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Abstract: A new energy management system (EMS) is presented for small scale microgrids (MGs).
The proposed EMS focuses on minimizing the daily cost of the energy drawn by the MG from the main
electrical grid and increasing the self-consumption of local renewable energy resources (RES). This is
achieved by determining the appropriate reference value for the power drawn from the main grid and
forcing the MG to accurately follow this value by controlling a battery energy storage system. A mixed
integer linear programming algorithm determines this reference value considering a time-of-use
tariff and short-term forecasting of generation and consumption. A real-time predictive controller is
used to control the battery energy storage system to follow this reference value. The results obtained
show the capability of the proposed EMS to lower the daily operating costs for the MG customers.
Experimental studies on a laboratory-based MG have been implemented to demonstrate that the
proposed EMS can be implemented in a realistic environment.

Keywords: microgrid energy management system; mixed integer linear programming; adaptive
neuro-fuzzy system; short term energy forecasting; real-time predictive controller; adaptive
autoregression forecasting algorithm

1. Introduction

The growth of renewable energy sources (RES) in the electricity grid together with the increasing
use of electricity for transport and heating, ventilation, and air-conditioning requires a new vision
for future transmission and distribution grids. The Global Smart Grid Federation report claims that
the existing power grid networks are not well equipped to meet the demands of the 21st century [1].
Increasing the complexity and variability of generation introduces a new type of electric grid, which
needs further innovation to solve its challenges and manage its expansion.

Microgrids (MG) can combine different kinds of distributed energy resources (DERs) such
as distributed generators, distributed storage units, as well as different types of load and control
devices [2,3]. For the interactive operation of RES and other MG components, an energy management
system (EMS) is required [4,5]. The EMS controls the power flow within the MG by providing references
for the DERs based on a predefined objective [6].

There is an increasing trend for small-scale MG oriented towards encouraging local consumption
of energy generated from RES at the lowest levels of the grid instead of exporting any surplus to the
main grid [7]. “Energy Communities” are now appearing where end-user customers manage their
local DERs for the benefit of their own MG [8]. This trend is receiving increasing attention with the
development of domestic energy storage technologies (<20 kWh) and techniques for incorporating
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these ESS into small-scale MG architectures. The electrical load profiles of small scale MGs, particularly
residential communities, can vary considerably with time: periods of house inoccupancy (e.g., during
vacation) and the addition of new equipment (e.g., electric vehicle charge) or even new houses can have
a strong influence on the loading profile [9]. Additionally, these small-scale systems see sharp changes
in load over a short period of time as single loads (shower, cooker) can be significant considering the
size of the MG. For these reasons, EMS used for small scale MGs must have a short control sample time
to observe and respond to fast changes in the load and generation throughout the day [9,10]. Also,
energy forecasting techniques must be adaptive and also have a short sample time if they are to help
the EMS achieve good results for this type of grid.

Small-scale MGs should preferably operate as a single controllable unit that imports/exports
power from/to the main grid following a predictable shape [11]. In this way, the energy community
works for the benefit of the whole grid and not just the small scale MG [12]. To achieve this, a real-time
controller is required that allows the small-scale MG to accurately follow a reference value for the
power drawn from the main electric grid, where this reference is created by a higher level controller
which considers both local and system wide factors.

Alternatively, large scale energy storage systems (ESS) (>1 MWh) will play a key role in solving
problems such as intermittency of supply and loss of inertia which are challenging electricity grid
operation [13], and many grid operators are encouraging the use of ESS to address, for example,
increasing demand peaks and network congestion [14].

Much of the existing research focusing on microgrid energy management (MGEM) is oriented
towards determining the best operating scenario for the MG [15–17]. In [18], Carlos et al. introduce a
new iterative algorithm that manages energy flows to obtain the minimum energy cost for the microgrid
based on the availability of resources, prices, and the expected demand. However, they achieved
their EM results using a two-hour sample time and this restricts performance by imposing a long
response time.

In [19], Mohsen et al. introduced two dispatch-optimizers as a universal tool for a centralized
MGEM system. Scheduling the unit commitment and the economic dispatch of the MG units was
achieved using an improved real-coded genetic algorithm (GA) and an enhanced mixed integer linear
programming (MILP) based method. This approach achieved good results, but the uncertainty of both
generation and demand was not addressed, and the effect of inaccurate forecasting for load demand
and generation on the EM results was not considered.

The authors in [20] focused on introducing a novel two-stage stochastic energy management
to minimize the operational cost of a microgrid with various types of distributed energy resources.
A scenario reduction method based on mixed-integer linear optimization was used to obtain the set of
reduced scenarios. The authors took the uncertainty of price, load, wind speed, and solar radiation
into account in order to obtain more realistic results. The use of a scenario reduction method based on
MILP optimization is often used offline, which restricts its use for real-time applications, especially
when dealing with demand-side management.

The real-time operation of an EMS has also received attention in [21,22]. The authors in [23]
applied a real-time energy management system for microgrid systems which minimized the energy
cost and carbon dioxide emissions of the microgrid while maximizing the power of the available
renewable energy resources using a genetic algorithm. The paper was oriented towards EMS for
microgrids, but the load profiles used had a maximum power of 1 kW, which does not reflect the real
performance of the methodology for the higher power levels found in a real MG.

