.20 0.05 -12.31 -102.33 0.09 -12.36  -102.89 0.07
WAP 26 | -1459 -115.53 0.05 -12.72 -104.40 0.08 -12.64 -103.70 0.05
WAP 27 | -14.06 -112.61 0.06 -12.15 -101.69 0.09 -12.87 -105.70 0.07
WAP 32 -9.64 -87.37 0.14 -6.26 -67.63 0.24 -12.70 -101.56 0.06
WAP 33 | -10.88 -90.54 0.08 | -9.83 -8392 0.0 | -10.71 -89.34  0.09
WAP 34 -8.23 -78.52 0.17 -6.59 -69.32 0.23 -11.23 -93.51 0.09
WAP 37 | -14.28 -114.92 0.06 -10.23 -90.50 0.13 -12.53 -100.30 0.06
WAP 39 | -12.78 -102.97 0.06 -11.21 -94.34 0.09 -11.68 -95.45 0.07




Three Year Hydrological Threshold Development

For this report, hydrological thresholds are based on E/I ratios from 2010-
2012. In the past, a 5-year baseline (2010-2014) was used as an arbitrary choice
that covered 5 years of data, half of the typical Parks Canada minimum 10-year
baseline, with the idea that once 10 years of data had been collected a new
baseline would be calculated. However, further statistical analysis
(bootstrapping) concluded that generating thresholds only using the first three
years of data is comparable to using the entire data set (Figure Al). The 5-year
baseline (2010-2014) E/I threshold values (Table Al) are identical to the 3-year
baseline (2010-2012) to two decimal points.

0.30 7 WNP Spring Coastal Fen

0.25 A

0.10 ~
0.05 A

E/I 95th percentile values

OOO T T T T T 1
1 2 3 4 5 6 7
# of vears for threshold calculation

Figure Al. Example of 3-year threshold calculations used for this research as an
accurate representation of WNP data. Threshold calculations based on 1 to 7
years of data for spring samples of coastal fen lakes in WNP. Dashed line
represents the mean threshold value (mean E/I = 0.1628).
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Table A4. 5-year threshold values based on 2010-2014 E/I ratios.

Lake Category Season ng)r
Coastal Fen Spring <0.09 0.09-0.16 >0.16
Summer <0.26 0.26-0.51 >0.51
Fall <0.10 0.10-0.16 >0.16
'”tﬁ,rlftrezlfat' Spring <010 | 010-0.16 | >0.16
Summer <0.23 0.23-0.49 >0.49
Fall <0.10 0.10-0.15 >0.15
Boreal Spruce | g ing <006 | 006-0.08 | >0.08
Forest
Summer <0.09 0.09-0.13 >0.13
Fall <0.08 0.08-0.11 >0.11
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Compiled meteorological data from 2009 to 2018
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1.0 Introduction

Wapusk National Park (WNP) contains over 10,000 shallow, mainly
thermokarst lakes and ponds, hereafter referred to as ponds, which provide
important habitat for wildlife (Parks Canada, 2011). During the past ~50 years,
coastal regions of WNP have witnessed rapid increases (5-7% per year) in the
population density and nesting area range of Lesser Snow Goose (LSG) (Batt et
al., 1997; Jefferies et al., 2006). This has raised concerns and uncertainty
regarding the degree of disturbance on the abundant shallow ponds and the
adjacent vegetation and habitat (Handa et al., 2002; Jeffereries and Rockwell,
2002; Jefferies et al., 2006; MacDonald et al., 2015). As the LSG population
expands farther inland, their activities (i.e., grubbing, nesting, and defecating)
have been identified within both the coastal fen and interior peat plateau-palsa
bog ecotypes of WNP. Additionally, this region has experienced some of the
greatest warming in the circumpolar North during the past ~50 years and is
considered one of the most sensitive regions in northern Canada to permafrost
thaw (Smith and Burgess, 2004; Kaufman et al., 2009; Hochheim et al., 2010).
Therefore, the influence of LSG population growth has the potential to be
exacerbated by increased evaporation due to longer ice-free seasons and
alterations in seasonal precipitation. Parks Canada (2011) acknowledged that the
combination of expanding LSG population and climate warming could,
potentially, drastically alter the ecological integrity of ponds in WNP.

Ongoing studies have identified varying LSG disturbance levels in the
Park, spanning from low disturbance, to active disturbance, to severe
disturbance (White et al., unpublished; Figure 1). Additionally, a suite of
limnological (meaning of or related to inland waters) variables (e.g., conductivity,
carbon isotope composition of dissolved inorganic carbon, carbon and nitrogen
isotope compositions of particulate organic matter) have been identified to be
sensitive to catchment disturbance by LSG (MacDonald et al., 2014; 2015).
These variables will be explained in Section 2.

Figure 1 Examples of a A) low disturbance, B) active disturbance with grubbing,
and C) severe disturbance showing an absence of catchment vegetation.
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To address concerns regarding LSG disturbance to aquatic ecosystems of
WNP, a monitoring program was established in 2016 with the following objective:
to determine the effects of LSG disturbance on ponds by comparing
l[imnological conditions among ponds of different disturbance levels over
seasonal and yearly timescales. Results are separated into two sections:
lassessing pond catchment erosion including the LSG Aquatic Impact Measure
Condition Assessment, and the reporting of other pond water quality indicators
including nutrient cycling, pond productivity, and pond carbon behaviour. These
will be described in detail in section 3.0.

2.0 2017 WNP Field Sampling

During late July 2017, 30 ponds were sampled across the north-eastern
portion of Wapusk National Park (Figure 2). These ponds were initially selected
and sampled in July 2015 to cover a representative portion of WNP containing
the different levels of goose disturbance (low, active, and severe; Figure 1). In
situ measurements included conductivity and water temperature. Surface water
samples were collected and analyzed for nutrients and the carbon isotope
composition of dissolved inorganic carbon and particulate organic matter.
Additionally, spatial analysis of datasets have been utilized to map gradients and
to identify ‘hotspots’ of disturbance.
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Figure 2 2017 LSG Aquatic Impact Monitoring Field Sites.
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3.0 Goose Aguatic Impacts Results

3.1 Assessing Catchment Erosion

Conductivity is utilized in order to determine the extent and effects of
catchment erosion on the ponds of WNP. Conductivity is water’s ability to
conduct electrical current and it represents the amount of dissolved substances
in water (i.e., salts, chlorides, etc.). Conductivity can be influenced by *the
surrounding geology and the composition of the underlying rocks, the climate
(warmer temperatures and/or decreases in rainfall can lead to more evaporation
and an increase in the conductivity of a particular water body), ®biological
influences (i.e., LSG defecation and grubbing which decreases soil compaction
by root removal), as well as *proximity to a salt water body (i.e., Hudson Bay) and
the potential input of sea spray. Within WNP, substantially higher values of
conductivity may indicate proximity to the Hudson Bay (specifically coastal WNP)
or increased erosional inputs from both LSG disturbance and climate warming
(Figure 3).

LSG DISTURBED PONDS

e

LOW CONDUCTIVITY - HIGH CONDUCTIVITY
-~

N

——

CONDUCTIVITY

Figure 3 Schematic depicting the difference in pond conductivity resulting from
catchment erosion.

Conductivity values have been spatially interpolated to identify potential
hotspots in catchment erosion. Results in Figure 4 display values ranging from
high (red) to low (blue). Two unique zones of higher conductivity values within
the study area have been identified and are attributed to LSG disturbance. These
“hotspots” are located within ‘the northern region by La Perouse Bay and Zalong
the eastern coast near Thompson Point. These two areas represent locations of
the most extreme effects of LSG on catchment erosion. The La Perouse Bay
area represents the LSG’s initial nesting location in the area and the region along
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the coast north of Thompson Point represents the LSG short-stop location in
2001. These high conductivity levels are unlikely related to sea spray from
Hudson Bay, since higher conductivity values would be expected all along the
coast.
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Figure 4 2017 conductivity values.

3.11 LSG Aquatic Impact Measure Condition Assessment

The preliminary assessment for the impact of LSG populations on WNP
coastal ponds is based on two variables: visual LSG disturbance in pond
catchments and pond water conductivity. Separate thresholds are set for each
variable, resulting in two thresholds. Interim condition thresholds are shown in
Table 1.
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Table 1 Condition thresholds for LSG Aquatic Impact Measure.

Variables Poor
Visual LSG
disturbance 2 ! °
Conductivity <500 500-3000 >3000
(uS/cm)

Visual LSG disturbance thresholds have been determined based on 2015
and 2016 field notes using a 0-2 scale. Ponds with a value of 2 represent ponds
with no obvious LSG disturbance in the catchment (i.e., little to no goose
presence, feces). Ponds with a value of 1 represent ponds with some LSG
disturbance in the catchment (i.e., goose presence, some feces, little to no
grubbing). Ponds with a value of O represent ponds with large amounts of LSG
disturbance in the catchment (i.e., substantial goose presence, abundant goose
feces, obvious grubbing).

Conductivity thresholds were determined using three years of field data
(2014-2016) from 15 ponds spanning a gradient of LSG disturbance
(undisturbed, actively disturbed, severely disturbed) within the coastal region of
the Park. Three statistically distinct groups were established within the
conductivity data using breakpoint analysis.

Preliminary baseline condition thresholds will be updated once more years
of data have been collected. While these thresholds have been developed using
only 3 years of data, the results of the assessment support the presence of a
definitive gradient of LSG disturbance in WNP ponds. Assessments are applied
to 30 ponds sampled in July 2017 (Table 2).

Overall pond condition is determined as follows:
e If both variables per pond are beneath the green thresholds, the condition
is GOOD; designated as 2.
e If both variables per pond are within the yellow thresholds, the condition is

e |If both variables per pond exceed the red thresholds, the condition is
POOR; designated as 0.

e If different thresholds are determined for an individual pond, the condition
is designated as the worse condition.

Note that elevated conductivity values indicate increased erosional inputs from
LSG disturbance, which can impair aquatic ecosystems.
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Table 2 July 2017 field observation, conductivity results and condition
designation

Visual LSG | Conductivity
Disturbance (uS/cm)

WAP 57 1 1163 1
WAP 58 0 1202

WAP 59 0 1239 0
WAP 60

WAP 61

WAP 62

WAP 63

WAP 64

WAP 65 1 1
WAP 66

WAP 67

WAP 68

WAP 69

WAP 70

WAP 71

WAP 72 0 1002 0
WAP 73

WAP 74

WAP 75

WAP 76 0 1044 0
WAP 77

WAP 78

WAP 79

WAP 80

WAP 81

WAP 82

WAP 83 1 1
WAP 84 0 840

WAP 85

WAP 86

Pond Condition

The 2017 LSG aquatic impact measure condition assessment categorized
WAP 57, 65 and 83 in condition, WAP 58, 59, 72, 76 and 84 in POOR
condition, and the remaining WAP ponds (WAP 60-64, 66-71, 73-75, 77-82, and
85-86) in GOOD condition.

171



3.2 Other Pond Water Quality Indicators

All limnological parameters have been separated by the three LSG aquatic
impact measure conditions (good, fair, poor) and displayed using boxplots
(Figure 5). Limnological parameters show differences associated with pond
condition, as defined by Table 2 and except for TKN, there is a significant
difference between ponds within the ‘good’ and ‘poor’ conditions for rest of the
limnological parameters (p-values = < 0.05; Figure 5). Conductivity values range
between 21 and 1239 uS/cm with lower conductivity values corresponding to
‘good’ pond condition and higher conductivity values corresponding to ‘fair’ and
‘poor’ pond conditions (Figure 5a).
3.21 Pond Water Nutrients and Productivity

Nutrients are essential for the functioning of aguatic ecosystems, similar to
humans. We focus on two specific nutrient cycles within the aquatic ecosystems
of WNP: nitrogen and phosphorus. Nitrogen and phosphorus are nutrients
essential for plant and algal growth and can be tracked by measuring Total
Kjeldahl Nitrogen (TKN) and Total Phosporus (TP). Typically, nutrient levels
increase during mid-July, corresponding to the height of pond productivity.
However, previous work in Wapusk National Park has found a variety of
responses to nutrient levels due to LSG disturbance. During mid-summer (July),
higher and lower nutrient values as compared to low disturbance ponds were
observed (MacDonald et al., 2014, 2015; Figure 6). Additionally, pH can be used
as an indicator of pond productivity and degree of inputs from the catchment.
MacDonald et al. (2014, 2015) found that elevated pH values indicate increased
productivity due to active LSG disturbance.

Due to financial constraints for a long-term monitoring program within
WNP, all 30 ponds cannot be sampled three times during the ice-free season. By
sampling in July only, we still capture a snapshot of nutrient variability. TP and
pH values within the ‘poor’ pond condition are significantly higher than the ponds
within ‘good’ and ‘fair’ conditions (Figure 5b and c). TKN, however, shows no
significant difference between all three aquatic impact measure conditions
potentially due to rapid consumption by aquatic productivity (Figure 5d). Elevated
TP and pH values could be an indication of increased productivity due to LSG
disturbance. It should also be noted that several ponds within the ‘good’ condition
show elevated pH, TP, and TKN values, within the range of the ‘poor’ condition
(Figure 5b, d, and d). This could be a first indication of LSG disturbance within
those ponds; continued monitoring of these ponds will be able to substantiate or
refute this hypothesis.

To visually see variability, TP and TKN nutrient values have been plotted
spatially with data ranging from high (red) to low (blue) values (Figure 7). Three
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areas of high nutrient levels or “hotspots” can be identified; ‘the northern region
by La Perouse Bay, “along the eastern coast near Thompson Point, and °the
southern inland portion of the sampling area. The La Perouse Bay region has
sustained the longest and most intense impact from LSG presence and the
coastal region near Thompson Point was the location of a LSG short-stop in
2001. Both areas have been identified as regions of extensive LSG nesting and
disturbance. Therefore, there is a correlation between LSG disturbance and high
nutrient levels where higher/longer influence from the LSG can be characterized
by higher nutrient levels in 2016. The third location of higher nutrient levels, in the
southern inland portion of the sampling area associated with ponds that fall within
the ‘good’ condition, may have higher nutrients due to the early evidence of LSG
disturbance. 1a - 02 -
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Figure 5 Box plots depicting data for 2017 limnological parameters; a) conductivity,
b) pH. c) total phosphorus (TP), d) total nitrogen (TKN), e) dissolved inorganic
carbon (DIC), f) dissolved organic carbon (DOC), g) carbon isotope composition of
dissolved inorganic carbon (53'*Cpic), and h) carbon isotope composition of
particulate organic matter (613CPOM). Each plot contains data from all three aquatic
impact measure conditions; GOOD (n=22), FAIR (n=3), and POOR (n=5).The boxes
identify the 25" percentile, median value, and 75" percentiles, the whisker bars
represent the 10™ and 90™ percentile, the solid black circles represent outliers.
Asterisks ( %) represent groups that are significantly different from one another.
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Figure 6 Schematic showing the difference in nutrient (TKN, TP) responses to
LSG disturbance.
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3.22 Pond Water Carbon Behaviour and Productivity

Carbon is a nutrient that is necessary for plant and algal growth within an
aquatic ecosystem and can be influenced by a variety of processes such as
catchment erosion and runoff as well as productivity (referring to the rate of
generation of biomass in an ecosystem). We can track carbon as it is cycled
through the aquatic system by examining the dissolved inorganic carbon (DIC)
concentration, the dissolved organic carbon (DOC) concentration as well as the
carbon isotope composition of DIC and particulate organic carbon (POM). DIC
refers to the sum of dissolved inorganic carbon species (i.e., carbon dioxide,
carbonic acid, bicarbonate, carbonate), DOC refers to the dissolved organic
matter within the water column, and POM refers to the plant or animal material
suspended in the water column.

Research on the effects of waterfowl populations in Arctic ponds by Cété
et al. (2010) found no significant difference in DIC and DOC concentrations in
lakes with or without geese. However, MacDonald et al. (2014, 2015) found
elevated DOC levels in a lake with active LSG disturbance. DIC levels were
comparable between lakes with or without LSG disturbance. Additionally,
previous work in Wapusk National Park has found that the carbon isotope
composition of DIC within LSG disturbed ponds has a different seasonal pattern
than low disturbance ponds (MacDonald et al., 2014, 2015; Figure 8). At ponds
with low LSG disturbance, the carbon isotope composition of DIC and POM
increases during the ice-free season due to an increase in aquatic primary
productivity through photosynthesis. This likely reflects an increase in primary
productivity under conditions where carbon supply is exceeded by carbon
demand. However, at ponds with LSG disturbance, the carbon isotope
composition of DIC typically shows a sharp decline in mid-summer (Figure 8) and
the carbon isotope composition of POM rises more sharply, thus implying a
different behaviour of the dissolved inorganic carbon within a goose disturbed
pond and a higher demand for carbon in the mid-summer.
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Figure 8 Schematic depicting the difference in the carbon isotope composition of
dissolved inorganic carbon in response to LSG disturbance.
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Similar to pH and nutrient values, DIC and DOC concentrations of ponds
within the ‘poor’ pond condition are significantly higher than the values within the
‘good’ and ‘fair’ conditions (Figure 5e and f). These elevated concentrations of
DIC and DOC could reflect a greater supply of carbon from the LSG disturbed
catchments. Additionally, in alignment with MacDonald et al. (2014, 2015), the
carbon isotope composition of DIC progressively decreases as pond condition
decreases (Figure 5g). Correspondingly, the carbon isotope composition of POM
values increase with decreasing pond condition likely reflecting the increased
demand on carbon in ponds most disturbed by LSG (Figure 5h).

4.0 Conclusions

This is only the second year of the Goose Aquatic Impact monitoring
program and identifying the best data to collect and depict is a work in progress.
It is important to note that the different variables measured (i.e., conductivity, pH,
TP, TKN, DIC, DOC, carbon isotope composition of DIC and POM) combined,
provide a comprehensive picture of the effects of LSG disturbance on the aquatic
ecosystems in WNP (Figure 5). By using all of these limnological parameters,
three areas of disturbance have been identified (‘the northern region by La
Perouse Bay, “along the eastern coast near Thompson Point, and 3the southern
inland portion of the sampling area) and continued monitoring is necessary to
understand how these areas continue to evolve in response to LSG disturbance.
For more in depth results on samples collected in 2015 and 2016 refer to the
Ph.D. thesis of H. White (Wilfrid Laurier University) and the corresponding
publication (White et al., in preparation).
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5.0 Appendix

Table A1 2017 Goose Aquatic Impact data

DIC DOC &3Cpc &©Cronm

Pond pH P TKN (mg/L) (mg/L) (%0) (%)

WAP 57 8.23 0.21 8.60 17.50 7.80 -2.25 -19.08
WAP 58 | 8.54 0.42 7.64 21.50 9.50 -3.41 -13.77
WAP 59 9.13 0.51 0.71 21.60 9.10 -2.09 -21.32
WAP 60 | 8.48 0.02 0.91 28.50 11.70 -1.60 -21.99
WAP 61 8.44 0.02 0.95 23.30 10.20 -1.70 -23.79
WAP 62 8.54 0.04 0.94 29.60 11.10 -1.45 -22.22
WAP 63 | 8.37 0.08 1.40 28.70 12.30 -1.72 -22.32
WAP 64 | 8.31 0.11 0.97 18.50 9.00 -2.63 -23.44
WAP 65 | 8.36 0.04 1.43 27.00 14.30 -2.27 -24.33
WAP 66 | 8.35 0.04 0.68 14.60 8.10 -3.97 -22.28
WAP 67 8.27 0.06 1.13 25.00 13.00 -1.79 -27.94
WAP 68 | 8.36 0.03 0.91 22.00 13.80 -2.40 -26.82
WAP 69 8.37 0.01 0.77 17.10 8.00 -2.30 -22.03
WAP 70 | 8.37 0.02 0.60 25.50 7.70 -1.27 -20.30
WAP 71 8.75 0.01 0.46 15.00 7.80 -1.01 -23.66
WAP 72 9.06 0.03 1.57 25.70 14.60 -2.31 -19.45
WAP 73 | 8.54 0.05 1.36 28.60 16.50 -1.85 -28.41
WAP 74 | 8.62 0.04 0.67 21.80 7.80 -2.09 -26.06
WAP 75 | 8.45 0.02 1.19 20.90 12.70 -2.57 -23.90
WAP 76 | 8.46 0.42 4.66 26.60 9.90 - -15.45
WAP 77 8.36 0.06 0.98 13.90 12.30 -1.94 -27.92
WAP 78 | 8.46 0.12 1.48 20.50 17.70 -2.20 -26.62
WAP 79 8.27 0.49 9.66 11.50 20.70 -2.01 -28.48
WAP 80 | 8.21 0.32 1049 14.30 19.30 -1.88 -28.90
WAP 81 8.25 0.22 1152 14.20 20.40 -1.03 -25.91
WAP 82 8.36 0.05 0.91 18.70 12.20 -1.72 -26.45
WAP 83 | 8.66 0.03 0.77 17.60 11.90 -1.69 -24.45
WAP 84 | 8.76 0.24 0.78 22.10 10.20 -2.60 -16.61
WAP 85 | 8.31 0.38 8.26 9.00 12.60 -0.55 -27.09
WAP 86 | 8.23 0.40 6.77 7.00 12.70 -0.84 -26.78
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4.D. Open Access Data
https://open.canada.ca/data/en/dataset?g=Wapusk&portal type=dataset&sort=

1. Pond Water Dynamics/Lake Hydrology Public Data
G t G t
l* 0]?5::2’3:“ d:lé\;@[:;:glen Search Canada.ca n

Immigrafion « Business « 5 More sevices »

Home + Open Government - Lake Hydrolegy - Wapusk ...

Have your say

Lake Hydrology - Wapusk National Park

Wapusk National Park protects a vast landscape of coastal salt marshes, countless lakes and ponds, and a diversity of Rate this dataset
boreal-tundra interface habitats, and serves as staging areas for migrafing birds, and habitat for a diversity of wildlife. Commentis)
Shallow lakes and ponds are created in part by thermokarst processes resulting from the melting of ground ice in areas
underlain by permafrost. In northern areas, climate change brings fluctuations in femperature, permafrost and snow fall
and cover which affect lake dynamics, water compesition and water levels, and the plants and animals dependent on
them. Lake hydrology is d based on hydroelocelogical methods developed during the Internaticnal Polar Year in
Wuntut Mational Park, and initiated in VWapusk in 2010 by the Hyd, logical Team, a mulfidisciplinary h group
from Wilfrid Laurier University and University of Waterloo led by Dr. Brent Wolfe. Lake water from forest, wetlands and
coastal tem habitats is d using the posifion of naturally occurring isotopic fracers to assess the
evaporation to input ratic (EN ratio). The E/ ratic, for which high values indicate lake drying. is used as a coarse
assessment of climate change for ecolegical integrity menitoring for state-of-the-park reporting. We are currently
publishing part 1 of the data; a more complete dataset will be posted at a later date. This provides collaborators the
opportunity fo publish papers and finalise theses.

Additional Information

Creator: Chantal Ouimet

Contact Email:
chantal ouimet@pe ge.ca

Keywords:

Thermoksrst processes
Publisher - Current Organization Name: Parks Canada water samples | stable isotope
hydrology

Contributor: Hilary White (PhD candidate at Wilfred Laurier University), Dr. Brent Wolfe (Wilfrid Laurier University) Wapuck National Park
Licence: Open Government Licence - Canada climate change

Evaporation/input ratio
Resources Ell matio wetlands
peatlands coastal ecosystem

Resource NameEll' Resource Type [#|4 Format [$/4| Language /4 Links forest

English ecological integrity monitoring
: e

Lake Hydrology - Wapusk Mational Park Dataset csv

French goose impact
Lake Hydrology - Wapusk National Park - . English _
Te I CsV Acces Subject:
Data Dictionary srminology French coess ubje

Nature and Environment
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2. Goose Aquatic Assessment Public Data

|

Gouvernement
du Canada

Government
of Canada

Immigrafion «

Travel » Business « Eenefits +

Search Canada.ca

More services »

Home - Open Government + Goose Agualic Assessment - .

Goose Aquatic Assessment - Wapusk National Park

Wapusk Mational Park (WHNP), protects a vast landscape of coastal salt marshes. counfless ponds, and a diversity of
boreal-tundra inferface habitats, and serves as staging areas for migrating birds, including the Lesser Snow Goose
{LSGO). Over the last few decades LSGO pop 15 have i P ially due to multiple factors the LSGO is
now considered hyper-abundant. Grazing LSGO create large disturbed and barren areas altering vegetation, soil, and
ponds, and affecting the ecological integrity of the parks ferrestrial and aguatic ecosystems. To assess goose impacts
and their spafial expansion, thirty (30) ponds were selected to form a coarse grid covering the area north of the Broad
River and east of Mestor Two camp. Water compesition, including conductivity, is monitoring in July annually. As geese
feed, they remove vegetation; and their droppings add nutrient and organic matter in and around ponds. Increased
water nufrients and sediment results in increased conductivity, a sign of increased goose presence and impacts.

The field crew also records evidence of geese at each pond and pond water iz sampled for laboratory analyses of
naturally occurring isotopic tracers to assess the water Evaporation te Input (shortened to EN ratic), and measure
nufrients and organic matter dynamic. Water samples are sent for laboratory analysis to cur monitoring pariners, the
Hydroecology Team led by Dr. Brent Wolfe (Wilfrid Laurier Uni ity ). We are publishing part 1 of the data: a
more complete dataset will be posted at a later date.

Publisher - Current Organization Name: Parks Canada
Contributor: Hilary White (PhD candidate at Wilfred Laurier University), Dr. Brent Wolfe (Wilfrid Laurier University)

Licence: Open Government Licence - Canada

Resources
Resource Name Ell' Resource Type (4|4 Format /4| Language /4 Links
Goose Aquatic Assessment - Wapusk English
Dataset CsV Acces
Mational Park alase French eSS
Goose Aquatic Assessment - Wapusk . English
Te I CsV Acces
Mational Park - Data Dictionary srminelogy French coess
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Rate this dataset
Commentis)

Additional Information

Creator: Chantal Ouimet

Contact Email:
chantal ouimet@pe ge.ca

Keywords:

Water samples.

=13hle isotope hydreecology
Wapusk National Park
dimate change

poose populations
conductivity wetland
coasta forest

water chemistry and nutrients.
pond | lake

ecological integrity monitoring
hydrology

Lesser snow goose impact
Evaporation/Input ratio

Ell ratio




Communicating research with the general public

| believe that one of the most important responsibilities we have as scientists, is
to educate and communicate our knowledge with people outside of the scientific
community. This kind of communication has been a high priority for me during my Ph.D.
and began with reaching out to Parks Canada staff to write an article for Wapusk News,
the yearly publication for all-things related to Wapusk National Park (Section 4.E). This
article was meant to convey our research findings in an easy to understand format to
Parks staff, Churchill residents, and the thousands of tourists that travel through Churchill
every year. | also gave several public presentations to the Churchill community and
visitors at the Parks Canada Office and the Churchill Northern Studies Centre, all with
the goal of being transparent and open about the research that we were conducting.
Additionally, I contributed content for the recently launched ‘Expedition Churchill’, an
interactive platform on the Churchill region and all the incredible research that is taking

place there (http://umanitoba.ca/research/expeditionchurchill/ , which you can get on

your phone as an app).
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4.E. Wapusk News, Issue 7, 2014

White, H. 2014. Climate change and the lakes of Wapusk National Park. Wapusk News:
The Voice of Wapusk National Park, 7, 15.

: Cl4imate Change and the
i Lakes of Wapusk National Park

Wapusk News

Hilary White
PhD candidate

Department of Geography and
Environmental Studies

Witirid Laurier University

‘Wapusk National Park, a representative
portion of the Hudson Bay Lowlands,
has an abundance of shallow lakes.
This freshwater landscape is a highly
productive northern oasis and provides
habitat for a variety of wildlife. However,
the very existence of these lakes may
become increasingly vulnerable to the
effects of climate change.

Since 2010, researchers at Wilfrid
Laurier University and University

of Waterloo have been conducting a
number of studies to determine how
the lakes have changed in response

to recent warming and what is in
store for the future. With the help
and guidance of staff from Wapusk
National Park, our research group has
collected water and sediment samples
from approximately 40 lakes that are
located from the boreal forest to the
coastal tundra regions in the park.
Akey focus of our research has been
to examine both present and past
hydrological conditions of the lakes.

Issue 7 - 2014

To learn how current climate
conditions influence the lakes, we
use water isotope tracers (0, *H)
to track the varving influence of
snowmelt, rainfall and evaporation.
Onur results show that there are strong
relations among the hydrology of
the lakes, meteorological conditions
and catchment characteristies. For
example, regions of the park with
sparse vegetation and flat terrain
are most susceptible to lake-level
decline following springs of low
snowmelt runoff. Notably, several
lakes underwent partial or complete
“desiceation” or drying during the
summers of 2010, 2012 and 2013.
Understanding how lakes have
changed over longer periods of time
is also important and therefore we
use “paleolimnology,” the study of
sediments that accumulate at the
bottom of lakes. We collected several
sediment cores in summer 2013
from lakes that we had observed to
desiccate. Analyses of these cores
will be used to determine if lake
desiceation is a recent outcome of
climate change or if this has occurred
in the past. Initial findings from one
lake show that recently observed
drying has not previously occurred
over the past 200 years.
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Above: PO students Latren MacDonaid and
Hilary White collecting sediment cores from 4 desiceated
ke in Wapusk National Park (July 20131

Below: A landscape shot of Wapusk National Park with
evidence of widespreat lake desiccation (July 2013)

Looking towards the future, we

are collaborating with staff from
‘Wapusk National Park to establish a
lake monitoring program using the
techniques we have developed. This
information will help to track the
ongoing and increasingly dynamic
effects of climate change on lakes in
the park. 0




Chapter 5: Conclusions and Recommendations

Freshwater ecosystems are abundant features across northern landscapes and
provide the necessary resources and habitat for a variety of wildlife as well as supporting
the traditional lifestyles of Indigenous cultures (Rouse et al., 1997; Prowse et al. 2006;
Schindler and Smol, 2006). However, a more complete understanding of both the
observed and predicted effects of multiple environmental stressors is necessary in light of
increasing change and disturbance. These freshwater environments are particularly
sensitive to climate change, but remain amongst the least studied and poorly understood
ecosystems, especially how they respond to the effects of multiple, compounding
environmental stressors (e.g., Rouse et al., 1997; ACIA, 2004; Abraham et al., 2005a;
Prowse et al., 2006; Schindler and Smol, 2006; IPCC, 2014; Luoto et al., 2014). This
thesis has provided a new understanding of the effects of climate change and waterfowl
disturbance on freshwater ecosystems within two subarctic national parks (Vuntut
National Park, Wapusk National Park). This information is crucial to determine the
relative roles of multiple environmental stressors on the hydrology, limnology and carbon
behaviour of subarctic lakes, to develop sustainable long-term monitoring programs, and
to translate scientific research into action and application. Below is a synthesis of the key

contributions that address the objectives of this thesis.

183



5.1 Synthesis of Key Contributions
Development of novel hydrological thresholds using water isotopes to monitor the
Ecological Integrity of northern shallow lakes

Rapid climate-induced shifts in northern freshwater ecosystems are of increasing
concern, leading to the necessity to better understand and monitor the impacts of such
change (Smith et al., 2005; Smol et al., 2005; Prowse et al., 2006; Riordan et al., 2006;
Schindler and Smol, 2006; Labreque et al., 2009; Carroll et al., 2011). Parks Canada has
identified that the hydrological condition of freshwater lakes within VNP and WNP are a
critical ‘Ecological Integrity Measure’ and must be monitored. To address this, my
research focuses on monitoring individual northern lake-rich landscapes to identify
changes in the local hydrology over time in response to varying meteorological
conditions by utilized thresholds. Since hydrology (‘snowmelt-dominated’ vs. ‘rainfall-
dominated’ or coastal fen vs. interior peat plateau vs. boreal spruce forest) and
seasonality (spring vs. summer vs. fall) influence lakes in a variety of ways, this study
provides an alternative to the static E/I threshold of > 0.5 used in previous studies and
defines thresholds specific to lake categories and seasons. While this approach may not
always signal aquatic ecosystem impairment, it has the advantage of providing a more

sensitive, quantitative means to assess and detect hydrological change.

Integration of novel thresholds to assess the hydrological ‘Ecological Integrity Measure’
condition within two subarctic Canadian national parks
An important contribution of this work is the alignment of hydrological thresholds

with Parks Canada’s usage of thresholds as 1) a tool to evaluate ‘Ecological Integrity’
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and 2) to establish the ‘condition’ of an individual ecosystem. These hydrological
thresholds allow for the translation of scientific research into metrics that serve Parks
Canada and their reporting requirements. The lake status designations of ‘good’, ‘fair’,
and ‘poor’ were generated for each lake category and season to represent easily
quantifiable Ecological Integrity conditions. Variability in the condition (‘good’, ‘fair’,
‘poor’) of VNP monitoring lakes exists between lake category (‘rainfall-dominated’,
‘snowmelt-dominated’, intermediate) as well as by season (spring, fall) from 2007 to
2015. However, rainfall-dominated lakes show the most variability in lake condition,
spanning from lakes that fall entirely within the ‘good’ condition to lakes that are almost
entirely in ‘fair’ to ‘poor’ conditions. In WNP, variability in lake condition exists
between lake category (coastal fen, boreal spruce forest, interior peat plateau) and season
(spring, summer, fall) from 2010 to 2013. However, during the spring and summer of
2014 and the entire ice-free season of 2015, all lakes improved to ‘fair’ or ‘good’
conditions, reflecting an increase in the precipitation/evaporation ratio. There was a large
amount of rainfall during the month of July prior to and during sampling in 2014. This
rainfall likely caused the homogenization of lake hydrological conditions. Although there
were no large rain events prior to the other sampling periods in 2014 and 2015,
precipitation/evaporation ratios were evidently sufficient for lakes to maintain ‘good’ or
“fair’ status. Most interior peat plateau lakes fall within ‘good’ and ‘fair’ conditions and
many boreal spruce forest lakes fall within ‘good’ and ‘fair’ conditions due to the
stronger snow trapping ability of the forest, indicating more resistance to evaporative
drawdown compared to lakes in other ecotypes. However, low snow during 2009-2010,

2010-2011, and 2012-2013 seasons led several boreal spruce forest lakes to approach or
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cross the ‘poor’ threshold, despite snow-trapping effects of their forested catchments,
implying that these lakes may become more vulnerable to evaporation under a climate
change scenario of low snowfall. While their E/I ratios remain low relative to the other
lake categories, boreal spruce forest lakes may become more vulnerable to evaporation
under a climate change scenario of low snowfall. Parks Canada can now incorporate
these Ecological Integrity conditions into their ‘State of the Park’ report to quantify the

fluctuations in the hydrological status of lakes in response to climate change.

Variation of limnological conditions and carbon behaviour in relation to LSG
disturbance

Previous research found that carbon isotope measurements (e.g., 8°Cpc) were
more informative regarding LSG-disturbance than standard water chemistry
measurements (e.g., pH, TP, TKN) and captured marked differences in carbon behaviour
between undisturbed lakes and one LSG-disturbed lake (MacDonald et al., 2014).
However, the one LSG-disturbed lake chosen by MacDonald et al. (2014) may not be
representative of all LSG-disturbed lakes and likely did not capture the full spectrum of
limnological differences caused by LSG disturbance. Findings reported here identified
that limnological trends caused by chemically-enhanced CO, invasion, elevated
catchment runoff of nutrients, carbon and ions, as well as enhanced aquatic productivity,
increasingly influenced the nutrient and carbon balance of lakes along a LSG disturbance

gradient (undisturbed, actively disturbed, severely disturbed).
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Spatial patterns of Lesser Snow Geese (LSG) disturbance

A key contribution is the generation of a map (Chapter 3, Figure 3.9) that
synthesizes the effects of all limnological and carbon isotope variables (specific
conductivity, TP, TKN, 8*Cpic, 8"*Cprytorom) that are deemed sensitive to LSG
disturbance. From this map, old, current, and emerging areas of LSG disturbance (La
Perouse Bay, north/northwest of Thompson Point, and inland area in the southern portion
of study area, respectively) are identified. Although, previous studies (MacDonald et al.,
2014) found that specific conductivity and carbon isotope measurements (e.g., 5*Cpic)
were more informative than standard water chemistry measurements (e.g., pH, TP, TKN),
this spatial analysis determined that specific conductivity, carbon isotope measurements,
and standard water chemistry variables are all useful for identifying levels of LSG

disturbance across the WNP landscape.

Transforming research science into action and application

A new research paradigm in northern Canada has developed, where collaborative,
interdisciplinary, and community-driven research reflects northern priorities and leads to
action and application (Graham and Fortier, 2005; Wolfe et al., 2007a, 2011,
Balasubramaniam, 2009; ISAC, 2012; Tondu et al., 2014; Adams et al., 2014). | believe
that the most important contribution of this research has been the transformation of our
research science into an applicable, long-term, and sustainable monitoring program for
Wapusk National Park, in partnership with Parks Canada. Conducting northern,
collaborative, and interdisciplinary research to address large environmental problems

(e.g., climate warming, permafrost thaw, change occurring to freshwater resources) is
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often complex and challenging, but through a tremendous about of effort and
collaboration, the Hydroecology Monitoring Program was successfully established and
maintained. This monitoring program has been developed in a format that aligns with

Parks Canada’s mandate and can be utilized for their reporting requirements.

5.2 Final Comments and Recommendations

All of these contributions could not have been possible without the commitment
and collaboration of both university and Parks Canada partners. It has been a challenging
and iterative process, but also an incredibly rewarding experience creating the now
sustainable and long-term Hydroecology Monitoring Program. As previously mentioned,
this monitoring program has two main components: 1) Pond Water Dynamics/Lake
Hydrology monitoring which is associated with Chapter 2 and 2) Goose Aquatic Impact
monitoring which is associated with Chapter 3. Specific recommendations for the
continuation of these two monitoring program components have been laid out in their

individual chapters and a summary of key recommendations are provided below.

Pond Water Dynamics/Lake Hydrology monitoring

Three main recommendations have been established to maintain the longevity
Pond Water Dynamics/Lake Hydrology program.

1) If financially feasible, water isotope sampling should be completed every
spring and fall with summer sampling added every three years to capture a broad
spectrum of hydrological conditions. By not including the summer sampling period, the

maximum influence of evaporation on the lakes may not be captured. However, with the
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difficulties in securing reliable funding sources every year in mind, spring and fall
sampling may be deemed sufficient since only one lake water isotope value (5, ) from this
research fell outside the range captured by the spring and fall seasons.

2) An evaporation pan should be maintained every ice-free season by Parks
Canada staff. The evaporation pan simulates the isotopic and hydrological behaviour of a
steady-state terminal lake where inflow is equivalent to evaporation (dss.). This value is
an important component of the Local Evaporation Line and helps to constrain das (the
isotopic composition of the ice-free season atmospheric moisture) which is an important
component for calculating E/I ratios, the basis of our lake thresholds.

3) The partnership between Parks Canada staff and researchers needs to remain
strong and long-term. Funding needs to be secured, field collection and processing needs
to be carried out efficiently and accurately, data collection and the corresponding isotope
framework calculations need to be completed, and E/I values plotted within the
Ecological Integrity thresholds is necessary. Additionally, a yearly report and a complete
data file should be created by both researchers and Parks Canada staff and made public to
ensure the science is understandably portrayed and can inform policy and land-

management decisions.

Goose Aquatic Impact monitoring

Three major recommendations have been established to ensure that the Goose
Aquatic Impact monitoring program is successful and sustainable.

1) Collecting one lake-water sample for water chemistry as well as carbon isotope

compositions of DIC and phytoplankton at peak primary productivity (e.g., mid-summer)
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is sufficient to delineate a range of conditions and influence of LSG disturbance on WNP
lakes. Although sampling multiple times during the ice-free season would be ideal for
tracking seasonal variability, it is not always sustainable and feasible (e.g., financial,
time, available personnel constraints).

2) This study substantiates the utility of a suite of limnological variables sensitive
to catchment disturbance by LSG including pH, specific conductivity, total phosphorus
(TP), total Kjeldahl nitrogen (TKN), and carbon isotope measures (813CDi550|\,ed Inorganic
Carbon (DIC)> - Chytoplanktonic Particulate Organic Matter (PHYToPOM), and A™Cpic-pryTopom). ONe
option is to obtain specific conductivity and field observations from all 45 lakes annually
since they are simple and cost-effective measures and then sample the full suite of water
chemistry and carbon isotope variables from all lakes every other or every three years
depending on funding. Incorporation of yearly water isotope measurements is
recommended given the potential confounding effects of rainfall on detecting
limnological consequences of LSG disturbance, as occurred in 2015.

3) Repeated sampling over several years of the same lakes will provide the basis
for examining LSG disturbance trends over time and the potential to identify new areas of
disturbance, areas of increasing disturbance, or perhaps even the first signs of post-
disturbance recovery, especially since LSG populations may be stabilizing. Therefore, the
generation of synthesis maps after each sampling can be used as a management tool to

help identify trends in the area and degree of LSG disturbance within WNP over time.
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Vulnerability of shallow subarctic lakes to evaporate and desiccate

when snowmelt runoff is low

F. Bouchard," K. W. Tumer,™ L. A. MacDonald,* C. Deakin,® H. White,?
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1] Snowmelt is a crucial source of waler for many shalloa
subarctic lakcs, but climate models prodict that snowfall
will docrease in some regions, with profound  coological
consoquences. Here we use lake water solope dats across
gradicnts of temestrial vepetation cover (open tundra o closed
forcst) and topographic rclicf to identify lakes that anc
vulnerable o desiceation under conditions of low snowmclt
munoff in e subarctic Crow Flats, Yukon,
and Huodson Bay Lowlands, Manitoba (Canads). Lakes located
in bow-rclicf, open twunda caichments in both  landscapes
displayed a systcmafic, positive offsct bobween  dircctly
mecasurcd lake water 550 over multiple sampling campaigns
and lake water &'%0 inforred from ccllulose in recently
deposited surfece sediments. We atiribute this offsct to a srong
cvaporative "“Ch-cnrichment response to lower-than-averape
snowmclt mnoff in recent yeas. Motably, some lakes
undcrwent noar-complete  desiccation  during  mi dsumimer
20010 following & winter of vory low snowfall. Based on the
paloolimnological record of one such lake, the extremcly dry
conditions in 20010 may be unprocedentcd in the past 200
years. Findings fuel concems that a decrease in snowmclt
runofF will lead to widcspread desiccation of shallow lakes
in these landscapes. Cilstion: Bowchand, F., o al (2013),
Vulnorabilsty of shallver subamctic lakes o ovaporabs and desicoale
when smovwemell runolT = low, Geoplpr. Rex, Lett | #0, 61126117,
e T TOO200 3GLASKRARS.

1.  Intreduction

[2] Morthem lake-rich landscapes are vital for wildlific,
carhon cxchange with the atmosphere, and natural resources
lakcs (typically < Im depth) are the dominant basin type in

Additional suppaorting information may be found in the onlne version of
thes asincle.

'Centre d'études nordiques and IMépariement de (eéographie, Liniversié
Laval, {poéhec, (pofhec, Canada

af (eeography and Envirmnmental Studies, Willrid Laurier

University, W aterioo, Ontario, Canada

"Depariment of Ceeography, Brock University, St Catharines, (ndario,
Canada.

*Depaniment of Biology, University of Waterloo, Waterloa, (mdario,
Canada.

‘Department of Farth and Fvi
Waterino, 'Walerloe, Ontario, Canada.

Comesponding  swthor: F. Boudhand, Centre  d'émdes
Universié Laval, 2405 roe de la Temasse, (ofbec, O G1Y 004G, Canada
{frederic bouchandizren ulawal ca)
G201 E. American G Uninn. All Righis Reserved.
005 2T TR0, 1001 3GLOSRASS

| Sciences, University ol

in the distribution and surface arca of these water bodies; somc
hawve reporicd lake cxpansion (cg, in the case of thermolarst
lakes), while others have documented water bevel decline
| Smith et al., 2005; Carroll ef al, 2011]. An capecially acuic
concern is that longer ice-frec scasons and increasing, impor-
tance of open water evaporation will lead to desiceation of
shallow lakes, as observed in Canada’s High Arctic [Smol
amd Dowgelae, 2007). In these landecapes, snowmcht is impor-
tant fior replenishing shallow lakes and is likely to bocome
cwen mare crucial as evaporative dawdown intensifics with
continued wamming | Schirdler amd Smol, 2006].

[3] dd Crow Flats ((3CF), Yukon, and northcstern Hudson
Bay Lowlands (HBL), Manitoba, arc two of Canada’s Largest
lake-rich subarctic landscapes. Total surface water arcas
(inchuding scveral thousand ponds and lakes; hereafter reformed
toas “lakes™) comgwisc a sipnificant portion of these landscapes,
and both regions have undergone rocent wamming. In OCF,
dendroclimatological records indicate amomalously warm con-
ditions during the twenticth century in the context of the past
300 yeams [Porfer and Pisarie, 2011]. Palcolimnological data
from the sputhcm HBL. indicate that lakes bogan o respomd
o climate warming in the 1990s | Rakioad ef al., 20013]. Prios
stndics of kakes in these landscapes have identifiod scveral
poicntial future hydrobogical consequences i response o
contimeed warming, which will depend wpon changes in catch-
ment vepetation, hydrological connectivity, pormafiost condi-
tions, scasonal distribution of precipitation, and other factors
| Tuurmer e al, 2000; 20013; Wodfe ef al, 20011].

[s] Here we caplore the sensitivity of shallow lakes in OCF
and HBL to onc hydrological outcome: cvaporative lake level
drawdown following wintcrs of low smow accumulation. We
compane multiple measurcments of lake water oxygen isotope
composition (5 0w} with that infomed from the ccllulosc
fraction (6"*0%, -, ) of surface sediments of 70 lakes spanning
a broad gradient of vegetation cover. Wintes of very low
snow accumulation occurcd immadiately prior o several of
the ice-froe scasons when we conducted water isotope sam-
pling, whercas the 5 year intervals prior to the water sampling
wore characterized by snowfall similar to (HBL) or greater
than (OCF) the 1971-2000 climate nommals. This provided a
unique oppontunity o identify the characteristics of shallow
lakes in these subarctic landscapes that are most vulnerable
o desiceation under conditions of low snowmelt unoff

2. Siudy Arcas

5] Located in the contimsous permafrost zone at the north-
cm borcal tree line 25 km north of the toem of Old Crow,
(CF cncompasscs -2 700 shallow lakes, mostly of thenmolearst
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Figure 1.

Location of the study arcas; {2) (d Crow Flais (OCF), Yukon, (b) northwesterm Hudson Bay Lowlands (HBL),

Manitoba. The sampled shallow lakes are identified by numbers, color codod based on their classification (e, OCF: smow-
mclit-dominated and rainfall-dominated lakes ane labeled in blue and red, respectively; HBL: BSF, IPP, and CF lakes arc labcled

in blue, groen, and rod, respectively).

origin (Figure 1) This 5600 km® wetland complex, recognized
by the Ramsar Comvention for its coological and caltural impor-
tance, provides habitat for abundant wildlific and suppons the ra-
ditional lifestyle of the Vonnst Gwitchin First Mation. OCF is the
former lakehed of Glacial Lake O Crow | Zoeule ef af., 2004].
The permafiost and finc-graincd glaciolacustrine scdiments
inhibit infiliration of surface water. Thus, lake watcr level fluch-
ations arc mainly reflective of hydrological processes operating
at of ncar the surface. Lakes have been classificd mainly as
snowmcli- or rainfall-dominated, reflecting their prodominant
souros waters, and anc associated with forest or tundra vegetation
in their catchments, respectively [ Taomer af all, 2010, 2013].

|s] HBL is a low-rclicf landscape that spans continsows and
dizcontinuous pormafrost and traverses the northem boreal trec
linz. HEL developed following the end of the Wisconsinan
glaciation and the retreat of the Laurentide Toc Shoot and is un-
derlain by impermcable silts and clays deposited by the Tymmell
5ca [Dredpe and Nizon, 1992]. Conscquently, water pools on
the surfece creating thousands of lakes; many of which anc
formed by thermokarst processcs. Mear the Hudson Bay coast,
imotatic rehound has produced a series of raised beaches, and
the topographic depressions betwoen them are also ofien ooco-
picd by lakes. Three major ccobvgical zoncs can be identificd
in Wapusk Mational Park in northwestcrn HBL: coastal fen
(CF) dominated by undra vepetation, intersor pest plateas-
palsa bog (IPF) that containg small shrubs, and boreal spruce
forcst (BSF) (Figure 1) [Parks Canada, 2003

3. Methods

[7] Lakewater and surface sediment samples wene retricved
from 38 spowmeht- (r=17) and rainfall-dominated (=21}
lakis in OCF (as defined by Turrer of af. [2000]) and from
32 lakcs spanning the throc major ccozomes in Wapusk
Mational Park, HBL (CF: n=I8; IPP: n=10; BSF: a=4;
Figure 1y Water samples wene collected in 30 ml high-density
polycthylene bottles at 10 cm depth three times (June, July,
and Scptember) during the ice-free scason in OCF (2007
2008) and HBL (2010-2012). Surface sediments (upper
1-2 cm) were colleeted in September 2008 in OCF and

Scpiomber 2002 in HBL using a coring tube {38mm indcrmal
dizmeter). Cellulose was isolated from the scdiments folbowing
scveral steps designed to remove moncellulose organic
and inorganic fractions | Wade of al, 2000, 2007). Watcr and
surface sodiment cellubose oxygen isolope compositions werc
determined at the University of Waterloo- Environmental
Izotope Laboratory (LUUW-EIL) using conventional tochniques
[Epstetn and Mayeda, 1953; Walf of ol 2007]. Resubs anc
cxprosscd as & values, reprosenting deviations (%) from
Vicnma Standand Mean Ocean Water QEMW such that
M:—I{R_ﬂmm} — 1= 10, whese R is the
BOVS0) ratio in sample and VSMOW. The & valucs arc
nomalized to —55.5%. for Standard Light  Antarctic
Precipitation [Coplen, 1996]. Surface scdiment 550,
was calculated using a cellulosc-water fractionation factor of
1.028 [DeMiro and Epsted, |981; Wolf e ol 20001

4. Hesulis

[8] Comparizon of §'*0re,. with %0, showed pood
agrocment for several lakes in OCF (Figure 2a). These nesulis
wore obtained mainly for the spowmcli-dominated lakes,
whercas rainfall-dominated lakes on average posscascd
8 b values 7% lower than &' *(,. Closcr inspection
of the relation between 650, -, and &'%0y, revealed that
a'50, best aligned with carly ice-froe scason (mean
Jume) 60, for the snowmclt-dominatod lakes (Figure 2h).
In contrast, all but one of the rainfall-dominated lakes ploticd
systcmatically above the 121 line. Time scrics plots of 8'50,,,
for sclected lakes of the snowmelt- (OCF13) and rainfall-
dominated (CF24) categorics further demonstrate good
aprecment between %00, and carly icc-froe scason
&80y, for OCF13. Yet a much bower 605 was obtained
from OCF24 comparcd to all 5'*0,_ valucs (Figure 2c).

[a] Similar pattcms were cvident when comparing 550,
with &'%0,_ for lakes in HBL {Figures 2d-2f). For lakes in the
BSF and most lakes in the TPP, &k was in good agroc-
ment with 350, {['ﬁgun:ﬂd}. In conirast, cight of the 18 lakes
in the CF had &'%0,,,, that a 4.5% lower than
&0, Similar to the OCF lakes, 80, agreed best with
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Table 1. Winier (October 1o April) Precipatation (mm) For Ol
Crow { Yukons Station 2100800) and Churchill {Manioba; Averape
ol Sttions SOG0600, SOG0606, and SO6060K)*

Period 0l Crow Churchill
201 B2 9o 7"

2002 00 i 3t

2iNN5 DD 135.3"

2004 305 502" 185.4"
D0 006 19 1652
Hiis BT i4g.0" 82"
2NYT D00 3500 151.*
] 13358
2008 H010 2 s
2000 2011 4o’
2001 2012 164 g
Climaie normal, 1971 20008 [ [i2e ] 1677
Average, years [irior i waier sampling ixi4 163
Average, years of waler sampling 915 915

*Emwironmend Camada [3013).
Y pars prine o waler samipling,

“Incomiplete record (ol mcluded in average calculation).
¥ ears of waler sampling.

carly ice-free scason (mean Junc) 650, (Figures 2 and 2f).
For the kakes that did not display apreement between 850,
and &"50),, (mainly in the CF), resubts were positioned systemat-
ically shove the 121 line (Figure 2¢) and &' (i1, was lower
fhean the scasonal mange of 5' {Figure 2f).

5. Discussion and Conclusions

[18] Agrecment between 850, . and mean June 8'%0,_
for most of the snowmeli-dominated lakes in (3CF, as well
as all BSF and most IPP lakes in HBL, can be cxplained by
high aquatic production during the cady part of the ice-froe
scason. At this time, lake waters arc supplicd by isotopi-
cally depleted snowmelt nanoff that is rich in dissolved
nutricnis from intcractions with soil and plant organic
matter. In OCF, spowmcli-dominated lakes have higher
concentrations of nutricnts including dissolved phosphaons,
silica, and organic carbon compared to rainfall-dominated
lakes |Balambramaniam, 2012 Furthcrmone, incorporation
of isotopic signaturcs from the cardy ice-froe scason by aquatic
collulose has been identificed |nfmmdandmnfmmd
&%y and surface sediment 50, from other shallow
borcal lakes [cg., Walfe ef al, 2(!]2]

[n] We considered scweral hypothoscs o cxplain the
positive offsct in 50 relative to 5 e that is cvident
for most of the rainfall-dominated lakes in OCF and somc
of the CF and IPP ecozonc lakes of HBL. Potential incorpo-
ration of nonaguatic cellulose from termestrial sounces always
poscs concem when using scdiment ccllulose a8 a lake
waber oxygen isotope archive [Sewsr of al, 2000 ], yet this
wiould not yicld a positive offsct, since temestrial collulose
should be mone enriched under the same climatic conditions

| Edwards and MeArdrews, 1989]. Organic carbon and nitro-
gen clemental and isotope data for the surface sediments of
these lakes (see Table 51 in the supporing information) also
supports a fully agquatic origin for sedimentary ic
matter, and henee the validity of the infomed positive ?‘%.—
&0, offsct On the other hand, meteorlogical roconds
revieal that three of our water-sampling campaigns were
performeed following winters of substantially lower snowfall
(iLc., winter 20072008 for OCF and 2009-2010, 2000-2011
for HEL) compared to climate nomals (Table 1). Forthermon,
average snowfall was 25% and 44% less during the water-
sampling ycars in (Md Crow and Chorchill, respectively,
comparcd to the average of the 5 years immoediatcly prior.
Although we recognize that precipitation can be spatially
heterogencous, a metcorological station deployed in central
OCF during our watcr-zampling ycars showoed good agroc-
ment with the Environment Canada mcteomological station
reconds from the hamlet of Old Crow | Turmer ef al, 2003).
Thus, kess snow pencrated less snowmcht unoff o scveral
lakes during the watcr-zampling years, which resulted in more
pronounced isotopic corichment by cvaporation comparncd to
the time intcrvals capturcd by the surface sediments (which
apan 510 years based on paloolimnological smdics) [c.g.,
Walfe ef al, 2011; MacDonald et al_, 2012]. Turner ef al.
[2013] identificd stromg cvaporative isotopic corichment in
(CF lake waters during 2008, following a winker of bow snow
accumulation. (hr results suggest that a similar cvaporative
sc caplains the positive offect in §'%0, rclative to
&0,y albseit over longer time scales. These hedrologically
sengitive or “flashy™ lakes are mostly sitoated in catchments
charactcrized by bow-relicf tormain and sparse tundra vepeta-
tion where snow cover is vigorously redistributed by wind_
[1z] Shallow subarctic lakes that undergo pronounced cvap-
oration when snowmelt unofT is low may desiceate. In fact,
this was obscrved in midsummer 2010 in HBL (Figure 3a),
which may reflect an cxtremnc hydrological consequence of
recent climate warming in this region—warming that has lod
to shifts in algal communitics in docper lakes in the southem
HEL [Rikiaad ef al, 20013]. Additional palcolimmological
data suggest that shallow subarctic lakes in northwestcm
HBL, likc their high-arctic countcrparts, may indcod be
approaching the “final ecobogical threshold™ [of. Smol and
Dongplas, 2007). Lake water &' 50 reconstructed from cellulose
&""0) messurements along a 24.5 cm long sediment cone re-
tricved from CF lake WAPI2, which almost completcly
desiccated during midsummer 2010, indicate remarkably sta-
bl hydrological conditions over most of the past --200 years
(Figure 3b). Although desiceation horizons in lacustrine sirata
can be difficult to identify, the WAPI2 rocord appears to
contain no cvidence of comparably dry intervals in the past.
[13] Low snowmelt runoff and lake desiccation during
midsummer 2010 may be a sign of things to come for the
HBL and other regions with shallow lakes in catchments
having low-relief and sparse undra vegetation. Based on

Figure 2. Comparison of mcasured lake watcr mc}-gm isotope composition (6'%0),,) with surface sediment cellulose-

informed lake water oxygen isobn

Ba Immmm}lm &' mng;:w.rmﬁ

composition (5 }ru-_;,_)fm'{a—c} (d Crow Flats {OCF) and (d-f) northwestem Hsdson
(% ryw (Fipurcs 2a and 2d), mean and range for June &'%0),_ verss

&' {ﬁgurmihani:c],mmmaf& mmmmFlS{WWIMmM}mm{MMMM},
WAPD? (coastal fon) and WAP23 (horeal sproce forest), and 8'°0, ¢y (Figurcs 2c and 2f). Lake catcporics and coological

#oncs a8 defined by Turmer ef al, [2010] and Parks Canada [20013], respectively. Error bars for 550,

uncertaintics of +2.0%e.

il TCMCRCOL Catimatiod

6115

207



BOUCHARD ET AL SHALLOW LAKE VULNERABILITY TO DESICCATE

July 2010
ﬁ

WAP 11

(b)

Oepth{om)

“Pp Date

540,
(= VSTROW)

Figure 3. (a) Nearcomplete desiccation of WAPI2 (and
other ncarby lakes) during midsummer of 2010. Note that
despite lower snowfall in 2010-2011, substantial late sum-
mer rainfall in 2010 prevented desiceation of WAPI2 in
2011, (b) cellulose-inferred lake water oxygen isotope com-
position (5'*0_.,,) record from lake WAPI2 (coastal fen
ccozone). The depth-age modd was determined using *'“Ph
(sec supporting information).

satcllitc data spanning the past 4 decades, Derksen and
Brown [2012] reported marked reductions in spring (April
to Junc) snow cover extent over the Northem Hemisphere
and indicated that the rate of snow cover loss from 1979 o
2011 (—17.8% per decade) was almost double the rate of
September sca ice loss during the same period (— 10.8% per
decade). Morcover, the lowest spring snow cover extent for

both North America and Eurasia has occurred during the
2008-2012 period; the year 2010 sct a record low for North
America. Trends toward declining snow cover are expected
to continue [Derksen and Brown, 2012), although significant
spatial and scasonal differcnces are projected to occur [Aretic
Monitoring and A t Prog 2011; Krasting
et al., 2013].

[14] For regions that expericace a decline in snow cover
extent and reduction in snowmelt runoff with coatinued
wanming, our isotope data coupled with ficld obscrvations
from two of Canada’s largest lake-rich subarctic land-
scapes indicate that shallow lakes located in low-relicf,
open tundra terrain arc particularly susceptible to desicea-
tion by evaporation. Such hydrological changes will have
profound cffects on wildlifc habitat, carbon cycling, and
other aquatic ccosystem services [c.g., van der Molen
et al., 2007; Abnizova et al_, 2012].

||slwlh=m-u by the Natunl
h Cowncil (NSERC) of Canada, the
(‘md(mmmv“mum

Scientific Training Program of Affairs and Northemn Development
Canada, the Polar Cootinental She mumcwum
Studies Centre. A. M. Baksub d 10 fiekdwork. We thark

the staff of the UW EIL for isotope analyses and two
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Adaptation to Permafrost in h-m)
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A synthesis of thermokarst lake water balance
in high-latitude regions of North America from
isotope tracers'

Lauren A. MacDonald, Brent B. Wolfe, Kevin W. Turner,
Lesleigh Anderson, Christopher D. Arp, 5. Jean Birks,

Frédéric Bouchard, Thomas W.D. Edwards, Nicole Farquharson,
Roland 1. Hall, Ian McDonald, Biljana Narancic, Chantal Quimet,
Reinhard Pienirz, Jana Tondu, and Hilary White

Abstract: Numerous studies utilizing remote sensing imagery and other methods have
documented that thermokarst lakes are undergoing varied hydrological transitions in
response to recent climate changes, from surface area expansion to drainage and evaporative
desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly
thermokarst origin across high-latitude North America. We assemble surface water isotope
compositions measured during the past decade at five lake-rich landscapes including Arctic
Coastal Plain jAlaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson
Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range
of thermokarst environments by spanning gradients in meteorological, permafrost, and veg-
etation conditions. An isotope framework was established based on flucweighted long-term
averages of meteorological conditions for each lake to quantify water balance metrics. The
isotope composition of source water and evaporation-to-inflow ratio for each lake were deter-
mined. and the results demonstrated a substantial array of regional and subregional diversity
of lake hydrological conditions. Controls on lake water balance and how these vary among
the five landscapes and with differing environmental drivers are assessed. Findings reveal
that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation,
whereas those in Nunavik are most resilient. However, we also identify the complexity in pre-
dicting hydrological responses of these thermokarst landscapes to future climate change.
Key words: thermokarst lakes, high-latitude regions, water isotope tracers, hydrology, permafrost,
climate change.
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Résumé : De nombreuses études utilisant des images de télédétection et d autres méthodes
ont porté 4 notre connaissance gue les lacs thermokarstiques subissent des transitions
hydrologiques diverses en réponse aux changements climatiques récents, soit de I'expansion
de leur superficie au drainage et 4 la dessiccation par | évaporation. Id, nous fournissons une
synthése des conditions hydrologiques de 376 lacs d'ongine princpalement thermokars-
tique, et ce, 3 travers les hautes atitudes en Amérigque du Nord. Nous assemblons des compo-
sitions isotopiques d’eau de surface mesurées au cours de la derniére décennie et provenant
de cing régions abondantes en lacs y compris 1a plaine cotiére de I'Arctique (Alaska), la plaine
du Yukon (Alaska), la plaine Old Crow (Yukon), les basses terres de la baie d'Hudson du
nord-puest (Manitoba) et le Nunavik (Québec) Ces régions représentent la vaste gamme
d'environnements thermokarstiques couvrant des gradients de conditions météorologiques,
de pergélisol et de wigétation. Un cadre d'isotopes a été établi en fonction des moyennes a
long terme pondérées par le flux des conditions météorologiques pour chaque lac afin de
quantifier les paramétres du bilan hydraulique. On a détermingé la composition des isotopes
d'eau de source et e rapport entre I'évaporation et le débit entrant pour chaque lac et les
résultats ont indigqué que les conditions hydrologiques des lacs s"étalent sur une gamme
substantielle de diversité régionale et sous régionale. On évalue les contrles en matiére
du bilan hydraulique des lacs et comment ceux-ci varient entre les dng régions et selon les
diffitrents facteurs environnementaws. Les résultats révilent que les lacs des basses terres
de la baie d’Hudson sont les plus vulnérables 4 la dessiceation par évaporation, tandis que
ceux dans le Nunavik sont les plus résistants. Cependant, nous définissons aussi la complex-
ité quant i la prédiction des réponses hydrologiques de ces régions thermokarstiques a la
suite de changement climatique futur.

Mots-dés © lacs thermokarstiques, régions de hautes latitudes, traceur d'isotope d'eau, hydrologie,
pergélisol. changement climatique.

Introduction

Thermokarst lakes and ponds (hereafter referred to collectively as lakes) are plentiful
across permafrost terrain, occcupying 15%-50% of the landscape in northwestern Canada,
Siberia, and Alaska (e.g., Mackay 19858; Rampton 1988; Frohn et al. 2005; Grosse et al. 2005;
Plug et al. 2008). Thermokarst lakes form as ice-rich permafrost thaws and surface water
accumulates where subsidence occurs. These shallow waterbodies (generally <10 m deep
and frequently <2 m) are a key component of northern hydrological and biogeochemical
cycles, provide habitat and resources for wildlife and waterfowl populations, and support
the traditional lifestyle of many indigenous communities. During the past few decades,
increasing air temperatures and changes in precipitation patterns have been observed
throughout much of the Arctic (e.g., ACIA 2004; IPCC 2013). Understanding the effects of
climate change on thermokarst lake water balance is particularly important, as the greatest
effects on aguatic ecosystems will occur indirectly via alteration of hydrological processes
and their cascading influences on limnology, biogeochemistry, and aquatic ecology rather
than from simply air temperature rise (Rouse et al. 1997; Prowse et al. 2006; Schindler and
Smol 2006; Tranvik et al. 2009). Indeed, numerous studies have sought to document the
hydrological status of thermokarst lakes. Many of these studies indicate that thermokarst
lake hydrology is changing rapidly (e.g.. Smith et al. 2005; Carroll et al. 2011), but along
varying trajectories including surface area expansion, rapid drainage, and evaporative
desiccation (e.g., Yoshikawa and Hinzman 2003; Riordan et al. 2006; Labrecque et al. 2009;
Rowland et al. 2010; Bouchard et al. 2013).

Understanding the myriad of potential responses of thermokarst lake hydrology
to ongoing climate change requires knowledge of their water balances (AS/AT, ie.. change
in storage (5) over time (T)), which can be generally characterized as follows (Turner
et al. 2010):

[I] ﬁs."'ﬂT=Ps+Pg+lm‘-—I;—E—D.;m.—L]s
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Positive contributors to thermokarst lake water balance include snowmelt (Pg), rainfall (Py).
subsurface inflow (Izw). and surface channelized inflow (Is), whereas lake water loss may
occur via evaporation (E). subsurface outflow (Ogw). and surface outflow (05) — the latter
potentially ocourring catastrophically. Relative roles of hydrological processes that control
thermokarst lake water balances may be influenced by a variety of drivers, including
meteorological and permafrost (continuous, discontinuous, and sporadic) conditions as pri-
mary drivers (e.g., Riordan et al. 2006; Plug et al. 2008; Labrecque et al. 2009). Changes in
temperature can alter rates of evaporation (E), while changes in precipitation regimes can
lead to direct fluctuations in smowmelt (Fg) and rainfall (Pg) input, surface channelized
inflow (I5), and surface outflow (0s). Consequently, high rates of evaporation with low snow-
melt or rainfall supply can cause lakes to desiccate, while low rates of evaporation and
abundant supply from precipitation may result in attaining maximum basin capacity.
which can lead to shoreline erosion and lake expansion or even rapid lateral lake drainage
(e.g., Riordan et al. 2006; Hinkel et al. 2007; Plug et al. 2008; Marsh et al. 2009; Turner et al.
2010; Jones et al. 2011; MacDonald et al. 2012; Bouchard et al. 2013). A warming climate
also causes increased permafrost degradation, which can influence thermokarst lake hydro-
logical status (e.g., Yoshikawa and Hinzman 2003; Smith et al. 2005). For many thermokarst
lakes, continuous permafrost impedes subsurface inflow () and cutflow (Ogw) from con-
tributing significantly to lake water balance. However, as permafrost degrades, subsurface
flow pathways can develop, which can lead to vertical lake drainage (e.g.. Yoshikawa and
Hinzman 2003; Jepsen et al. 2013). Additionally, landscape characteristics, such as
catchment vegetation, strongly influence thermokarst lake water balance (Bouchard et al.
2013; Turner et al. 2014). For example, densely forested areas entrap snow, which results
in enhanced snowmelt runoff to lakes during spring (Ps) compared to runoff generated in
more sparsely vegetated areas.

Deciphering the relative influence of hydrological processes represented in eq. 1 is
challenging, especially for lake-rich permafrost landscapes where there may be substantial
spatial heterogeneity among lakes and their catchments. Due to logistical constraints of
field work in remote locations, it is often impractical to perform direct conventional
measurements of hydrological processes on a spatially extensive set of lakes that is required
to capture the potential diversity of prevailing conditions. Alternatively, and especially for
multiple lake studies across landscapes, measurement of water isotope composition (5°H
and &"™0) and application of isotope mass-balance models can be used to provide informa-
tion of hydrological interest, as has recently been demonstrated for the continental United
States (Brooks et al. 2014). For remote locations in particular, analysis of lake water isotope
compositions is an excellent alternative to more instrument-intensive hydrological
approaches. Surface water samples can easily and quickly be obtained during fieldwork.
and their isotope compositions are sensitive to hydrological processes that influence lake
water balances because systematic and wellunderstood isotopic fractionation of water
ocours as it passes through the hydrological cycle (Edwards et al 2004; Darling et al
2006). Thus, the isotope composition of water provides quantitative information on lake
water balance conditions, including the relative contributions of input waters (e.g., snow-
melt, rain, and permafrost thaw waters as “&; values”) and the relative importance of evap-
oration (frequently expressed as an evaporation-to-inflow ratio (E/I)). Water isotope analysis
has been applied in several northern and remote landscapes on thermokarst as well as
other shallow lake systems, yielding novel insight into the diversity and importance of
hydrological processes on lake water balances spanning multiple environmental gradients
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{e.z., Gibson and Edwards 2002; Brock et al. 2007; Yi et al. 2008; Turner et al. 2010, 2014;
Anderson et al. 2013; Tondu et al. 2013; Arp et al. 2015).

As an outcome of the Natural Sciences and Engineering Research Council of Canada
Discovery Frontiers ADAFPT (Arctic Development and Adaptation to Permafrost in
Transition) project (Vincent et al. 2013), we provide a synthesis and snapshot of water
balance conditions for 376 lakes in high-latitude North America that mainly formed by ther-
mokarst processes. Specifically, we assemble surface water isotope compositions measured
during summers of the past decade from mainly thermokarst lakes across five expansive
lake-rich permafrost landscapes. From west to east, these include Arctic Coastal Plain
(Alaska) (Arp et al. 2015), Yukon Flats |{Alaska) (Anderson et al. 2013), Old Crow Flats {Yukon)
(Turner et al. 2010, 2014; Tondu et al. 2013), western Hudson Bay Lowlands (Manitoba)
(Bouchard et al 2013), and Nunavik (Quebec) (Narancic et al. 2017). We use isotope—mass
balance modeling to determine lake input-water isotope compositions and Efl ratios
and explore their relations among landscapes and with environmental drivers. Results
provide a unique opportunity to rank hydrological wulnerability of these lakerich
permafrost landscapes and to predict hydrological responses to various climate change
scenarios. While most of these data have been previously published as part of individual
landscape hydrological studies, to our knowledge, the present analysis is the first, broad
spatial synthesis of lake water balance status across lakerich permafrost landscapes of
Morth America.

Methods

Study areas

The five study regions (Fig. 1) selected for this synthesis collectively span broad gradients
in permafrost, catchment vegetation, and meteorological conditions and contain abundant
thermokarst lakes that have been previously sampled and analyzed for water isotope com-
position. The Arctic Coastal Plain (ACP) north of the Brooks Range in Alaska including lands
between Barrow and Prudhoe Bay contains abundant shallow lakes mainly of thermokarst
origin, is underlain by continuous permafrost, and contains tundra vegetation (Arp and
Jones 2009). The Yukon Flats (YF) spans ~118 000 km” and is set along the Yukon River flood-
plain and its terraces south of the Brooks Range in Alaska. This lowland interior landscape
is located within the zone of discontinuous permafrost and contains over 40 000 lakes of
thermokarst, fluvial, and eolian origin (Williams 1962; Arp and Jones 2009). Catchment
vegetation includes grassy meadows and muskeg to spruce and birch forests (Anderson et al.
2013). Old Crow Flats (OCF) spans 5600 km® and is situated ~55 km north of the village of
0ld Crow in northern Yukon Territory. This low-relief landscape is located within an area
of continuous permafrost and contains over 2700 shallow primarily thermokarst lakes
(Lauriol et al. 2002; Turner et al. 2014). Vegetation in OCF is variable and captures a gradient
from spruce forest to tall shrubs to tundra vegetation (Turner et al. 2014). The western
Hudson Bay Lowlands (HBL) spans 475 000 km® and contains over 10 000 shallow mainly
thermokarst lakes. The HBEL is underlain by discontinuous permafrost in the southwest
and continuous permafrost in the northeast. Vegetation ranges from boreal spruce
forest in the southwest to arctic tundra in the northeast (Rouse 1991; Duguay and Lafleur
2003). Nunavik (NUN), located north of the 55° parallel along the eastern coast of Hudson
Bay in northern (Quebec, contains abundant thermokarst lakes. Permafrost ranges from
sporadic in the south to discontinuous in the north (Allard and Ségunin 1987; Brown et al.
2002). Vegetation is mainly spruce-lichen forest in the south and shrub tundra in the north.

Lakes included in this study are considered mainly thermokarst in origin. However, they
include a small number of lakes of fluvial and eolian origin in YF, oxbow lakes in OCF, and
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Fig. L. Location of study regions and their relations with permafrost category. Permafrost spatial data are from
Brown et al_ |2002).
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lakes located in topographic depressions between former beach ridges in HBL. These are
included in this synthesis because they constitute a portion of the shallow agquatic ecosys-
tems in these landscapes and for simplicity, we refer to “thermokarst lakes™ as all encom-
passing. Thermokarst lakes from which isotope data have been obtained tend to be
shallow and range in surface area (ACP: 0.6-16.2 m, 0.04-9.8 km*; YF: 1-30 m, 0.017-5 km*
(Anderson et al. 2013); OCF: 0.47-4.15 m, 2 x 107* = 13181 km® (Turner et al. 2010); HBL:
~<05m, <7 %10 - 76 km? (Bouchard et al. 2013); NUN: 1-5 m, ~1.3 x 1075 to 2.1 x 107* km?
(Bouchard et al. 2014; Narancic et al. 2017)).

A common gridded climate database was used to compile regional meteorological
records for comparative purposes, to provide necessary parameters for water isotope mass
balance modeling, and to gain insight of meteorological influence on lake water balances.
The New et al. (2002) gridded climate database was selected due to the availability of lake-
specific meteorological data and the ease of use of the database for a large data set, even
though it predates our sampling intervals. Mean annual, summer, and winter temperatures
and precipitation vary substantially among the five landscapes, based on mean monthly values
for 1961-1990 (Fig. 2). Mean annual temperature ranges from =10.5 °C (ACP) to =5.3 °C (NUN)
and annual precipitation ranges from 141 mm (ACP) to 580 mm (NUN) (Fig. 2a). ACP and
OCF have lower mean annual temperature and precipitation than the other landscapes.
¥F has relatively low mean annual precipitation but high mean annual temperature, while
HEL and NUN have relatively high mean annual temperature and precipitation. Similar
patterns exist for mean winter temperature and winter precipitation, with mean winter
temperature ranging from -19.2 °C (OCF) to —16.2 °C (NUN) and winter precipitation ranging
from 53 mm (ACP) to 182 mm (NUN) (Fig. 2b). Mean summer temperature ranges from
5.6 “C (NUN) to 9.8 °C (YF) and summer precipitation ranges from 88 mm (ACF) to 399 mm
(NUN) (Fig. 2c). Compared to mean annual and winter meteorological data, similar patterns
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Fig. 2. Average landscape valies for (a) mean annual temperature and mean annual precipitation, (b) mean winter
temperature and mean winter precipitation, and () mean summer temperature and mean summer precipitation
extracted from the New et al (2002) climate database. Winter and summer intervals were defined by mean
monthly temperatures below and above 0 °C, respectively.

A e mw
CH) . H @ - [ L]

" AR »

e
=)

a8 L

-

S Lubua
-ns

e -]
ean Wi Tempeatom (T3
[FR— —— ..}
-
L]

L]
e
Laka L

L L L =l
Lk

il
@ . e
o L]
gl AkE [ ]
wa ] o] L] ] wa 4 | =W oW 11X Wl W W e L] b F ] ] ara

s vl Preopaascs | T lsan MlineH Py eopo (e haa Samine Freoplieca |

for ACP, YF, and OCF are evident for summer temperature and summer precipitation.
However, HEL has a more midrange mean summer temperature and NUN has the lowest
mean summer temperature.

Isotope hydrology _

We assembled water isotope compositions (5°H and 50} for 376 lakes sampled during
the past decade in the five study regions. Forty-four lakes were sampled during August
2015 in ACP, 149 lakes were sampled once during the summer between 2007 and 2011 in
YF (Anderson et al. 2013), 53 lakes were sampled each summer from 2007 to 2009 and
four additional lakes were sampled in 2007 and 2009 in OCF (Turner et al. 2010, 2014), 40
lakes were sampled in the summer of 2010 in HBL and 37 lakes were sampled in the sum-
merts of 2011-2012 (Bouchard et al. 2013), and 86 lakes were sampled from one to four times
during summers 2011-2014 in NUN (Narancic et al. 2017). Samples were collected at 10-15 cm
water depth in either 30 mL high density polyethylene bottles or 20 mL scintillation vials
with plastic cone-shaped caps. Samples were transported back to the field base and then
shipped to the Alaska Stable Isotope Facility at the University of Alaska Fairbanks (ACP),
University of Arizona Environmental [sotope Laboratory (YF), or the University of Waterloo
Environmental Isotope Laboratory (OCF, HBL, and NUN) for determination of hydrogen and
OXYgen isotope compositions using standard mass spectrometric techniques (Epstein and
Mayeda 1953; Morrison et al. 2001), with the exception of NUN samples collected in 2014,
which were analyzed using Off-Axis Integrated Cavity Output Spectroscopy. [sotope compo-
sition results are reported in & notation, which represents deviations in per mil from
Vienna Standard Mean Ocean Water (VSMOW) and are normalized to —428%. and
-55.5%: for 5°H and 50, respectively, for Standard Light Antarctic Precipitation (Coplen
1996). We restricted our analysis to July and August sample collection time periods to
reduce seasonal effects caused by the influence of snowmelt while also capturing the
expected midsummer peak in evaporation. For lakes that were sampled more than once
per summer (July and Augnst), or over multiple summers, we used the average value in

our analyses.

Isotope framework development

Raw water isotope compositions were initially assessed in conventional §0-5"H space,
superimposed upon an “isotope framework” consisting of the Global Meteoric Water Line
(GMWL) and the Local Evaporation Line (LEL) predicted for each landscape (Fig. 3). The
GMWL, described by 5°H = 86'%0 + 10 (Craig 1961), reflects the isotopic distribution of global
precipitation. The position of amount-weighted precipitation along the GMWL is mainly
dependent on the distillation history of atmospheric moisture contributing to precipitation
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Fig. 3. Schematic "0-6"H diagram illustrating an approach for the interpretation of lake water isotope
data within a region. Key features include the Global Meteoric Water Line (GMWL), the landscape-predicted
Local Evaporation Line (LEL), average annual isotope composition of precipitation (Gp) the terminal basin steady-
state isotope composition (fss), the limiting non-steady-state isotope composition (5°), lake water isotope
composition (&), input water isotope composition (f ). and the isotope composition of evaporated vapour from the
lake [Sg).
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and commonly leads to snow plotting along an isotopically depleted portion of the GMWL
relative to rain (Fig. 3). Surface water isotope compositions, including lakes, typically plot
along a LEL, which generally has a slope of 4-6 (Fig. 3). The LEL for a given landscape, as
applied in this context, defines the expected isotopic evolution of a surface waterbody
undergoing evaporation, fed by waters representing the average annual isotope composi-
tion of precipitation (&g} for that region. Displacement of water compositions along the
LEL from &p reflects evaporative loss, while deviation from the LEL is often indicative of
mixing with source waters such as snowmelt or rainfall, which tend to plot along the
GMWL (Fig. 3). Key reference points along the LEL include the terminal (i.e., closed-drainage)
basin steady-state isotope composition (Sgg), which represents the special case of a
waterbody at hydrologic and isotopic steady-state in which evaporation exactly equals
inflow and the limiting non-steady-state isotope composition (5*), which indicates the maxi-
mum potential transient isotopic enrichment of a waterbody as it approaches complete
desiccation (Fig. 3).

For each landscape, the LEL was predicted using the linear resistance model of
Craig and Gordon (1965) following similar approaches presented in Brock et al. (2007)
and Wolfe et al. {2011). Hereafter, we refer to this as the “landscape-predicted LEL"
Predicting the LEL, rather than the more commonly used empirical technigue of applying
linear regression through measured lake water isotope compositions, allows lake water
isotope compositions to be interpreted independently based on their position along
(degree of evaporation) and about (ie., abovefbelow; relative influence of different
input waters such as smowmelt and rainfall) the LEL (e.g., see Tondu et al. 2013; Turner
et al. 2014).

The following equations were used to develop the landscape-predicted LELs and are
expressed in decimal notation. The equilibrium liquid—vapour fractionation factors (a®)
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for oxygen and hydrogen are dependent on temperature and have been determined empiri-
cally by Horita and Wesolowski (1994), where

(2) 10001n o' = —7.685 + 6.7123(10°/T) — L6664(10%/T*) + 0.35041(10" /T
for 6"™0 and

(3 1000 In o = 1158.8(T° /10%) — 1620.1(T° /10°) + 794.84(T /10°) — 161.04 + 2.9992(10° /10°)

for 6°H, where T represents the interface temperature in K. ¢* is the temperature-dependent
equilibrium separation between liquid and vapour water given by

(4] £ =a"-1
and kinetic separation (gy) is expressed by

(53) =¢=0Cgl1-h)

where constant enrichment values (Cy) for oxygen and hydrogen are 0.0142 and 0.0125,
respectively, and h is relative humidity (Gonfiantini 1986). .5 is the isotope composition
of ambient open-water season atmospheric moisture, often assumed to be in isotopic equi-
librium with evaporation-flox-weighted local open-water season precipitation (&gg) (Gibson
et al. 2008) such that

(6] fas = [Bpg — &)/
The limiting isotopic enrichment of a waterbody approaching desiccation (5°) has been
defined by Gonfiantini (1986) and can be determined from

(7) & = (hbps +5g +£/2")/(h —gg —£" /")

Ggg represents the isotope composition of a terminal basin in which evaporation is exactly
compensated by inflow, as defined by Gonfiantini (1986)

(8) s =o"&(1—h—ex)+ o hias + a2 ex +E
where the isotope composition of inflow, &, is assumed to be equal to &, The landscape-
predicted LEL was determined by linear regression through &y and &°.

Water-balance metrics

The water balance metrics, & and E/I ratios, were determined for each of the 376 lakes
using the Yi et al. (2008) coupled-isotope tracer approach, which assumes conservation of
mass and isotope composition during evaporation. According to mass conservation, the
isotope composition of evaporated vapour from a lake (8g) will lie on the extension of the
lake-specific LEL to the left of the GMWL (Fig. 2) and was determined from the formulation
provided by Gonfiantini (1986), where & is the measured lake water isotope composition:

(9) dg=((6L—£") 2" —hdas —=x)/{1 —h —ex)

Values for & were derived from caleulating lake-specific evaporation lines and their inter-
section with the GMWL, which reasonably assumes that input waters are nonevaporated
and plot on the GMWL and that all lake-specific evaporation lines converge at &* (Yi et al.
2008) (Fig. 3). The relative contributions of rainfall and snowmelt were then assessed by
evaluating the position of & compared to the landscape value of &p along the GMWL. For
example, & values that were more isotopically enriched than & were categorized as rain-
fall-dominated lakes and & values that were more isotopically depleted than & were catego-
rized as snowmelt-dominated lakes. For some YF lakes, very low &; values are interpreted as
lakes fed primarily by permafrost thaw waters (see below and Anderson et al. 2013).
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E/I ratios, which provide a snapshot of water balance through the mass-balance relation

of evaporation to inflow, were calculated from Gibson and Edwards (2002):

(10) B/l = (8 — &) /ibe — By

An E[l ratio of 0.5 represents lakes where 50% of the inflow has evaporated, and we use this
threshold to define evaporation-dominated lakes (after Tondu et al. 2013). As applied here, El
ratios estimate net evaporative loss in midsummer and can indicate whether lake water
volumes are increasing (Efl << 1) or decreasing (E/l > 1) where no drainage outlet exists.
This approach assumes a wellmixed lake at isotopic steady-state; thus, values greater
than 1 are inconsistent with the assumptions in the model but are used comparatively to
identify lakes strongly influenced by evaporation.

Model input climate parameters, T and h, for calculation of the landscape-predicted LELs
and lake water balance metrics were derived from the New et al. (2002) gridded climate
database, which provided cutput for individual lake coordinates. This approach was used
in the isotope mass-balance modeling of the individual lakes to account for spatial gradi-
ents in meteorological conditions within and among landscapes. Monthly T and h averages
for the open-water season were flux-weighted according to potential evaporation using
Thornthwaite (1948) for each landscape and for each of the 376 lakes. Values for &p (to
anchor the landscape-predicted LEL) and &pg (used to determine &4.; eq. 6 for both the land-
scape-predicted LEL and each individual lake to account for spatial wariations) were
extracted from “The online isotopes in precipitation calculator” (waterisotopes.org, Bowen
2016). This database uses global precipitation oxygen and hydrogen isotope data to calculate
average monthly and annual & values for any given location and elevation (Bowen et al.
2005). Sampling year(s) meteorclogical conditions (temperature, relative humidity, and pre-
cipitation) for a representative location from each landscape were extracted from the NCEP
North American Regional Reanalysis (NARR 2015) monthly composites and compared with
the 1961-1990 landscape averages from the New et al. (2002) gridded database to assess the
representativeness of meteorological conditions during the specific sampling years.

The influence of catchment vegetation on the water-balance metrics was assessed
after land cover for each lake was broadly classified as tundra dominant or forest dominant.
Tundra-dominant vegetation included catchments with high proportions of dwarf shrubs
and areas of sparse vegetation, while forest-dominant vegetation included lake catchments
with high proportions of deciduous and coniferous woodland or forest and tall shrub vege-
tation. Vegetation classes for ACP and YF were determined using the USGS National Land
Cover Database of Alaska For OCF, vegetation classes were simplified based on analysis
of a Landsat 5 TM mosaic (Turner et al. 2014). Vegetation type for HEL and NUN was identi-
fied based on visual observations during field work.

Nonparametric Kruskal-Wallis statistical tests were conducted to assess whether E[l dis-
tributions differed among lakes in different permafrost zones (continuous, discontinuous,
and sporadic) and between vegetation categories (forest dominant versus tundra dominant)
and whether 50, values differed among lakes in the different vegetation categories. When
Kruskal-Wallis tests involving the permafrost zones produced a significant result (P < 0.05).
pairwise comparisons were conducted using Dunnett's post hoc tests. All statistical tests
were performed using the software SPSS version 20. Efl values for lakes that were evaporat-
ing under strongly non-steady-state conditions (E/I > 1) were set to 1.5 for boxplot analyses
and the statistical tests.

Results
Meteorological conditions during sampling vears

Comparison of specific sampling year meteorological conditions (NARR) with the
1961-1990 average values (New et al. 2002) for each landscape reveals some similarities
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Fig. 4. Comparison of average sampling year (solid bars, NARR 2015) and 1961-1990 average (grey bars, New et al.
2002) values for summer temperature, summer relative humidity, summer precipitation, and winter precipitation
for the five landscapes.
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and differences (Fig. 4). Summer temperatures were higher (1.8-3.3 °C) during sampling
years for YF, OCF, HBL, and NUN landscapes than the 1961-1990 average. At ACP, the sum-
mer temperatures were lower (0.9 °C) than the 1961-1990 average. Humidity values for
the sampling years were similar to the 1961-1990 averages at all five landscapes. Precipita-
tion shows the greatest difference between the values for the sampling years versus the
1961-1990 average. During the sampling years, ACP, YF, and OCF had consistently higher
summer (54-121 mm) and winter precipitation (78-115 mm) than the 1961-1990 average,
while HBL had higher summer precipitation (115 mm) during sampling years when com-
pared to the 1961-1990 averages. In contrast, NUN had lower summer precipitation (32
mm) and higher winter precipitation (119 mm) during sampling years when compared to
the 1961-1990 averages.

Isotope hydrology
Lake water isotope compositions (5;)

Lake water isotope compositions (&) from all of the assembled data range from -20.5%«
to ~2.4%c and from -168.7%. to ~53.0%. for 5"°0 and &°H, respectively (Appendix; Fig. 5).
The wide range of & values reflects the diverse lake hydrological conditions at the time
of sampling in these high-latitude regions. YF has the greatest range of §, values, indicating
substantial within-landscape variability, while NUN has the smallest range, signifying that
lakes possess a narrower range of hydrological conditions in this landscape.
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Fig. 5. Water isotope compositions (&) from 376 lakes superimposed onto the landscape-specific isotope
frameworks. The data defining the landscape-predicted LELs are shown in Table 1.
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For each of the five landscapes, &, values form a linear trend that typically plot along a
similar trajectory as the landscape-predicted LELs, supporting the contention that the
frameworks are reasonable approximations of isotopic evaporative trajectories (Fig. 5).
Indeed, the landscape-predicted LELs are in close agreement with the empirically defined
LELs, except for ACP (Table 1). For ACP, &5, values plot along a trajectory with a somewhat
steeper slope than the landscape-predicted LEL, likely due to high rainfall immediately
prior to sampling (Fig. 4). The LELs and & values for OCF and YF, and HBL and NUN, are
positioned in similar 6™0-6"H space, likely reflecting similar latitudes and the associated
well-known effect on isotope composition of precipitation (Rozanski et al. 1993). ACP, the
most northerly landscape, does not follow this pattern, perhaps due to its closer proximity
to the Arctic coast and associated reduced continental influence on precipitation isotope
composition. §; values from NUN are evenly distributed about the LEL, while & values
from HBL and ACP typically plot above their respective LELs, suggesting a stronger influ-
ence of rainfall compared to snowmelt on lake water balance. Conversely, & values from
YF and OCF generally plot below their respective LELs, reflecting a stronger influence
of snowmelt compared to rainfall on water balances. Additionally, a small group of lakes
(n = 15) from YF have & values that plot on a particularly low trajectory (ie., parallel to,
but offset below. the landscape-predicted LEL). which Anderson et al. (2013) suggested
reflect more dominant input by isotopically depleted water from permafrost thaw in this
region (elaborated on in the next section). &, values from HBL are positioned farthest
away from the GMWL on the LEL, with many lakes plotting beyond &g and some approach-
ing and surpassing the landscape-predicted §°, indicating strong non-steady-state evapora-
tive isotopic enrichment at the time of sampling. In contrast, & values from NUN are
positioned closest to the GMWL on the LEL, indicating that lakes in this landscape are least
influenced by evaporation.

Source water identification i)

The isotope composition of lake-specific input water (&) was calculated for each lake in
the five landscapes to evaluate the relative roles of different source waters on lake hydrolog-
ical conditions (Fig. 6). Lakespecific 50, values range from —38.6% to —=72%. and lake-
specific 5°H; values range from —298.4%. to —47.7%.. The large range in & values illustrates
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Fig. 6. Isotope compositions of lake-specific input water (&) for each of the five landscapes. Classification
of snowmelt-dominated lakes (6 < &p) rainfalldominated lakes (& > by}, and permafrost thaw-dominated lakes
{6y << &y} are represented by the diagonal lines. Note the different axis scales.
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the high variability in the average proportion of source water type (i.e., rain and snowmelt)
to all lakes within and among the landscapes. YF lakes possess the largest range of & values,
indicating substantial within-landscape variability in the proportions of source water types,
while lakes in NUN have the smallest range of & values, signifying less variability in propor-
tions of source water type. Lakes with the lowest §; values are found in YF, while lakes in
HEL have the highest & values.

For each landscape, &; values were compared with the mean annual isotope composition
of precipitation value (8p) to classify lakes as snowmelt (& < 8p) versus rainfall (5; > &g
dominated (Fig. 6). YF and OCF have the highest proportions of snowmelt-dominated lakes,
89% and 72%, respectively, indicating the strong influence of snowmelt on lake water bal-
ances in these landscapes, even during midsummer sampling. Of note, there was a small
group of lakes in YF with particularly low & walues, likely due to input from snowmelt
and permafrost thaw (Anderson et al. 2013). YF is underlain by discontinuous permafrost,
and the observed values were within the range of values for permafrost thaw waters in
this area (Meyer et al. 2010; Lachniet et al. 2012; Anderson et al. 2013). Slightly more than
half of the lakes (52%) in NUN are snowmelt dominated, indicating a more even distribution
of snowmelt versus rainfall source waters throughout the landscape. Some rainfall-
dominated lakes in NUN may also be fed by permafrost thaw waters (Narancic et al. 2017).
Rainfall-dominated lakes are the overwhelming majority in HEL (80%) and ACP (91%).
reflecting the strong influence of rainfall on lake water balances in these landscapes at
the time of sampling.

Evaporation-to-inflow (E/1) estimates

Evaporation-to-inflow ratios (E[l) were calculated for each lake in the five different land-
scapes to evaluate the relative importance of vapour loss on lake hydrological conditions
(Fig. 7). The 376 lakes span a wide spectrum of Ejl values, from close to 0 to much greater
than 1, illustrating a range of water balances from those dominated by input waters to those
dominated by evaporation. Overall, 219 lakes (58%) have E[l < 0.5, while 157 lakes (42%) have
Efl = 05 (Le., =50% evaporative water loss), which we consider as evaporation dominated.
Calculated Efl distributions vary among landscapes (Fig. 7). For NUN and ACP, the vast
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Fig. 7. Cumulative proportions (lines. right y-axish and frequency (bars. left y-axis) distributions of ET valoes for
thermaobarst lakes from the five landscapes. The vertical broken line represents Ell = 0.5. Water balance of lakes
with EI = 0.5 is considered evaporation dominated. Mote the varying vertical scales.
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majority of lakes (95% and 98%, respectively) have EjI < 0.5. Lakes in OCF have a relatively
even distribution with E/I < 0.5 in 46% of lakes. In contrast, 2 majority of lakes in YF and
HBL have E[I > 0.5 (63% and 68%, respectively), and these two regions have the largest pro-
portion of lakes with E[I > 1(30% and 40%, respectively). In HBL and YF, E[l > 1is consistent
with field observations of lakes throughout the landscape having undergone desiccation by
midsummer (Anderson et al. 2013; Bouchard et al. 2013).

Discussion

Thermokarst lakes have been undergoing hydrological transitions in response to recent
climate change (e.g., Yoshikawa and Hinzman 2003; Smith et al. 2005; Riordan et al. 2006;
Labrecque et al 2009; Rowland et al. 2010; Carroll et al. 2011; Bouchard et al. 2013). Our
analysis of water isotope compositions and calculations of & and E[l ratios for 376 lakes at
five lake-rich permafrost landscapes (ACP, YF, OCF, HEL, and NUN) in arctic and subarctic
North America indicate that the importance of input types (rainfall, snowmelt, and perma-
frost) and evaporation are highly variable. Results show that striking similarities and differ-
ences in thermokarst lake hydrology exist among landscapes. Large gradients in § occur
within and among landscapes and identify that lakes in HBL and ACP are mainly rainfall
dominated, whereas lakes in OCF and YF are mainly snowfall dominated. Lakes in NUN
have roughly equal proportions of rainfall- and snowfall-dominated lakes. Snowfall-domi-
nated lakes from YF also likely include lakes with substantial contributions from
permafrost thaw water (and possibly also in NUN, although these are isotopically indistin-
guishable from rainfall-dominated lakes: Narancic et al. 2017). E[I values span from almost
0 to much greater than 1. Most lakes in ACP and NUN have E[l < 0.5, while the majority of
lakes in YF and HBL are evaporation dominated despite higher-than-normal (1961-1990) pre-
cipitation during sampling years. These findings underscore the strong hydrological gradi-
ents that exist across thermokarst lakes from high-latitude regions. In the discussion below,
we first acknowledge assumptions and uncertainties in the isotope modeling approach.
Then, relations of & and E[l ratios with climate and catchment characteristics among the
five landscapes are explored, which provide the basis for anticipating how thermokarst
lake hydrology in these northern regions may change in the future.
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Assumptions and uncertainties

The nature of this broad continental-scale meta-analysis necessarily assumes that lakes
sampled are representative of their landscapes and required decisions to ensure a consistent
modeling approach given availability of existing data. Water balance metrics derived in this
study were calculated from a single lake water isotope measurement or an average of July
and August lake water isotope measurements over multiple years and thus they represent
a snapshot of conditions. Also, the specific sampling years varied among the five landscapes.
Although comparing water isotope data from different years for the five landscapes may
result in some inherent variability, it is unlikely that the interannual variability for a single
lake would exert a strong influence on comparisons within and among the five landscapes
given the large range of lake water isotope compositions and E/l and &, values across the land-
scapes. We explored this for landscapes where multiple years of summer water isotope mea-
surements were available (OCF, HEL, and NUN), and indeed, spatial variability far exceeded
annual summer variability of individual lakes. For OCF, the range in 50 and &*H values
for all lakes was 11.9%. (minimum = =21.0%., maximum = =91%.) and 64.6%. (minimum =
=172.3%¢, maximum = =107.7%), respectively. In contrast with the large spatial variability,
the greatest range for an individual lake in OCF over the 3 year sampling period was 2.3%.
and 11.9%. for 50 and &°H, respectively. For HEL, the range in 50 and 5"H values for all
lakes was 10.6%. (minimum = =12.0%., maximum = =14%.) and 51.5%; (minimum =
—~100.3%., maximum = —48.8%.), respectively, whereas the greatest range for an individual
lake in HEL over the 3 year sampling period was much lower (4.7%. and 20.5%. for 50
and &°H, respectively). Similarly for NUN, the range in 60 and §*H values for all lakes was
6.6% (minimum = =14 4%, maximum = =7.8%.) and 35.2%. (minimum = =107.7, maximum
= =72.5), respectively, while the greatest range for an individual lake over multiple years
was much lower (2.8%. and 19.8%. for "0 and 5°H, respectively).

The availability and quality of climate records also varied among the five landscapes, and
we used a common gridded climate database to extract meteorological conditions. These
data were used to calculate water balance metrics for each individual lake, which allowed
for a consistent approach to modeling of all lakes. However, this also added some uncertain-
ty to the model cutput given that the gridded data set estimates a 30-year average (1961
1990), which was used to represent meteorological conditions during the recent years of
actual water sampling. Fortunately, the gridded 30-year averages for humidity were well
aligned with sample year humidity, which is a parameter that the isotope-mass balance
model is sensitive to. Yet, precipitation during the sampling years was generally higher
than the 1961-1990 averages (Fig. 4). Relatively wet conditions may have led to an underes-
timation of some of the El values relative to expected long-term averages, particularly for
ACP. Additionally, summer temperature was warmer during the sampling years than the
1961-1990 estimates, with the exception of ACP. Different data sources were used to demar-
cate catchment vegetation among landscapes (field observations, remote sensing, aerial
photographs), which also result in some further uncertainty to comparisons we make
below.

Our attempt to develop a consistent modeling approach that could be applied to all lakes
and landscapes results in some differences in values presented in this paper compared to
the previous landscape-specific studies. For example, estimates of &p produced using water-
isotopes.org (Bowen 2016) were lower than local precipitation isotope data utilized by
Narancic et al. {2017), which placed some lakes in different classifications (snowmelt- versus
rainfall-dominated categories). However, both approaches robustly identify that lakes in
NUN experience a low degree of evaporation. Assumptions and limitations of data availability
were unavoidable, but they are more likely to influence individual lake behaviour than the
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large-scale spatial patterns within and among landscapes (the primary aim of this paper),
which clearly emerged.

Drivers of hydrological conditions

Meteorological conditions exert a strong influence on water balance of thermokarst
lakes (e.g.. Riordan et al. 2006; Plug et al. 2008; Labrecque et al. 2009). For temperature
and precipitation, mean annual, mean winter, and mean summer values vary greatly
among the five landscapes (Fig. 2). Previous water isotope studies of lakes in northern
Canada and the continental United States (Gibson and Edwards 2002; Brooks et al. 2014)
found that colder regions typically have lower E[l values compared to warmer regions.
This is likely in response to more rapid evaporation at higher temperature and perhaps dif-
ferences in the length of the open-water season. Variation in ice-out timing within a region
due to lake morphometry and among years and regions due to spring temperatures can also
strongly affect evaporation season duration (Arp et al. 2015). Based on differences in mean
summer temperature of the five landscapes in this study, one might anticipate the lowest
Efl values at ACP and NUN and the highest values at OCF and YF. Indeed, lakes in ACP
and NUN have the lowest E[l values and YF has some of the highest Ejl values, but lakes in
OCF have more moderate Efl values (Fig. 7). However, HEL has a much higher percentage
(40%) of lakes with Efl > 1 compared to OCF (4%) and YF (30%).

The amount of snowmelt and rainfall input to lakes (direct to the lake surface and via
runoff) affects the water balance of thermokarst lakes through the degree of water repleni-
shment that offsets evaporative losses (Schindler and Smol 2006; Bouchard et al. 2013). It
may be anticipated that YF has the greatest proportion of lakes with Ef = 1, owing to higher
temperatures and relatively low mean annual winter and summer precipitation available to
offset evaporation. In contrast, NUN was expected to have the lowest E[l values because it
has the lowest mean summer temperature and highest mean winter and summer precipita-
tion. In general, the results are consistent with these expectations; 30% of lakes in YF have
Efl values =1 and 95% of lakes in NUN have E[ values <0.5. However, HBL, with moderate
temperature and precipitation, has the overall greatest proportion of lakes with Efl = 1
{40%). Thus, although HEL has the second highest mean annual summer and winter precipi-
tation relative to the other landscapes, precipitation inputs do not offset midsummer evap-
orative losses for many lakes compared to the other landscapes, evidently even during years
of apparent high summer precipitation. Bouchard et al. (2013) came to a similar conclusion
that many lakes in HEL do not receive adequate precipitation, particularly snowmelt runoff,
to offset midsummer evaporation leading to lake level decline. Snowmelt bypass, which
occurs when snowmelt passes through a lake basin while the water mass is still frozen as
ice, has been observed in some arctic lakes (e.g.. Bergmann and Welch 1985) and may also
serve to enhance EI ratios in the absence of diluting effects of rainfall (Edwards and
McAndrews 1989).

Source waters to lakes in both HBEL and ACP were dominated by rainfall at the time of
sampling (Fig. 6), but there is a large difference in amount of mean summer precipitation
(Fig. 2). Similarly, lakes in OCF, YF, and NUN have snowmelt-dominated source waters,
but again, these landscapes differ strongly in their mean winter precipitation. Thus, factors
other than seasonal precipitation amounts must play a role in the relative importance of
rainfall versus snowmelt inputs to thermokarst lakes in these landscapes. Interestingly,
Fig. 2 shows that YF has relatively high temperature and low precipitation compared to
the pattern observed for the other landscapes. YF is also the only landscape with lakes
with input isotope compositions distinctly characteristic of water from permafrost thaw
(Anderson et al. 2013). Higher temperatures since the early 1980s may be promoting more
intense permafrost thaw in YF (Anderson et al. 2013). Overall, the data suggest that climate

-4 Published by NBC Research Press

226



134 Arctic Sgence Vol 3, 2007

normals are not the best predictor of hydrological classification of thermokarst lakes when
used alone.

Permafrost conditions, which are influenced by climate, affect surface area of thermo-
karst lakes throughout the Arctic and Subarctic. For example, studies have shown that
lake surface area is decreasing in regions of discontinuous permafrost (Yoshikawa and
Hinzman 2003; Smith et al. 2005) but expanding in areas of continuous permafrost (Smith
et al. 2005). Decreasing lake surface area has largely been attributed to drainage. but
increased evaporation in response to climate warming may also play a role (Riordan et al.
2006). The five landscapes in this study span permafrost classifications from sporadic to con-
tinuous as well as from water balances indicative of increasing or stable lake water volume
(E[I < 0.5) to water balances indicative of decreasing lake water volume due to evaporation
(E[I = 1). E[l values for lakes from the three permafrost categories are highly variable
(Table 2; Fig. 8). Lakes in terrain with sporadic permafrost (NUN) have the lowest E[I values,
whereas lakes in terrain with discontinuous permafrost (YF, HEL, and NUN) have the high-
est Ejl values. However, lakes from regions classified as having continuous (ACP, OCF, and
HEL) and discontinuous (YF, HEL, and NUN) permafrost do have a wide and comparable
range of E[I values spanning from close to 0 to greater than 1. Thus, relations among perma-
frost zones, lake surface area, and lake water balance are not straightforward.

Lake surface area and depth, as imparted by permafrost or other factors, can influence
lake water balance. For example, in ACP, Arp et al. (2015) identified that lakes tend to
experience longer ice-free seasons if they are shallow enough to have bedfast ice. In YF,
Anderson et al. (2013) proposed that lakes with high Efl values are more likely to be relative-
ly shallow. Although specific lake depth measurements were not available for the entire
data set in this study, lakes in HBL were by far the shallowest of the five landscapes and.
analogous to observations of Anderson et al. (2013) for YF, had the highest EJI ratios.

Of the permafrost categories, lakes located in the discontinuous permafrost zone, where
average temperatures are warmer, have the highest proportion classified as evaporation
dominated (E[I > 0.5) and 25% had Efl > 1. This suggests that evaporation in response to
climate warming is likely playing an important role in the observed decline of surface
area of thermokarst lakes in discontinuous permafrost zones and that lake drainage (lateral
or internal) is likely not the sole cause. The dominance of low E[l values (<0.5) in lakes located
within the region of sporadic permafrost may be due to ground thaw, which allows
increased lateral hydrological connectivity to offset effects of evaporation. Permafrost
thaw and the subsequent increased lateral hydrologic connectivity have been shown to
maintain positive lake water balances (low E[I values) in Churchill, Manitoba (Wolfe et al.
2011). Overall, E[I results suggest that large-scale predictions of changes in lake area based
strictly on permafrost zonation throughout the Arctic and Subarctic likely would not
account for the apparent spatial heterogeneity in thermokarst lake hydrological conditions.
Additionally, our analysis suggests that lake drainage is not the only cause of lake level
decline for thermokarst lakes in discontinuous permafrost zones and that increased evapo-
ration associated with air temperature increase is likely playing an important role in
observed water level changes.

Studies from northern regions have suggested that lakes in low-relief, undra landscapes
are more vilnerable to evaporative losses and desiccation than lakes in forested landscapes
(e.g., Brock et al. 2009; Turner et al. 2010, 2014; Bouchard et al. 2013). In forested landscapes,
taller and denser vegetation entraps greater amounts of wind-redistributed snow than areas
of sparse tundra vegetation (Pomeroy et al. 1997; Liston and Sturm 1998; McFadden et al.
2001; Sturm et al. 2001; Brock et al. 2009). In spring, snowmelt runoff to lakes helps to offset
evaporative losses throughout the summer. Based on these observations, it could be rea-
soned that in this study, lakes located in forest-dominant catchments should have lower
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Table 2. Results of Kruskal-Wallis tests, which compare evaporation-to-inflow ratios (E] or oxygen isotope
composition of lake-specific input water (6"°0y) values for the different permafrost zones (continuous,
discontinuous, and sporadic) and vegetation categories (forest versus tundra dominant).

¥ P daf
Permafrost Eff 60754 6417 x 107~ 2
Vegetation Kl
¥F 0702 0402 1
OCF 3429 0064 1
HEL 115599 0001 1
NN 4811 0028 1
Vegetation 50,
¥F 3915 0045 1
OCF 7021 08 1
HEL 5.951 0015 1
NUN 4111 0043 1

Mote: YF, Yukon Flats; OCF, Old Crow Flats; HEL, Fhadson Bay Lowlands; NUN, Nunavik.

Fig. 8. Boxplots comparing evaporation-to-inflow ratios (E/I) for all 376 lakes among permafrost types. The broken
line represents E/l = 0.5, the threshold for evaporation-dominated lakes.

LLE

Pemafrost Classification

Efl and & wvalues than lakes located in tundra-dominant catchments among the five land-
scapes. Results show that lakes from HBL display the clearest separation of E[I values
between the two catchment vegetation classes with tundra-dominant catchments having
higher Efl values followed by OCF, while lakes from YF have more similar ranges of
observed E[l values for both vegetation classes (Table 2; Fig. 9). Additionally, more lakes in
OCF, HBL, and YF have E[l > 1 in tundra-dominant landscapes compared to lakes situated
in forest-dominant catchments. In fact, YF is the only landscape that has forest-dominant
lake catchments with El > 1. In contrast, lakes from NUN do not follow this pattern
(Fig. 9). Within this landscape, E[l values span similar albeit low ranges for lakes from
both vegetation classes, but Efl ratios are significantly higher in lakes with forest-dominant
catchments compared to lakes with tundra-dominant catchments (Table 2: Fig. 9). For ACP,
all I values are relatively low despite that all lakes are situated in tundra-dominant catch-
ments. Results also show that lakes with tundra-dominant catchments in YF, OCF, HEL, and
NUN all had higher median §**0; values compared to lakes in these landscapes situated in
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Fig. 9. Boxplots comparing evaporation-to-inflow ratios (Efl. top) and oxygen isotope composition of lake-specific
input water (80, bottom) for thermokarst lakes at each of the five landscapes between the two vegetation classes
(forest versus tundra). The broken line in the upper panel represents EM = 0.5, the threshold for evaporation-
dominated lakes.
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forest-dominant catchments (Table 2; Fig. 9). Thus, tundra-dominant catchments appear to
favour greater relative input of rainfall than snowmelt source waters to lakes. Overall, the
data suggest that while vegetation appears to influence the composition of thermokarst
lake input waters in YF, OCF, HEL, and NUN, the role of vegetation in vapour loss appears
to be more important in HEL and OCF, and to a lesser degree in YF, than in NUN.
Interactions among meteorological conditions and catchment characteristics, such as
vegetation and permafrost classifications, likely play key roles in promoting the similarities
and diversity of hydrological conditions observed among the five landscapes. For example,
variability in yearto-year meteorological conditions likely has the ability to mask the
expected lake responses to other drivers such as vegetation and permafrost characteristics.
ACP lakes all had E[l values that were relatively low despite all lakes being situated in catch-
ments dominated by tundra vegetation. These values may have been lower than expected
due to relatively high rainfall prior to sampling compared to long-term averages (Fig. 4).
We speculate that in years of more typical precipitation in ACP, catchment vegetation
may play a larger role in thermokarst lake hydrology and EfI values may be higher and per-
haps more comparable to the tundra landscapes observed in HBL, OCF., and YF.
Conversely, catchment vegetation may also mediate changes in meteorological conditions.
For example, thermokarst lakes in HBEL and ACP are mainly rainfall dominated but are also
coastal landscapes with the majority of lakes located within open tundra. The coastal tun-
dra settings may promote more wind redistribution of snowfall in these landscapes com-
pared to the more inland snowmelt-dominated landscapes of YF and OCF, perhaps
causing the lakes in these tundra landscapes to be more susceptible to hydrological changes
in response to yearly fluctuations in rainfall. We further contend that because permafrost
and overlying vegetation are influenced by climate conditions, precisely identifying
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discrete roles of permafrost and vegetation is difficult. For instance, within a landscape,
water balance differences may be due to the climatic conditions that result in vegetation
differences rather than caused solely by vegetation. Recognition of the complex interac-
tions and relative importance among different drivers of thermokarst lake hydrology
throughout high-latitude regions is required to anticipate future hydrological trajectories
(Turner et al. 2014).

Future hydrological trajectories

During the next century, northern regions are expected to experience continued rise of
air temperature, longer duration of the ice-free season, and changes in the amount and tim-
ing of precipitation (Kattsov et al. 2005; Prowse et al. 2006; AMAP 2011). Increased tempera-
tures and longer ice-free seasons will promote greater vapour loss from lakes during
summer (Schindler and Smol 2006; Arp et al. 2015), leading to increased EfI values. If
increases in precipitation do not occur at a similar rate, this could cause widespread desic-
cation of thermokarst lakes (Bouchard et al. 2013), which has also been observed in shallow
non-thermokarst lakes in Canada’s High Arctic (Smol and Douglas 2007). Spring snow cover
has declined over many areas of northern North America and this pattern is expected to
continue, although with substantial spatial and temporal variability (AMAP 2011; Dersken
and Brown 2012; Krasting et al. 2013), which may result in a reduction of runoff available
for offsetting vapour loss. Thermokarst lakes in HEL have already begun to desiccate during
the ice-free season, and analysis of a sediment core from one desiccated lake in HBL indi-
cates that this recent drying trend is unprecedented in the context of the past 200 years
(Bouchard et al 2013). YF, OCF, and perhaps ACP may also evolve towards this scenario
under conditions of continued climate warming. Based on the Efl results of this study, field
observations, and the degree to which hydrological conditions in each landscape appear to
be influenced by meteorological conditions as cutlined above, we suggest that HBL is the
most viulnerable of the five landscapes to widespread lake desiccation in the future followed
by YF, OCF, and ACP, while NUN is likely the least vulnerable. Interestingly, the landscapes
at the two ends of this lake hydrological spectrum lie on opposite sides of Hudson Bay, and
this may be related to the more maritime conditions in NUN on the eastern shore (Fig. 2;
Marancic et al. 2017).

Increases in shrub growth in response to longer ice-free seasons and warmer tempera-
tures have been observed along tundra-taiga transition zones (Myers-Smith et al. 2011:
Lantz et al. 2013). Increased shrub growth may result in an increase in the number of lakes
having snowmelt-dominated input waters and, conversely, a decrease in the proportion
of rainfalldominated lakes. This increase may result in greater water replenishment for
some lakes in HBL, OCF, YF, and possibly ACP, where tundra-dominated landscapes typical-
ly have higher E[l values. However, the ratio of catchment area to lake size of individual
lakes will determine whether sufficient snowmelt runoff can be generated to offset evapo-
rative losses. Furthermore, with more vegetation productivity, increases in terrestrial
evapotranspiration may dampen this response.

Greater permafrost thaw throughout high-latitude regions of North America (Osterkamp
and Romanovsky 1999; Burn and Kokelj 2009) may result in lake-level declines via increases
in vertical lake drainage (e.g.. Yoshikawa and Hinzman 2003), or it may result in increased
lateral hydrological connectivity, which may offset water losses due to evaporation and ver-
tical drainage, ultimately causing a net increase in lake surface area (Avis et al. 2011; Wolfe
et al. 2011). However, previous studies showed that lakes in YF with hydrological connections
to the drainage network tend to experience greater fluctuations in intra- and interannual
water balances (Chen et al. 2012, 2013). A subset of thermokarst lakes in YF show evidence
of source waters derived from permafrost thaw, suggesting that this landscape may be
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particularly sensitive to further changes in permafrost. E[ values of lakes in the sporadic
permafrost zone of NUN may also be illustrating the effects of increased hydrological con-
nectivity offsetting vapour loss. As the continuous permafrost warms in ACP, HEL, and
OCF, these lakes may also become increasingly influenced by permafrost thaw waters. Over-
all, thermokarst lakes throughout permafrost regions of North America are unlikely to fol-
low a uniform hydrological trajectory in response to amplified climate change. Rather, the
hydrology of thermokarst lakes is likely to display dynamic and individualistic responses
depending on their unique set of landscape and climate conditions and drivers.

Conclusions

We compiled water isotope data obtained during the past decade from 376 lakes of main-
ly thermokarst origin situated in arctic and subarctic permafrost landscapes across North
America (Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), north-
western Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec)). Our results, as well as
those derived from calculation of isotope-based water-balance metrics (including source
water isotope compositions and evaporation-to-inflow ratios), demonstrate a substantial
array of regional and subregional diversity of lake hydrological conditions characterized
by varying influence of snowmelt, rainfall, permafrost thaw waters, and evaporation. Ther-
mokarst lake hydrology is driven by complex interactions among prevailing temperature
and precipitation, catchment vegetation, and permafrost status. Some regional patterns
emerged, such as the strong role of open-water evaporation on thermokarst lakes of the
Hudson Bay Lowlands and Yukon Flats in particular, yet these hydrological drivers are all
“moving targets” with ongoing climate change. Thus, they are likely to have pronounced
influence on future thermokarst lake hydrological trajectories at a wide range of spatial
and temporal scales, challenging our ability to anticipate their consequences for water
resources, aquatic ecosystems, and biogeochemical cycling.
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Appendix

Table Al. Average summer water isotope compositions, ceordinates, and vegetation and permafrost categories for
each of the 376 lakes.

Lake & (™0 &, [*H) Latitude [* N) Longitude (* W) Vegetation Permafrost
ACF 926 —B0.20 TOT752 -153.869 Tundra Continuous
ACP2 —12.34 -97.92 TO0.766 -153562 Tundra Continuous
ACF3 —10.55 -ET.E4 TOTEDR =153470 Tundra Continuous
ACP4 =14.72 -114.15 T0.720 -154.450 Tundra Continuous
ACFs -11.74 -85.53 TO793 -154.517 Tundra Continuous
ACPs -1295 -102.04 FO.706 -153924 Tundra Continuous
ACP7 -1207 —GB. 70 70361 -151.683 Tundra Continuous
ACP8 -15.25 11947 TO367 -151.398 Tundra Continuous
ACP9 -16.26 -12962 7031 -151.532 Tundra Continuous
ACTFI0 -14.55 -116.74 TOI08 -151.435 Tundra Continuous
ACFN —16.65 -12927 T0.299 =151.464 Tundra Continuous
ACTI2 =13.90 =110u61 TI6S =151.394 Tundra Continuous
ACP13 -12.65 =110.53 TOZT0 =151.356 Tundra Continuoas
ACTFI4 —13.66 -109.73 0246 153287 Tundra Continuous
ACTIS -11.06 -S6.07 70248 -151484 Tundra Continuous
ACTI6 -12.64 -10E11 TO253 =151342 Tundra Continuous
ACPI7 .60 -114.59 T229 -153.312 Tundra Continuous
ACTFIR -13.03 -114.18 70218 =153179 Tundra Continuous
ACTF19 -13.B6 =115.03 TL230 =153.0940 Tundra Continuous
ACP20 -12.98 -1D6.65 70231 -151367 Tundra Continuous
ACTF21 -13.55 =11014 TOZ0E -15116%9 Tundra Continuous
ACTF22 -13895 ~114 .54 TOI9E -153.315 Tundra Continuous
ACP23 -12.29 -103.76 70214 -153.313 Tundra Continuous
ACTF24 -1272 =11064 70213 =153.082 Tundra Continuous
ACTF25 -1318 ~109.87 TO.2D4 -152.566 Tundra Continuous
ACTF26 =1321 =11017 THI79 =153294 Tundra Continuous
ACP27 12599 TR TIBT 151.571 Tundra Continuoas
ACTF28 .66 -121.73 TG -151761 Tundra Continuous
ACF29 =1412 =118.35 7oz =151.804 Tundra Continuous
ACP30 1401 -114.25 o997 =152 RE0 Tundra Continuoas
ACTF31 -1341 1804 TGS -152 962 Tundra Continuous
ACTF32 -14.24 -118.47 TO35 -153288 Tundra Continuous
ACT33 =1512 -120013 O35 =1533.22Z7 Tundra Continuous
ACT34 -H.23 -114.72 T35 -153.009 Tundra Continuous
ACTF35 =17.01 =13516 700E -153188 Tundra Continuous
ACT36 -18.54 =120+ 70012 -153153 Tundra Continuous
ACF3T -H30 11944 7ooz2 -153.094 Tundra Continuous
ACT38 -13.56 -110.80 FO0D0 =152.028 Tundra Continuous
ACTF39 -14.949 -121.19 0997 -153.0659 Tundra Continuous
ACP40 -11.77 —104.34 Fupoo -1534037 Tundra Continuous
ACPN -15.13 12204 69979 -153.074 Tundra Continuous
ACP42 -14.14 -114.37 HR969 -152 946 Tundra Continuous
ACP43 -11.93 11228 62992 -152952 Tundra Continuous
ACP44 -15.37 -125.56 B9659 -153.051 Tundra Continuous
YF1 ] -10073 6450 145546 Forest Discontinuous
YF2 ] —54.94 66450 =145.563 Forest Discontinuous
YF3 ~13.04 ~12%30 66385 ~146.360 Forest Discontinuous
YF4 1289 -125.86 Bh034 -47544 Forest Discontinuous
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Table Al [continued).

Lake & "0 & H) Latitude [* N} Longitude (* W) Vegetation Permafrost
YFs —SD4 -10611 66294 148114 Forest Discontinuous
YFa 897 ~ 10640 i) ~H6.733 Forest Discontinuous
YF7 949 ~10935 66240 ~146.394 Forest Discontinuous
YF& 10z -11215 BE083 —146.316 Forest Discontinuous
YFa 1] ~12000 [0 =] ~146.144 Forest Discontinuous
YF10 -14.77 -136.61 66186 —147493 Forest Discontinuous
YF1 -16.49 144 37 53.929 —146.596 Forest Discontinuous
YF1z =10.50 -116.86 66129 —146.660 Forest Discontinuous
YF13 -18.00 -155.82 Bh282 -149.321 Forest Discontinuous
YF4 =998 =-111.39 66259 =148 935 Forest Discontinuous
YFI15 -15.14 =141.79 6337 ~148 954 Forest Discontinuous
YF16 -15.22 =142 46 66240 4B E25 Forest Discontinuous
YFI7 =-1759 =150.50 66229 =146.943 Forest Discontinuous
YF15 -9491 ~-116.08 R 223 146688 Forest Discontinuous
YF19 -13.58 -135.62 66217 146,417 Forest Discontinuous
YF20 =10.54 -11878 66217 -146.385 Forest Discontinuous
YF21 BT =11211 B02SE -146331 Forest Discontinuous
YF2z =052 -116.54 BR320 —146.320 Forest Discontinuous
YF23 =12.00 -1Z7.B6 66.299 -146.187 Forest Discontinuous
YF24 -158.29 ~158.00 6610 =148, 200 Forest Discontinuous
YF2s5 917 -10927 66171 -147975 Forest Discontinuous
YF26 -18.21 -156.04 66.208 147669 Forest Discontinuous
YF27 -11..30 -121.94 Bh.067T 1449327 Forest Discontinuous
YF28 ~14.50 -139.92 BEIT 149069 Forest Discontinuous
YF29 ] -104.12 66.200 -148.682 Forest Discontinuous
YF30 913 -111.44 66459 —147.903 Forest Discontinuous
YF31 =840 =105.14 BH3EY =147573 Forest Discontinuous
YF3z =737 ~10E.30 66430 -H7412 Forest Discontinuous
YF33 -1743 -152.56 B6.055 —146.3H04 Forest Discontinuous
YF34 =14.16 =137.52 bEDE1 =145 782 Forest Discontinuous
YF3s5 -13.72 -136.30 66187 —145.668 Forest Discontinuous
YF36 -18.51 -158.26 Be20T 5658 Forest Discontinuous
YF37 =18.70 -158.91 BEETT -5 708 Forest Discontinuous
YF3g -M.53 ~139.24 &RI10 -145.56&1 Forest Discontinuous
YF39 -11.48 -12297 66368 ~45. 562 Forest Discontinuous
YF40 -18.85 -153.56 66185 145444 Forest Discontinuous
YF4 -15.41 ~14352 BEOID —14b0. 444 Forest Discontinuous
YF42 -18.63 -156.95 65,999 —146.468 Forest Discontinuous
YF43 =10.44 -117.81 b6.ZE1 -148.593 Forest Discontinuous
YF44 -12.87 -130.87 0327 ~148.5495 Forest Discontinuous
YF45 =470 =115.61 [y =148.221 Forest Discontinuous
YF46 -10.03 -115.81 0307 -148102 Forest Discontinuous
YF47 =130 -118.18 66514 -148.106 Forest Discontinuous
YF48 =10.18 =115.71 66280 =148120 Forest Discontinuous
YF49 -11.30 120090 66123 -148.153 Forest Discontinuous
YF50 -18.80 —156.90 66131 —149159 Forest Discontinuous
YF51 =16.90 =16250 65971 =149450 Forest Discontinuous
YF52 -11Le0 -128.70 66167 —14915%9 Forest Discontinuous
YF53 -17.30 -165.70 66260 -8 ETR Forest Discontinuous
YF54 =740 -105.50 66179 -148989 Forest Discontinuous
YFs5 =140 =110 6610 =147.554 Forest Discontinuous
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Table Al (continued).

Lake & (0 B CH) Latitude [* N} Longitude [* W) Vegetation Permafrost

Y¥F56 -13.20 -125.00 &E110 -147.753 Forest Discontinuous
YF57 =11.590 =135.00 66150 =147.731 Forest Discontinuous
YF58 -9.20 ~105.00 66,181 ~148.090 Forest Discontinuous
YF59 -16.10 -153.00 &6110 —148.313 Forest Discontinuous
YFa0 =16.70 -149.00 66993 -146.169 Forest Discontinuous
YFa1 ~10.30 11900 GE.9ES ~146.041 Forest Discontinuous
YFa2 1070 -11700 66928 -146125 Forest Discontinuous
YFa3 =1910 16000 Bh.TES -H5.799 Forest Discontinuous
YFa4 ~10L40 11300 66,909 ~145113 Forest Discontinuous
YF&5 =10.50 =115.00 BEETT —145170 Forest Discontinuous
YFa& =7.20 49,00 66.556 -145170 Forest Discontinuous
YFa7 ~7.30 O8O BETTS 45158 Forest Discontinuous
YFas =12.90 -127.00 B6.731 5458 Forest Discontinuous
YFa9 -12.10 —124.00 BB.707 —~145.530 Forest Discontinuous
YF70 =16.70 14500 66154 -144.118 Forest Discontinuous
YFn1 =14.50 =137.00 66752 =143 502 Forest Discontinuous
YF72 ~10.50 ~116.00 B6.T16 ~143.673 Forest Discontinuous
YF73 =18.90 -157.00 Gh.444 —144 3E4 Forest Discontinuous
YF74 =10.80 =119.00 bE418 =145 368 Forest Discontinuous
YF75 ~7.80 -113.60 66,101 ~146.007 Forest Discontinuous
YF7e 750 -11360 BhGIS —146.234 Forest Discontinuous
YF77 ~7.80 -115840 66.269 -145902 Forest Discontinuous
YF7R —6.80 ~114.60 BEBET ~143.837 Forest Discontinuous
YFm —&.00 -117.60 66871 —M3EXM Forest Discontinuous
YF80 =130 -12990 66.995 M3 749 Forest Discontinuous
YF&1 -13.70 ~146.30 BRYTT ~143.327 Forest Discontinuous
YF&2 —5.30 -116.70 BE.T96 43538 Forest Discontinuous
YF83 —&.60 -12Z1.30 0657 -H3.E39 Forest Discontinuous
YFa4 —8.44 -104.57 66401 146304 Forest Discontinuous
YF&5 -13.78 -13033 BE087 —-HM6729 Forest Discontinuous
YF&6 —6.95 —98.55 66440 —145477 Forest Discontinuous
YF&7 —6.74 10534 R 437 145479 Forest Discontinuous
YF&8 =561 LT b6.431 =145.536 Forest Discontinuous
YF&9 -15.87 -14537 BE.391 ~ME325 Forest Discontinuous
YFo0 —5.458 -110.57 66386 —148344 Forest Discontinuous
YFn -15.87 =146.01 BH3E5 =148 328 Forest Discontinuous
YFo2 -1716 ~14919 66386 ~148.321 Forest Discontinuous
YFa3 -7bb -107.94 BRIET —148.304 Forest Discontinuous
YFa4 —BD5 -106.63 66386 148290 Forest Discontinuous
YFa5 -1551 ~144.20 [ ~T4E317 Forest Discontinuous
YFoa -1091 -126.72 66354 —148.350 Forest Discontinuous
YFa7 —6H.93 -106.47 0383 -HB355 Forest Discontinuous
YFos -1211 ~125.30 BEITE ~H4E. 348 Forest Discontinuous
YFog =107 -115.23 B6.371 —148.312 Forest Discontinuous
YFIO00 ~-1L68 —124.20 BEITI ~148.350 Forest Discontinuous
YFi01 -1203 12697 BB36T —148.324 Forest Discontinuous
YFi02 —6.68 —106.ER GR3EE —14E8 98 Forest Discontinuous
YFI03 =215 =106.946 66.120 -148.048 Forest Discontinuous
YFi04 -12.98 -13112 66106 148076 Forest Discontinuous
YFI05 -19.29 -158.25 6610 =148 089 Forest Discontinuous
YFI06 -19.91 ~160.80 66,111 ~HEN50 Forest Discontinuous
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Table Al (conttnued).

Lake & (0 80 °H) Latitude [* M) Longitude [* W) Vegetation Permafrost
YFi07 -16.01 14373 66105 ~HB056 Forest Discontinuous
YFI08 -18.68 -15532 66106 =148089 Forest Discontinuous
YFing -12.31 -131.50 66105 -148071 Forest Discontinuous
YFI0 -18.20 -15412 G&105 ~HEI56 Forest Discontinuous
YF11 -1705 -149.82 &6.101 148097 Forest Discontinuous
YFnz -18.53 =154.64 66102 -1E0E3 Forest Discontinuous
YFI3 =1304 =132.20 GE102 148079 Forest Discontinuous
YFI4 -1759 -150.68 G610 =148100 Forest Discontinuous
YFns -13.61 =131.44 GEOG1 148077 Forest Discontinuous
YFI16 -19.32 —15810 GRO98 148097 Forest Discontinuous
YF7 -1I772 -151.41 66.10d0 —148.090 Forest Discontinuous
YFIE -17495 -15118 BR09T —148.087 Forest Discontinuous
YFI9 -17.33 -150.48 BE093 —148.057 Forest Discontinuous
YF1z0 -11403 =119.80 0119 -HBDE3 Forest Discontinuous
YF1z1 -11.0& 12061 BEO30 —144.742 Forest Discontinuous
YF1z2 =1521 =141.09 Be029 =144 737 Forest Discontinuous
YF123 =16.08 -143.84 GR026 -14. 727 Forest Discontinuous
YF1z4 14966 -15293 66015 ~144.728 Forest Discontinuous
YF125 -11.54 =124 03 66017 =144 78O Forest Discontinuous
YF126 -13.85 -133.63 6EO1S -144.769 Forest Discontinuous
YF127 -1213 -124.71 G003 -H4.773 Forest Discontinuous
YFIZE -13.64 -132.99 BE.O2 —144 781 Forest Discontinuous
YF129 =916 -11263 BEO1D -144 7E3 Forest Discontinuous
YF130 -15.09 -138.96 BRI ~144.759 Forest Discontinuous
YF131 =166 14447 R -144.739 Forest Discontinuous
YF132 -11053 -12114 66006 -144.769 Forest Discontinuous
YFI133 -15.38 -141.68 GRO08 —144. 743 Forest Discontinuous
YFI34 =16.78 -147 4 G003 -144.739 Forest Discontinuous
YF135 -15.03 -151.79 BEDT -144.735 Forest Discontinuous
YF136 -15.33 —1440.60 Be011 144748 Tundra Discontinuous
YF137 723 10270 56359 —144.268 Tundra Discontinuous
YF138 -8.86 -10858 66364 -144.253 Tundra Discontinuous
YF139 =13.94 =131L38 bE.361 =144 265 Tundra Discontinuous
YF140 -1714 -139.55 66366 ~144.233 Tundra Discontinuous
YF141 13.09 12997 66359 144237 Tundra Discontinuous
YF142 706 -101.11 66362 —144.225 Tundra Discontinuous
YF3 -1.249 12205 [t ~144.232 Tundra Discontinuous
YF144 -15.52 -H231 BR35E =144.250 Tundra Discontinuous
YF145 -ME3 -136.58 86359 ~144.241 Tundra Discontinuous
YF146 -8.68 —106.50 66400 -146371 Tundra Discontinuous
YF7 -11.73 -126.31 w397 — 146409 Tundra Discontinuous
YF148 =113 -117.17 66396 -H6.355 Tundra Discontinuous
YF149 -833 -M3.76 66386 ~146.367 Tundra Discontinuous
OCF1 -12.80 -12903 GEOTT —140110 Forest Continuous
OCF2 -12.31 12344 6H202 ~140.2%96 Tundra Continuous
OCF3 -16.85 -15307 GE.Z14 40097 Tundra Continuous
OCF4 -1267 -128.04 6E.Z15 ~140.134 Tundra Continuous
OCFs =12.90 =13077 BER20T —139.884 Forest Continuous
OCFa -455 156 B7.919 -139.991 Tundra Continuous
OCF7 =1708 =-151.61 67921 =140150 Forest Continuous
OCFs -14.16 =137.212 GF.907 -140124 Forest Continuoas
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Table Al [conttnued).

Lake B ("0 & [PH) Latitude [* N) Longitude [* W) Vegotation Permafrost
OCF ~14.34 13744 ETH06 ~140L305 Forest Continuous
OCF10 .70 —14038 67891 -H0235 Forest Continuous
OCF1 -16.92 =155.19 GEO2E -H0.570 Forest Continuous
OCF12 ~12.60 ~13032 BEDEL 140411 Tundra Continuous
OCF13 =20.21 -168.70 GEOS59 ~140364 Forest Continuous
OCF14 =12.80 12964 67977 -140.234 Forest Continuous
OCF15 -1351 -133.98 65107 —140.674 Tundra Continuous
OCF16 -1958 =164 33 65152 =140.893 Tundra Continuous
OCF17 -15.37 -147.36 68229 =140.735 Tundra Continuous
OCF18 -117% 12493 BEIGT 140619 Tundra Continuous
OCF19 -12.04 -126.71 GRS -H0.522 Tundra Continuous
OCF200 -7 ~13855 BR18S ~ 140444 Forest Continuous
OCF21 -16.92 -15217 67730 140180 Forest Continuous
OCF22 -15.76 14879 GT.TE4 -140152 Forest Continuous
OCF23 1644 -152.50 67.765 ~140154 Forest Continuous
OCF24 —13.44 -133.86 &7TT1 ~140.0:48 Tundra Continuous
OLCF25 -1218 -162 B3 BT.EDE 1404055 Forest Continuous
OCF26 1763 ~154.29 B7.E48 ~130.9092 Forest Continuous
OCF27 -11E1 12787 685,004 =1401052 Forest Continuous
OCF28 -12.77 -126.14 67962 —139.898 Forest Continuous
OCF29 -1313 12592 G67.911 =139.794 Tundra Continuous
OCF30 =141 =135.94 i =139.781 Tundra Continuous
DCF31 -15.00 ~141.60 B7.961 ~139.787 Tundra Continuous
OLCF32 —E04& —156.84 BT -139615 Forest Continuous
OCF33 =130 =135.53 67810 =1539461 Tundra Continuous
OCF34 ~14.30 ~134.33 67.EE4 ~139472 Tundra Continuous
OCF35 -14.48 -13773 67979 -139.620 Tundra Continuous
OCF36 1298 -12815 63015 -139712 Tundra Continuous
OCF37 ~12.69 12697 68,044 ~139.806 Forest Continuous
OCF38 1458 -13537 (E322 -140129 Tundra Continuous
OCF39 -12.64 =124.50 BE3I3T 140367 Tundra Continuous
OCF40 ~15.69 ~141.70 67710 ~139432 Forest Continuous
OCF41 -15.77 14469 G776 =139083 Tundra Continuous
OCF42 -H.08 =12750 GL.ELS =139206 Tundra Continuous
OCF43 -1553 —14036 BROG6 139047 Tundra Continuous
OCF44 -16.15 —l44.14 65103 -139185 Tundra Continuous
OCF45 —18.62 -160.83 68231 -139483 Tundra Continuous
OCF46 —12.49 -12B BT 65150 =139.60& Tundra Continuous
OCF47 =13.23 =154.00 GE205 =139.808 Forest Continuous
OCF48 ~18.76 -158.88 BE192 ~139879 Forest Continuous
OCF4% -1258 ~126.60 BRO082 -139662 Tundra Continuous
OCF500 =1948 =163.04 67772 =139.919 Forest Continuous
OCFs1 ~17.86 156,10 G7.BZ9 ~139823 Forest Continuous
OLCF52 -1772 -157.39 GT.E43 =139.808 Forest Continuous
OLCF53 -13.75 -135.25 ET.E48 -139777 Forest Continuous
OCF54 —18.56 -15453 67931 -139671 Tundra Continuous
OLCF55 -2005 — 15860 GT.E43 -139758 Forest Continuous
OCF56 —18.55 -159.93 LiTR s =139937 Forest Continuous
OCFS7 1488 ~ 130946 68,208 ~139807 Forest Continuous
HEL1 -1067 -91.20 58394 -93.382 Tundra Continuous
HBL2 —6.63 ~T3.46 58385 -93.345 Tundra Continuous
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Table Al (continued).

Lake & "0 & H) Latitude [* N} Longitude (* W) Vegetation Permafrost
HBL3 -285 -5515 58.343 4337 Tundra Continuous
HEL4 —4 83 -6397 38341 93268 Tundra Continuous
HELS -3.75 6819 38.342 -85 265 Tundra Continuous
HELG -3.70 —GiG41 5E.351 -93232 Tundra Continuous
HELT 760 -72.99 38427 93178 Tundra Continuous
HBELE -T46 7342 58.406 -3 264 Tundra Continuous
HEL9 —G.65 -6059 S5E414 93307 Tundra Continuous
HEL1D -5.86 -6315 38425 93268 Tundra Continuous
HEL11 —5.66 —-62 X2 58425 —93 266 Tundra Continuous
HEL1z -3.89 =390 38426 =93269 Tundra Continuous
HBL13 -891 =774 S8.660 —503.194 Tundra Continuous
HEL14 747 -73.07 SERI 93174 Tundra Continuous
HEL15 =802 -T73.32 38620 =531 Tundra Continuous
HEL1G 932 -54.81 38541 83161 Tundra Continuous
HBL17 =751 -7245 SES61 93167 Tundra Continuous
HBL15 —6.90 7003 58.p22 93318 Tundra Continuous
HEL19 —6.95 —67.95 SR.707 -93299 Tundra Continuous
HBL20 =741 =731 SHB70 —93444 Tundra Continuous
HBLx1 -5.86 —B8.52 58.665 —93.441 Tundra Continuous
HBLz2 -9.94 —8B4.83 STO63 -94 077 Tundra Discontinuous
HBLZ3 =112 -01.34 57.B35 —4 183 Forest Discontinuous
HBLZ4 -11.52 -95.78 SLTI9 —94.005 Forest Discontinuous
HBL25 -11.29 -95.31 57705 —4 046 Forest Discontinuous
HBL2& -1175 - A S7a0R 94115 Forest Discontinuous
HBL2Z7 -11.52 473 37614 -93.970 Forest Discontinuous
HBL2ZR -10.03 —or44 57661 03924 Forest Discontinuous
HBL29 -8.59 -8316 37673 =93432 Tundra Continuous
HBL3D 345 -54.37 57712 -93.383 Tundra Continuous
HBL31 —2.40 -53.04 57737 —93.377 Tundra Continuous
HBL32 —4 93 =64 66 537990 =93459 Tundra Continuous
HBL33 -8.25 ~TROS5 38052 93533 Tundra Continuous
HBL34 —5.43 -7L65 SE.O046 93659 Tundra Continuous
HBL35 —-607 -T097 58045 -93.659 Tundra Continuous
HBEL36 -8.93 -B202 SH.046 -93.660 Tundra Continuous
HBL37 853 -E198 SEO7E —O3.661 Tundra Continuous
HBL38 369 -BOLBZ 38119 —93.554 Tundra Continuous
HBL39 1067 8971 SEZI5 —93. 708 Tundra Continuous
HEL40 9491 —H5615 58365 3.7 Tundra Continuous
NLIM1 -1218 9312 35.220 =77 Forest Sporadic
NLUNZ -13E1 -g7.50 55.220 -Tr7a7 Forest Sporadic
NUN3 12.46 DQE40 33227 T7696 Forest Sporadic
MNLIMN4 -12.38 —B6.Z7 33227 —77.698 Forest Sporadic
NLUNS -1213 —04 57 55.226 —T7698 Forest Sporadic
NUNG =12.09 -93.48 33227 ~T7698 Forest Sporadic
NUNT 1322 =490 35227 ~77 698 Forest Sp-m‘adic
NUNE -11.97 -9355 55227 ~T7E96 Forest Sporadic
NLUNg =12.42 -8743 35.223 =T7.706 Forest Sporadic
MLUM10 -1L.B6 —S6.64 55223 ~77.706 Forest Sp-m‘adic
NLIM11 -12.456 -0755 55223 ~T7.706 Forest Sporadic
NLIM12 =12.25 -84.16 33227 -T7.697 Forest Sporadic
NLUM13 -1275 9510 35227 ~T77.697 Forest Sp-ncradir_'
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Table Al [conttnued).

Lake B ("0 & [PH) Latitude [* M) Longitude (* W) Vegetation Permafrost
NLUN14 -1L67 0093 55227 ~T7R96 Forest Sporadic
NLUN1S 1272 43,49 55227 ~T7E9E Forest Sporadic
MLUM16 -11.93 -93.14 55.226 ~77.698 Forest Sporadic
NUNI7 -12.59 —45.46 55227 —T7698 Forest Sporadic
NUN18 =128l -95.75 55227 ~T7698 Forest Sporadic
NLUN19 -1273 —G665 55227 ~T7696 Forest Sporadic
NUNZO —10.40 8396 55222 ~T2.706 Forest Sporadic
NLUMZ1 -11.01 -&7.90 55222 77706 Forest Sporadic
NUNz2 ~-1155 -BR.73 55222 ~77.706 Forest Sporadic
NUNZ3 -11561 —g2 39 55331 77503 Forest Sporadic
NLUNZ4 =T13% -91.57 55497 77503 Forest Sporadic
NLUNz5 ~-1LE2 -95.10 55.331 ~77.503 Forest Sporadic
NUNZ& -10.23 -B177 55332 77503 Forest Sporadic
NUNZ7 -11.98 =04 43 55332 77302 Forest Sporadic
NUNzE -B.47 7176 55332 ~77.502 Forest Sporadic
NLUINz9 ~10.53 ~87.83 55032 ~T7S01 Forest Sporadic
NLUN30 -11.54 9267 55332 ~T7.502 Forest Sporadic
NLIN31 -883 -H2.03 55333 ~T7.500 Forest Sporadic
NUNZ2 =870 -83552 55330 =77.503 Forest Sporadic
NUNZ3 -1L57 —G0.98 55.330 ~77.504 Forest Sporadic
NLIN34 -11.0% —HHE 38 55.330 ~T7504 Forest Sporadic
NUN35 -945 -84.41 55330 77503 Forest Sporadic
NUN3a -4.76 ~B749 55.330 ~77.502 Forest Sporadic
NUN37 -1097 -BT.66 55.330 77503 Forest Sporadic
NLUN38 -10.92 -B917 55330 77503 Forest Sporadic
NUNz9 -909 ~BlLE1 55.330 ~77.505 Forest Sporadic
MNLIN40 -10.73 —BE 97 55.330 ~T7504 Forest Sporadic
MLIMN41 =10.93 -91.55 55332 —77.302 Forest Sporadic
MNLIN42 -11.50 -01.85 55332 77503 Forest Sporadic
NLUN43 -11.58 —0. 90 55333 77502 Forest Sporadic
MNLUMN44 -9.52 -85.07 55333 77302 Forest Sporadic
NLUIN45 -1142 4362 55333 77502 Forest Sporadic
NLUIN46 =-1115 -89.27 5533z =77.502 Forest Sporadic
NLUN47 ~1146 G298 55332 ~77.503 Forest Sporadic
NLUIN4E -11.55 -4 55 55332 77503 Forest Sporadic
NLUIN49 =166 BB G 55333 =77501 Forest Sporadic
NLUNS0 ~1003 ~B5.60 55332 ~77.500 Forest Sporadic
MLIN51 -11.06& 050 55332 =77501 Forest Sporadic
NLIN52 =106 -87.05 55332 77502 Forest Sporadic
NLUNS3 ~1196 53,49 55.331 ~77.502 Forest Sporadic
NLINS4 -107 —HO 56 55333 77503 Forest Sporadic
NLIN55S -11L.B& 9194 55.334 77502 Forest Sporadic
NUNsa ~11LE4 53,29 55333 ~77.502 Forest Sporadic
NLUINS7 -9.30 -E119 55333 ~T7.500 Forest Sporadic
NLUNSE ~10.82 -BT.ES 56611 ~76.215 Forest Sporadic
NLIN59 -12.26 -04 81 56611 -TR216 Tundra Discontinuous
NUMB0 -13.30 -101.65 56610 -76.215 Tundra Discontinuous
MUMBE1 -1194 —10:0.90 S6.611 -TE.2M Tundra Discontinuous
NUMNGE2 -13.36 9985 Sa.608 7627 Tundra Discontinuous
NUMGS -11.3% —90.56 Seb609 -Te217 Tundra Discontinuous
NLUNG4 -1111 G270 SEE10 ~-Th214 Tundra Discontinuous
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Table A1 (conduded).

Lake B (0 ;] Latitude [* N} Longitude [* W) Vegetation Permafrost

MNLUMGS ~13.65 ~104.51 56610 -Th212 Tundra Discontinuous
NUNGBE -13.42 -104.72 56609 -T6.213 Tundra Discontinuous
NUMET -13.50 =104 08 56610 -T6.213 Tundra Discontinuous
NUNGE -10.99 9209 S56.609 -Te7 Tundra Discontinuous
NLUNES -10.47 —o024 56609 -T6.218 Tundra Discontinuous
NLUMTO -10.90 -BR95 56608 -T6.218 Tundra Discontinuous
MLUNT1 -11.24 -91.90 S56.608 -Te7 Tundra Discontinuous
MLUNT2 1186 -100.82 56608 -7T6.216 Tundra Discontinuous
NUNT3 -12.25 —-95.42 56609 -Te 217 Tundra Discontinuous
MLUNT4 —9E6 -B4.74 56611 -TH2M4 Tundra Discontinuous
NLUNTS -12.89 -93.14 56.924 -TH.3T8 Tundra Discontinuous
NLUM7T& 1301 -93.81 56.924 -TRIT9 Tundra Discontinuous
NUNT? -1L66 —a062 56.923 ~76380 Tundra Discontinuous
NLUNTE 1344 -100.80 56923 ~7h380 Tundra Discontinuous
NLUMTS -10.03 -B3.45 56.924 -TR3TE Tundra Discontinuous
MUNED -12.38 —94. 30 56923 ~7h380 Tundra Discontinuous
MLUMEL -13.69 -100.87 56.924 ~7h380 Tundra Discontinuous
NLIME2 -12.28 —Gh 56.924 -Th377 Tundra Discontinuous
MLUNES -12.83 —493.40 56.924 -76.378 Tundra Discontinuous
NLUME4 -11.958 —H936 56923 -TR.379 Tundra Discontinuous
MUNES —10.54 -8735 56.924 ~76380 Tundra Discontinuous
NLUNEE -12.63 G4 B4 56.924 -T6.377 Tundra Discontinuous

Note: ACP, Arctic Coastal Plain, Alaska; YF, Yukon Flats; OCF, Old Crow Flats; HEL, Hudson Bay Lowlands; NUN, Nonavik.
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Abstract The Hudson Bay Lowlands (HBEL) region
of the far north of Ontario (Canada) is expected to
undergo considerable physical. chemical and biolog-
ical change as a result of ongoing climatic change.
Previous research in the region has shown marked
limnological changes during the past ~ 20 years in
relatively deep lakes that have been attributed tw
increased air femperatures and changes in sea ice
phenology in Hudson Bay since the mid-1990s. Here,
we present diatom assemblage. primary production
and geochemical data from lake sediments document-
ing recent limnological change in two shallow sub-
arctic lakes in the Sutton River region of the HBEL.
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Both lakes recorded increased whole-lake production
and diatom diversity changes that are consistent with a
longer ice-free period and growing season. Changes in
diatom composition at Wolfgang Lake were charac-
terized by a response amongst benthic/periphytic taxa
whereas a modest increase in plankionic diatoms was
observed at Sam Lake. Geochemical changes (3'"N,
C/N and %N) were temporally coherent with diatom
assemblage changes, but showed different responses
in the two study lakes. Thus, although the biological
and geochemical changes were consistent with recent
warming, differences in the nature and timing of these
shifts illustrate the heterogenecus nature of shallow
lakes, and suggest that local (catchment-specific)
factors are important determinants of the trajectory
of limnological change in these sensitive systems.

Keywords Diatoms - Climate change -
Stable isotopes - Chlorophyll a - Paleolimnology -
Lake sediments

Introduction

As a result of the moderating role of Hudson Bay sea
ice on the regional climate, the northern Hodson Bay
Lowlands (HBL) registered minimal warming
throughout the mid- to late-twentieth century (Chap-
man and Walsh 1993; Gough et al. 2004). However,
since the mid-1990s, the Hudson Bay region has
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experienced marked warming, associated with
decreased sea ice cover and changes im sea ice
phenology (Hochheim and Barber 2000, 2014). The
effects of warming during the past two decades are
well documented in the Hudson Bay marine ecosys-
tem, with changes to the productivity of the marine
food web (Hoover 20010), declines in polar bear body
condition, reproduction, survival, and abundance in
several sub-populations (Obbard et al. 2006; Regehr
et al. 2007}, and marked changes to sea bird popula-
tions and their prey (Mallory et al. 2010: Gaston et al.
2012). There is also concern that warming may alter
carbon dynamics in the region’s extensive peatlands,
with possible global consequences (Tamocan 2006;
Dunn and Freeman 2011; MeLaughlin and Webster
20014).

Climate change may also alter fundamental water
column properties and nutrient dynamics in lakes in
several ways, with implications for biota. Increases in
surface water temperatures (O'Reilly et al. 2015),
longer and warmer ice-free seasons (0°Beirne et al.
2007), and increased thermal stability in stratified
lakes (Stainsby et al. 2011: Hadley et al. 2014) have
been linked to long-term changes in phytoplankion
communities and sedimentary diatom assemblages in
temperate, sub-arctic, and Arctic lakes (Sorvari et al.
2002; Smol et al. 2005; Rihland et al. 2008; Weck-
strirm et al. 20006; Bramburger et al. 2017; Reavie et al.
20017; Roberts et al. 2017). Increases in aguatic
production, as inferred from sedimentary chlorophyll
a, have also been observed with recent warming
(Michelutti and Smol 2016), even in lakes with
stable or declining nutrient concentrations (Paterson
et al. 2017). In part, this may be atiributed to a longer
growing season that allows more time for the devel-
opment of algal populations (Nelligan et al. 2016).

Limnological changes with 1990s warming have
been documented in relatively deep lakes in the
northern HBL. In a detailed analysis of diatom
assemblages from four deep lakes within the HBL
(all lakes == 10 metres maximum depth), diatom
species assemblage changes were recorded in the
mid-1990s, including an increase in species richness,
and significant increases in the relative abundances of
planktonic taxa that were coherent with increases in
mean annual and seasonal air temperatures (Rithland
et al. 2013). Similarly, in a comparison of diatom
assemblages between recent and pre-industrial sedi-
ments in the HBL (ie. uwsing a “top-bottom”™
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paleolimnological approach), Rihland et al. {2014)
reported higher diatom diversity in modern sediments,
which they attributed to a longer ice-free period (and
thus longer growing season), and the development of
new aquatic habitats.

In general, less is known about long-term biological
trajectories in shallow lakes in the northern HEL,
despite their importance and prevalence in the region.
However, recent research suggesis that these shallow
water bodies may be quite sensitive 1o 20™ century
climate change. In the Churchill region of northwest-
emm HBL, for example, changes to hyvdrological
connectivity and enhanced evaporation with warming
have been linked to periods of hydrological instability
in shallow freshwater tundra ponds. In some cases,
declining snowmelt runoff has led to pond desiceation
(Bouchard et al. 2013). It is apparent that biological
(Shinneman et al. 2016) and hydrological (Wolfe et al.
2011} responses (o warming can be guite variable in
shallow lakes, as these responses are moderated by
catchment-scale differences in landscape variables
and vegetation. Moreover, shallow lakes may also
show a heightened sensitivity and more pronounced
biological response to warming, relative o deeper
water bodies, becanse of their higher surface to
volume ratios and lower water volumes (Roberts
et al. 2015 Hargan et al. 2016; Smol 2016).

Here, we present diatom assemblage data and
reconstructions of past primary production from lake
sediment cores from two shallow lakes in the Sutton
River region of the HBL. In light of evidence for
recent changes in air temperature, and observed
biological changes in nearby deeper lakes, our primary
objective was to determine how the algal communities
of shallow lakes in the HBL may have responded to a
warming climate. In addition, we present detailed
geocherical data (8'°N, C/N and %N) from the same
sediment cores to explore the possible influence of the
long-range deposition of atmospheric nitrogen as an
alternative, synergistic, or confounding explanation
for the recent algal changes. These data were then
compared to results from four nearby relatively deep
lakes (Rilhland et al. 2013), as well as 13 lakes from a
regional  “top—bottom™  paleclimnological  survey
(Rithland et al. 2004). We argue that increased
nitrogen  deposition 15 not responsible for these
assemblage changes and that the paleolimnological
data are consistent with recent climate warming in this
region. However, we also note that the biological and
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geochemical responses varied between the sdy
lakes, suggesting that trajectories of change are
moderated by local and catchment-scale factors.

Siudy lakes

Sam and Wolfgang (unofficial names) lakes are
relatively small (32 and 157 ha, respectively), shallow
Ly = 1.7 and 1.2 m, respectively) waterbodies
located in the Sutton River region of the HBL, located
53 and 43 km south of the Hadson Bay coast (Fig. 1).

55°4

Continuous
permafrost

The northern HBL is considered to be sub-arctic, with
regional climate strongly influenced by circulation
patterns and ice dynamics within Hudson Bay {Martini
2006). For most of recorded history, air temperatures
in this region have remained relatively stable, sug-
gesting a lack of twentieth century warming. This is
supported by palececological studies from the Hudson
and James Bay region that show minimal biological
changes over the past two centuries (Laing et al. 2002;
Paterson et al. 2003} to millennia (Ponader et al. 2002;
Fallu et al. 2005). However, beginning in the rad-

85 47

Discontinuous

permafrost

Sporadic
permafrost

LE 0

B5* 47

Fig. 1 Regional map showing the bocation of the lakes
surveyed in the Swutton River region of the Huodson Bay
Lowlands, and the location of the climate station at Churchill,
ME, Canada (inset map). Sam and Wolfgang lakes (unofficial

246

Ri® 1Y

names) are highlighted (stars). The approximate location
(determined wsing GIS) of the boundaries between continuous,
discontinuous, and sporadic permafrost are also indicated
(dashed lines)
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1990s, mean annual air emperature increases of
0.5-1.0 *C per decade were documented at Churchill,
Manitoba, and at other HEL stations (e.g., Winisk/
Peawanuck climate station) with shorter monitoring
records. These changes in regional air temperature
have resulted in altered sea ice dymamics, including
delayed freeze-up (1.6-2.4 weeks) and earlier spring
break-up (1.5-2.5 weeks) (Hochheim and Barber
2014).

The siudy lakes are alkaline and oligo-mesotrophic,
with water chemistry influenced by the underlying
limestone bedrock, calcareous till, the proximity of the
sites to Hudson Bav, and the degree of permafrost
development (Table 1: Paterson et al. 2004). Sam
Lake is located very close to the continuous-discon-
tinuous permafrost boundary, recognizing that the
precise position of this boundary is based on very few
sampling points.

Materials and methods
Field sampling

Water chemistry data for Sam and Wolfgang lakes
were collected once per year in August, 2010 and
2011, At the coring location, a composite bottle was
lowered and raised through the water columa, from the
surface to the Secchi disk depth (Ingram et al. 2013).
Samples for water chemistry were analvzed at the
Ontario Ministry of the Environment and Climate
Change (OMOECC) Dorset Environmental Science
Centre using standard OMOECC protocols (Ontario
Ministry of the Environment 1983). A more detailed
description of the limnological sampling and analyses
is presented by Paterson et al. (2004).

Sediment cores were collected in August, 2011
from the deepest basin of each lake using a 7.6-cm
internal-diameter Glew (1989) gravity corer, and

sectioned at (0.5-cm intervals on site using a Glew
(1988} vertical extruder, following standard paleolim-
nological protocols. Core lengths for Wolfgang and
Sam lakes were 265 and 48.5 cm, respectively. The
sediment samples were stored in ‘v.ll.fhirl|:|alc'R bags and
refrigerated in the dark until analysis.

Laboratory analyses
Hipy dating

Sediment cores were dated using gamma spectroscopy
to detect radio isotope activities of *'""Pb, "¥Cs and
*YBi, following Schelske et al. (1994), The Constant
Rate of Supply model (CRS, Appleby 2001) was
applied to determine sediment age based on unsup-
ported *'"Ph concentrations. Approximately 0.3-0.7 g
of freeze-dried sediment was prepared for age deter-
minations. Sediment was placed into plastic test tubes
and sealed with 2-Ton Ep}xy'm o ensure equilibriom
between ~Ra and “"Bi prior to gamma counting.
Activities were collected for 13 samples per core, and
“Ph dates were estimated for the  past
~ 100-150 vears.

Digrems

Sediment preparation for diatom analysis followed
standard paleolimnological procedures (Battarbee
et al. 2001). Briefly, 0.2-0.3 g of wet sediment was
digested in a 50:50 molar mixture of concentrated
nitric and sulphuric acid, and rinsed repeatedly with
delonized water until a neutral pH was achieved.
Diatom slurries were then dried onto coverslips and
permanently mounted on microscope slides using
Naphrax™ mounting medium. Diatom microfossils
were counted at 1000 = under cil immersion, using a
Mikon Eclipse 808 microscope with differential inter-
ference contrast optics. A minimum of 400 diatom

Tahble 1 Sclected limnological data for Sam and Wolfgang lakes, presented as 2-year means (2010-2011)

Lake Decimal Degree  Distance (o Lake Area pH Conductivity 5i0y TP TIN el
name —— sea (km) depth (m)  (ha) {pSfem) (mg/L)  (pwL) (paly (pel)
Lat Long
Ny (W)
Sam 5476 — B460 53 1.7 32 Bl 16035 05 B.O 210 6.7
Wolfgang 5485 — B447 43 1.2 157 T9 1460 08 15.2 320 a1
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valves were counted for each sample and diatoms were
identified using Krammer and Lange-Bertalot (1986—
1991} and Antoniades et al. (2008).

Spectrally inferred chilorophyil a

To track temporal changes in whole-lake production
of these lakes, we used spectral analysis to infer trends
in sedimentary chlorophyll a concentration (Miche-
lutti et al. 2010). Briefly, this analysis infers chloro-
phyll @ based on a wnique trough found in the
650-700 nm range of the spectral profile of the
sediments. The area of this rough has been correlated
to the concentration of chlorophyll a and its major
derivatives in the sediment, providing a rapid, non-
destructive method for estimating primary production.
Following the development of this technique, research
has demonstrated the applicability of the method in
both temperate and Arctic environments (Michelutt
et al. 2010), as reviewed by Michelutti and Smol
(2016). Sedimentary spectral profiles were oblained
using a FOSS NIRSystems Model 6500 series Rapid
Content  Analyzer, operaling over the range of
4002500 nm.

Elemental and isotope composition

Bulk organic carbon and nitrogen elemental and
isotope composition were measured at (0.5-cm sedi-
ment intervals for both lakes. Samples were prepared
for analysis following standard methods described by
Wolfe et al. (2001). 1 M hydrochloric acid (8—10% by
voliume) was applied to samples in order to remove
any carbonate material. The supernatant of the sam-
ples was then aspirated and samples were rinsed
repeatedly with de-ionized water until a neatral pH
was obtained. The samples were then freeze-dried and
sieved to < 300 pm o remove macrofossil plant
debris. The remaining fine fraction was then analysed
for organic carbon and nitrogen elemental and isotope
composition using a continuous flow isotope ratio
mass spectrometer (CF-IRMS) at the University of
Waterloo Environmental Isotope Laboratory. Carbon
and nitrogen ratios were calculated using percent dry
weight organic carbon and nitrogen contents. Stable ni-
trogen isolope ratios were reported as 8N {on)
relative to atmospheric nitrogen (AIR).
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Principal components analysis (PCA) was used o
detect major patterns of variation in the diatom data
and to facilitate comparisons in the magnitude and
timing of changes between the two cores. The defanlt
settings in Canoco version 4.5 (ter Braak and Smilaver
2002) were used to generate PCA sample scores on
square-root transformed species data. For each sedi-
mentary interval, diatom species diversity was calcu-
lated wsing Hill’s M2 (the number of very abundant
taxa in a given sample) using Canoco version 4.5 (ter
Braak and Smilaver 2002). Stratigraphic zones in both
the diatom and elementalfisotope data were deter-
mined by constrained hierarchical clustering, follow-
ing the Constrained Incremental Sum of Sgquares
(CONISS) methodology described in Grimm (1987,
using the “roja” package (Juggins 2009) in R v,
2132

Limnological changes were plotted against contin-
nous temperature data (1943-201 1) available from the
Churchill metecrological station (Environment and
Climate Change Canada: http:/fwww cocma_ec ge.cal
heedf). Churchill, Mamitoba is the nearest climate
station within the western HBL with a continuous
climate record (located ~ T km from the study
lakes) and, similar to our study sites, is located close o
the Hudson Bay coast. Annnal and seasonal tempera-
ture data from the Churchill record were significantly
correlated to records from Winisk, ON, which is
located much closer to the study sites (~ 20 km
away), but where the climate record was interrupted
and the station was re-located farther inland to Pea-
wanuck in the 1980s because of flooding. Direct
comparisons between annually resolved time series
data and lake sediment proxy data are always difficult,
as the time period represented by each sediment
interval may vary with core compression and varying
sedimentation rates. To help align these datasets, air
temperature data were averaged to match the period of
accumulation for each sediment interval based on
*"Ph dates, with 6-8 vears of instrumental data
averaged per sediment interval. Correlations of mean
annual and seasonal air emperature anomalies with
biological indices were performed using a Spearman
rank correlation wsing the “rcorr™ function of the
“Hmisc™ package (v. 3.9-2; Harrell Ir 2012) in R
2.13.2. Seasonal time periods were defined as: spring
(March, April, and Mav): summer {June, July, and
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August), fall (September, Ocrober, and November),
and winter {December, January, and February). Fol-
lowing Rihland etal. (2013), the Churchill annnal and
spring air temperature data are plotted as anomalies
from the long-term { 1971-2000) baseline.

Results
=P dating

Background *'"Pb activities, estimated as the mean
*'*Bi concentration from all dated samples, were
reached at core depths of ~ 24 cmand ~ 15 cm in
Wolfgang and Sam lakes, respectively (Figs. 2, 3).
Meither lake followed an ideal exponential decline
curve for 2'"Pb. The dating profile for Wolfgang Lake
{Fig. 2) showed a flattening of the *'"Pb activity curve
from core depths of 8-20 cm. with a corresponding
increase in inferred sedimentation rates. In Sam Lake
(Fig. 3). the upper 3 cm of the sediment core showed
variable ~'"Pb acti vity, indicating possible physical or
biological mixing near the sediment—water interface in
this shallow lake (Appleby 2001). However, relatively
well resolved peaks in the e activity profiles from
both cores provide independent support for the age-
depth models, with '¥'Cs peaks observed at inferred
ages of ~ 1966 and 1969 for Wolfgang and Sam
lakes, respectively.

Wolfgang Lake

Diatoms from both sediment cores were well pre-
served in all intervals counted with no obvious signs of
silica dissolution or valve breakage. Prior to a marked
taxonomic shift in the mid- 1990s, diatom assemblages
in Wolfgang Lake were dominated (up to 60%) by
small benthic fragilarioid taxa (Fig. 4). Beginning in
the mid-1990s, we recorded a concurrent increase in
whole-lake primary production {approximated as
chlorophyll o concentration) and diatom  species
diversity (Hill’'s N2), which included increases in
relative abundances of several periphytic taxa (from
the genera Cymbella (sensu lato), Brachyvsira, Ach-
ngnthes (sensu lato) and Nizschia: Fig. 4). Based on
CONISS and broken-stick analysis, the diatom species
assemblage change in the mid-1990s (4 cm) was the
oily notable taxonomic change recorded throughout
the sediment core.
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Fig. 2 Radiometric dating analysis of lake sediments from
Wolfzang Lake showing a >'"Pb, "¥7Cs activities (in Bg kg™"),
and the mean *“Bi activity from all dated sections (dashed
vertical line). plotted against core depth. b *""Ph inferred year
plotied against core depth, with dating ermors associated with
each dating interval, and e sedimentation rate (in g cm™year™")
plotied against core depth, with estimated errors shown

In Wolfgang Lake, 8"°N and C/N records were
stable throughout the duration of the sediment core
(Fig. 6a). There was a gradual decline in %N in
Wolfgang Lake, which began at a core depth of
~ 9 ¢m(ca. late 1980s).
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Fig. 3 Radiometric dating analysis of lake sediments from Sam
Lake showing a *"Pb, "¥'Cs activitics (in Bg kg~ "), and the
mean *™Bi sctivity from all dated sections (dashed vertical
ling), plotted against core depth, b *'"Ph inferred vear plotied
against core depth, with dating emrors associated with each
dating interval, and ¢ sedimentation rate {in g cmyear—')
plotted against core depth, with estimated errors shown

Sam Lake

Diatom species assemblage changes in Sam Lake were
clear but muted relative to those described in Wolf-
gang Lake, with no apparent directional trend in
species  diversity (Fig. 5). The most pronounced
taxonomic shift, as identified by CONISS, occurred

at ~ 4 cm depth in the sediment core (early 1970s)
and was characterized by a decline in the relative
abundance of several Mavicula (sensu fate) taxa [e.g.,
Eolimna minima (Grunow) Lange-Bertalot and Sel-
laphora pupula (Kitzing) Mereschovsky] and con-
lemporaneous  increases  in Brachvsing
(Grunow) B, Ross, Encvonopsis fulaisensis (Gronow)
Krammer and Lange-Bertalot, and several plankionic
taxa [Discostella stelligera (Cleve and Grunow ) Houk
and Clee, Asterionella formosa Hassall, and Fragi-
laria crotemensis Kitton: Fig. 5]. Concurrent with the
ca. 1970 shift in the diatom species assemblage. we
documented an increase in whole-lake primary pro-
duction. However, a marked decline in spectrally-
inferred chlorophyll a concentration occurred ca. 1980
and persisted until the most recent sediment interval
(ca. 2001), at which time chlorophyll a increased
sharply (Fig. 3). This decline in chlorophyll & coin-
cides with variable *"'"Pb activity noted near the
surface of the Sam Lake core.

In Sam Lake, geochemical changes occurred in
both the pre-industrial sediments (at ~ 40 cm core
depth), and then again in the recent sediments
(Fig. 6b). In the pre-industrial sediments, these
changes were characterized by a ~ 1.25 % increase
in 8N along with a concurrent decrease in sediment
%MN. Since ca. 1970, %N has increased and 3'°N
decreased, returning o levels observed in pre-indus-
trial sediments (at core depths of > 40 cm) (Fig. 6h).

vitrea

Inter-lake comparisons and climate correlations

In Wolfgang Lake, we observed significant correla-
tions berween the mean annual air temperature
anomaly (relative o a 1970-2000 baseline) and
increases in primary production (r = 0L66, p =< 0.01;
Fig. Ta) and diatom species diversity (r = (L56,
p o= 0.01; Fig. Ta). We also found significant correla-
tions between diatom assemblage changes (e, PCA
axis 1 scores) and the mean annoal (r = 066,
p =< 0.01; Fig. 7a), mean fall (r = 056, p < 0.01),
and mean winter (r = 0.5%, p < 0L01) air temperature
anomalies.

Similarly, we found significant correlations
berween the changes observed in the diatom species
assemblage of Sam Lake and recent climate change
metrics. Specifically, we noted a positive correlation
between diatom PCA axis | sample scores and the
mean spring air temperature anomaly at Chuorchill
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Fig. 4 Horizontal dashed line depicts zonation deterrined
through constained incremental sum of squares (CONISS) and
decmed important by broken stick analysis. Diversity {as Hill’s
N2}, diatom species assemblage shifis (PCA axis | sample
soores), and spectrally inferred chlorophyll @ are also shown.
The Benthic fragilarioid sp. category includes Fragilaria
capucing, F. capucing  var. vawcherioe, Preudostaurosiva
Brevistrigia, Stawrosing consiriens var, venter, Staurosirella

(r = 0L68, p < 001, Fig. Th). No significant correla-
tions were observed between the biological metrics
and annual or the other seasonal (summer, fall and
winter) air temperature anomalies. However, an
examination of the relationship between changes in
planktonic diatom species and the mean spring air
temperature anomaly revealed a significant correlation
(r = 0.70, p = 001, Fig. 7b), as has been reported for
deeper lakes in the HEL (Rihland et al. 2013; mean
planktonic relative abundance versus mean annual air
temperature anomaly ).

Discussion

Changes in diatom assemblages

Our paleclimnological analyses provide evidence of
biological and geochemical responses (o recent warm-
ing in shallow sub-arctic lakes. However, consistent

with previous studies (Smol and Douglas 2007a, b;
Riihland et al. 2015), variability in the magnitude and
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pirnara, and 8. piremana var. infercedens. Cvmbella senso lato
includes Encyonema hebridicum, E. minutum, Encyonopsis
cestali, E. descripra, E. microcephale, and E. falaisensis.
Achmanties sensu lato inclodes Achmanithes saccula, Achmin-
thidium minerissimum, A. maceocephalum, A rosensiockii,
Encocconeis flevella, Pruammothidium curmissiouen, and Ros-
sithiclinm pertersenii

nature of the proxy changes was related to site and
catchment-specific differences between these two
shallow lakes. In Wolfgang Lake we documented an
increase in the complexity and diversity of benthic/
littoral taxa in the modem sediments, characterized by
higher relative abundances of a number of periphytic
forms, that was temporally coherent (mid-1990s) with
increases in mean annual air temperature. These
taxonomic changes, from a simple benthic assemblage
towards a diversified and complex benthic commu-
nity, coincided with increased primary production
(i.e., spectrally inferred chlorophyll a). Diatom
assemblage changes observed in Wolfgang Lake were
consistent, taxonomically and temporally, with floris-
tic changes observed in other shallow lakes in the HEL
(Riihland et al. 20014}, and throughout the Arctic where
climate warming has resulted in increased availability
and variety of littoral habitat (Douglas et al. 1994;
Smol et al. 2005; Smol and Douglas 2007a; Roberts
et al. 2015; Riihland et al. 2015).

Clear changes in relative abundances of benthic
taxa were observed in the upper sedimentary intervals
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Fig. 5 Horizontal dashed ling depicts zonation determined
through constained incremental sum of squares (CONISS) and
deemed important by broken stick analysis. Diversity (as Hill's
W2}, diatom species assemblage shifis (PCA axis | sample

of Sam Lake, with some similarity to the taxonomic
changes recorded in Wolfgang Lake. For example,
both lakes underwent an increase in relative abun-
dance of several periphytic forms [e.g., Cvmbella
(sensu latod, Nezschio and large Mavicwla, and
Brachysira taxa]. These benthic diatoms are com-
monly found attached to a variety of substrates (mud,
rocks, mosses and macrophytes). Concurrent with
these increases, declines in species reported as
epipelic/epilithic (e.g., Eolimna minima, Seflaphora
pupnla: Mann etal. 1999; Cho 2000) were observed in
both lakes. With climate warming, reduced ice cover
and a lengthening of the growing season may promote
the establishment and expansion of aguatic mosses
and plants (Smol 1988), thus facilitating the diversi-
fication and growth of the epiphytic taxa that we have
documented here. Similar taxonomic changes have
also been observed in the Canadian High Arctic (Smol
et al. 2005; Smol and Douglas 2007a, b), in other
shallow lakes in the HEL (Stuart, Billbear, Julison,
and Cassie lakes; Rithland et al. 2014), and elsewhere
(Roberts et al. 2015; Rilhland et al. 2015).
Contemporaneous with benthic species changes,
plankionic diatom taxa in Sam Lake doubled in
relative abundance tw > 3%, a change that was
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scores), and spectrally inferred chlorophyll a are also shown.
The Panktonic taxa group incloded Discosrella stelligera,
Asrerionella formose, and Fragilaria crotonensis

significantly correlated with trends in spring air
temperature (Fig. Th). Although this change was not
observed in Wolfgang Lake, an increased importance
of plankionic faxa in these polymictic, shallow
systems is consistent with findings from other shallow
lakes in the HEL. For example, Paterson et al. {2014)
found evidence of blooms of planktonic algae in
shalloww HBL lakes when sampling phytoplankion
during particularly warm temperatures in mid-sum-
mer, including relatively high biovolumes of the
diatoms  Cyvelorella (sensu lato) and  Asrerionella
Sormosa, and the presence of Mallomonas, a genus
of unicellular, planktonic chrysophytes (Siver 1991).
Likewise, a recent “top—bottom” paleolimnological
survey of lakes in this HBL region, which included
Sam and Wolfgang lakes, found higher relative
abundances of several planktonic taxa in the modem
sediments of all lakes studied including nine shallow
lakes (Rithland et al. 2004). In the “Ring of Fire”
region, ~ 250 km farther south but still within the
HBL. Hargan et al. (2016) also reported the first arrival
and increase in the relative abundances of planktonic
diatoms during the past few decades in two shallow
lakes (Fqae ~ 2 m), that were attnbuted to recent
warming. Thus, while benthic taxa clearly dominate
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Fig. 6 Resulis of sedimentary elemental and isotope analysis
(%N, C:N and §'°N) from a Wolfgang Lake and b Sam Lake
presented as siratigraphic profiles against both sediment depth

the diatom assemblages of shallow lakes in the HBL,
widespread increases in the relative importance of
plankionic taxa are now being reported in many lakes,
indicating these changes are ecologically important.
As reported elsewhere (Tarano et al. 20012), it is
possible that these polymictic systems stratify for
short periods of time (hours o days) during warm
periods, allowing for the rapid proliferation of plank-
tonic (axa.

Changes in geochemisiry

Similar diatom responses to those we have docu-
mented in Sam Lake (ie., the increased relative
abundance of cyclotelloid and pennate planktonic
taxa) have been atiributed to the long-range transport
and deposition of anthropogenic contaminants in sorme
lakes (Waolfe et al. 2003, 2006). For example, in two
ponds on Baffin Island, Wolfe et al. (2006) partially
atiributed diatom species changes to %N depletion and
increased %N, They suggested that these isotopic
signatures were indicative of nutrient enrichment from
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and age (based on *""Ph dating). Data are summarized as both
mezaswred valoes (black circles and solid lines) and standardized
spores (dotted lines)

atmospheric nitrogen deposition, which has increased
globally by as much as 10% annvally in the 20th
cenfury as a result of fertilizer production, cultivation
of nitrogen-fixing legumes, and the release of nitrogen
oxides associated with the buming of fossil fuels
(Sheldrick 1987; Maitthews 1994). However, global
assessments by Vet et al. (2014) indicate that atmo-
spheric nitrogen deposition in the HBL region is very
low, and geochemical data from the Sam and Wolf-
gang Lake sediment cores offer little evidence that
atmospheric nitrogen deposition is responsible for the
diatoim changes we document here (Fig. 4). In Wolf-
gang Lake, where notable changes in diatom assem-
blages have occurred since the mid-1990s, we
document no directional change in "N or C/N ratio.
Furthermore, rather than an increase in %N that would
be expected with increased inputs from deposition, we
observed a declineg since the mid-1990s (Fig. 3a). In
Sam Lake, the geochemical changes throughout the
core are subtle with current values falling within the
range of long-term variability recorded in the sediment
core, and representing a return to pre-industrial levels
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Fig. 7 aTrends in diatom assemblage composition (PCA axis |
scores), primary production (inferred chlorophyll a, standard-
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z-scores) from Wolfgang Lake, plotted against mean annual
temperature anomalies. Temperature anomalies are presented as
baoth adjusted (open squares) and annual (solid grey line) data.
b Trends in diatom assemblage composition (PCA Axis |

(Fig. 3b). Furthermore, nitrogen isotope changes in
Sam Lake (ca. 1970) post-date the timing expected
under an atmospheric deposition scenario.

With minimal supporting data in this remote region,
it would be speculative to comment on the specific
reasons for the differing geochemical signals over
time in the study lakes, although it is worth noting that
the timing of these changes correlates well with
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scores), and % plankionic taxa (standardized as z-scores) from
Sam Lake, plotted against mean spring temperature anomalies.
Temperature anomalies are presented as both adjusted (open
squanes) and annoal (solid grey line) data. Mean annual and
mean spring air temperature anomalies were calculated relative
e a 1971-2000 baseline, using data from the Churchill
(Manitoba) climate station from 1953 o 20011

diatom assemblage changes, suggesting a common
driver. As described below, a number of factors may
have contributed to differences in the observed
geochemical signals, including differences in the
organic matter supply related to variations in catch-
ment vegetation and permafrost extent (Wolfe et al.
19545 Talbot 2001 ). Furthermore, lake-specific differ-
ences in  hydrological connectivity may have
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contributed to variability in the delivery of organic
matter, and to the relative importance of precipitation
in the lakes™ water and nutrient budgets (Wolfe et al.
2001).

Variability in shallow lakes: local factors moderate
binlogical and geochemical responses o warming

Diatom species assemblage changes in Sam Lake
predated those observed in Wolfgang Lake by approx-
imately two decades. The shift to an assemblage
characterized by more planktonic taxa was compara-
ble to changes reported for deeper lakes of the Sutton
River region of the HBL, where temperature anoma-
lies (both annual and seasonal) were significantly
correlated to increased relative abundances of plank-
tonic taxa, increased species diversity (Hill’s N2) and
increased primary production (ie., chlorophyll & con-
centration) (Rihland et al. 201 3). Similar increases in
plankionic taxa have also been noted in shallow lakes
in the Ring of Fire. where the first records of
planktonic species in McFaulds Lake amd Symons
lakes were recorded in the 19005 and the 1960s,
respectively (Hargan et al. 2016). Temporal variation
in the response of planktonic taxa in Wolfgang, Sam
and other northern Ontario lakes suggest that local
scale factors such as morphology, permafrost dynam-
ics and hydrological connectivity likely mediate
threshold responses to climate in these systems, and
in shallow lakes in general.

For example, important morphometric differences
exist between Sam and Wolfgang lakes. Wolfzang
Lake is substantially larger than Sam Lake in both
surface area (157 ha va 32 ha) and fetch (approx.
L6 km vs. (L6 km). These properties may signifi-
cantly influence the thermal regimes of lakes, altering
the strength and duration of thermal stratification
(Gorham 1964; Timms 1975; Hanna 199%0; Rihland
et al. 2015). As noted above, it is possible that the
smaller Sam Lake may be more thermally stable for
longer periods in the summer as a result of its smaller
fetch. This may account for the differences we observe
in the nature (i.e., the presence of plankionic taxa in
Sam Lake) and earlier timing of the diatom species
assemblage changes.

In addition, previous research has also shown that
the degree of permafrost development (continuous
versus discontinuwous) may influence the water chem-
istry of lakes in the HBL region (Paterson et al. 2014)

£) Springes

that, in tum, may have contributed to differences in
diatom assemblage changes and geochemistry in Sam
and Wolfgang lakes. These lakes reside very near the
boundary between continwous and discontinious per-
mafrost and thus it is possible that recent climate
change has altered permafrost conditions at a local
scale. For example, it is well docomented that the
presence or absence of permafrost affects the infiltra-
tion of surface water and groundwater flow (MacLean
et al. 1999; Carey 2003; Kawahigashi et al. 2004,
Jones et al. 2005; O Donnell and Jones 2006), and may
result in the release of previously bound nutrients
(Vincent et al. 2003); however, given the lack of
ground-truthed data for our isolated lakes, we can only
speculate on possible differences in their hydrological
connectivity and permafrost dynamics within their
surrounding catchments.

Climate and hydrological connectivity

As well as direct and indirect impacts on physical and
chemical properties of lakes, climate warming may
also alter the hydrology of sub-arctic freshwater
systems. For example, changes in hydrological con-
nectivity  attributed to  thawing permafrost  and
increased  surface  water-groundwater  inferaction
likely contributed to divergent hydrological responses
to recent warming in four HBL ponds near Chorchill
(Wolfe et al. 2011). Limnological characteristics of
ponds in this region are likewise influenced by
climatic and hydrological conditions (Bos and Pellatt
2001 2; White et al. 2014).

Wisual inspection (Google Earth™; 2005 image)
may further illustrate potential variability in limno-
logical responses associated with hydrological con-
nectivity. By constructing a simple schematic of water
bodies around Sam and Wolfgang lakes, Sam Lake
appears o0 currently be relatively isolated. while
Wolfgang Lake is surrounded by several shallow
water bodies within 250 m of its shoreline (Fig. 8).
Thus, we speculate that some of these small ponds
imay become hydrologically connected to Wolfgang
Lake during the ice-free season. In the northwestern
HBL. hydrological connectivity in ponds, both tem-
porary and permanent, has been shown to result in
higher suspended sediment and total nitrogen concen-
trations, while lakes without connectivity generally
show rising alkalinity and ionic content as evaporative
concentration  dominates the lake water balance
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Fig. 8 Schematic diagram of Sam and Wolfgang lakes,
showing the surrounding water bodies. The image is transcribed
from a 2003 Google Earth™ image

(White et al. 2014). While it is not possible tw
determine the extent of hydrological connectivity in
our siudy lakes with the information available, water
chemistry data record higher nutrient concentrations
in Wolfgang Lake, consistent with connectivity.
Simlarly, higher conductivity in Sam Lake {despite
being 10 km farther inland from Hudson Bay) is
consistent with potential evaporative concentration
associated with its relative isolation (Table 1). A
significant correlation between diatom species assem-
blage shifts (as PCA axis | scores) and spring
precipitation in Sam Lake (r = — 065, p = 0.02),
which were not present in Wolfgang Lake, also
sugzests that it has responded 1o historical Auctuations
in precipitation and may be less influenced by
groundwater inputs. Furthermore, Wolfgang Lake
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has a much higher sediment deposition rate than
Sam Lake basedon~'"Pb dating, supporting the notion
of increased hvdrological inputs.

Conclusions

Evidence provided by recent limnological and pale-
olimnological surveys of the HBL suggesis that
relatively deep lakes in this region have been altered
by 20th century climate warming (Paterson et al. 2014;
Rithland et al. 2013, 2014). We have presented
detailed paleclimnological and geochemical resulis
for two shallow sub-arctic lakes in the Sotton River
region of the HBEL. In both lakes we record abrupt,
albeit subtle, shifts among benthic diatom taxa from
assemblages predominantly associated with sediments
to more diverse assemblages that include an increased
abundance of epiphytic diatoms. In Wolfgang Lake,
we recorded increases in whole-lake production and
diatom diversity, changes that are consistent with a
longer-ice free period and longer growing season.
Unlike Wolfgang Lake, Sam Lake registered an
increase in planktonic diatoms in the upper sediments
that is similar to changes recorded in deeper lakes of
this region (Rihland et al. 2013). The timing of
limnological change in Wolfgang Lake supports other
regional evidence (Rihland et al. 2014) that warming
during the past ~ 20 vears has led to notable biolog-
ical responses in these aguatic systems. The timing of
the limnological changes in Sam Lake pre-dates
perturbations  in  mean annual femperature by
~ 20 vears and suggests that a more complex mech-
anism, and seasonal warming, may be important. We
speculate that differences in hydrological connectivity
and permafrost dvnamics, in part influenced by
climate change, combined with differences in lake
morphometry, likely contributed to the observed
differences.

The paleclimnological examination of only two
shallow lakes in the Sutton River region limits our
ability to make broad statements about regional
limnological change in the HBEL. particulardy given
the temporal variahbility in the responses we have
documented. Nevertheless, it is clear that the biolog-
ical and geochemical responses (o warming in shallow
lakes may wary because of differences in local,
catchment-scale factors, including permafrost extent
and vegetation (Shinneman et al. 2016). This is true of
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lakes located in the same geographic region and
experiencing similar climatic forcing, emphasizing the
need to understand the local context when interpreting
long-terim trends.
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