Experimental validation of an EMS is very important to demonstrate that the proposed EMS can
work in real time [24–26]. In [27], the design and experimental validation of an adaptable MGEM were
implemented in an online scheme. In this case, the author aimed to minimize the operating costs and
the disconnection of loads by proposing an architecture that allowed the interaction of forecasting,
measurement, and optimization modules.
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The research presented in this paper introduces a hierarchical EMS for small scale MGs with PV
systems and battery energy storage. The EMS aims to minimize the daily cost of the energy drawn
by the MG from the main electrical grid and increase the self-consumption of the MG’s renewable
energy resources. This is achieved by determining an appropriate reference value for the power drawn
from the main grid and forcing the MG to accurately follow this value by controlling a battery energy
storage system (BESS). A mixed integer linear programming algorithm determines this reference value
using a time-of-use tariff (TOU) and short-term forecasting of generation and consumption. A real-time
predictive controller (RTPC) is used to control the battery energy storage system to follow this reference
value. The proposed hierarchical scheme of the small scale microgrid energy management system is
shown in Figure 1.
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This paper contributes to the energy management of the small-scale MG by introducing a very
short sampling time EMS. The structure of the hierarchical EMS enables the algorithm to deal with
frequent changes in the system using a very short sample time (i.e., 1 min). This short sample time
enables the proposed EMS to observe and respond to the small changes in load and generation
throughout the day: this is a considerable challenge as a large amount of data must be processed and
responded to in a short sample time. Much of the research published in the context of MGEM tends to
use long sample times ranging from 15 min to 2 h.

Also, the paper introduces an appropriate forecasting method—the adaptive neuro-fuzzy inference
system—for short term energy forecasting. This method suits the nature of loads in small scale MGs,
as it can identify frequently changing load profiles and this improves the proposed MGEM’s ability to
manage the small scale MG energy.

The benefits of this EMS are that it reduces the dependency of the MG on the main electrical
grid (by increasing self-consumption of locally generated energy), reduces energy costs for end-users,
and the MG consumption profile can be shaped to reduce consumption peaks by appropriate selection
of TOU tariff periods. Also, the use of RTPC based on an autoregression forecasting algorithm
contributes in achieving better EM for the small-scale MGs. The RTPC integrates a fast and simple
forecasting technique such as autoregression (AR) into a rule-based controller within a rolling horizon
environment, to achieve better real-time control of the BESS. Using the RTPC as a part of the small
scale MGEM system has two benefits. It enables the MG to accurately follow the reference values
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for the power drawn from the main electric grid, and it can help to overcome errors in load and
generation prediction.

The paper is arranged as follows: a full description of the MG used, including system modeling
and constraints is provided in Section 2. Section 3 focuses mainly on the high-level energy management
which formulates the optimization problem to minimise the daily cost of the energy drawn by the
MG from the main electrical grid and increase the self-consumption of the RES. As the forecasted
consumption and generation of the MG are very important variables in the optimization problem and
directly affect the optimized decision, Section 4 describes the short-term energy forecasting method
used in this research. Section 5 introduces the real-time predictive controller that forces the MG to follow
the reference value for the power drawn from the main grid. In this section, a real-time rule-based
predictive controller comprises a very short-term forecasting algorithm is introduced. The simulation
results obtained for the proposed EMS are shown in Section 6. In Section 7, the experimental validation
of the proposed strategy is provided.

2. Microgrid Description, Modeling, and Constraints

The MG considered in this paper is based on a small-scale UK community which includes
photovoltaic (PV) generation system and a BESS. Also, the MG is connected to the main electricity grid
to import any additional energy required. Figure 2 shows a simplified representation of the small-scale
MG architecture.Energies 2019, 12, x FOR PEER REVIEW 5 of 26 

 

 Microgrid
Main electric 

grid 

22 kW photovoltaic 
station

DC/AC
inverter

7 kW battery 
power converter

48 kWh battery energy 
storage system 

Electrical load

Electrical power flow

Distribution grid 
transformer

Microgrid 
busbar

 
Figure 2. Simplified representation of the microgrid architecture. 

2.3. System Constraints 

There are constraints associated with the operation of the MG. These constraints reflect the limits 
of the generation units within the MG and also define the operating framework for the MG. 

2.3.1. BESS Power Output 

Constraint (5) is added to reflect the maximum power that can be charged/discharged by the 
BESS over a fixed time interval. This constraint reflects the operating limits of the BESS. This 
constraint must be considered in the optimization process to avoid solutions based on assumed 
values for BESS charge/discharge power that cannot be actually realised because they are outside the 
power limits of the BESS. −P  ≤ P (t) ≤  P     (5) 

where P   is the maximum power that can be produced by the BESS (kW) at time interval “t”, 
+P means the maximum discharge power, −P means the maximum charge power. 

2.3.2. BESS State of Charge (SOC) 

Maximum and minimum SOC level constraints (6) have been added to avoid overcharging or 
deep discharge of the BESS to maximise the lifetime of the BESS. Overcharging and deep discharging 
of the BESS significantly reduce battery lifetime. SOC ≤ SOC(t) ≤  𝑆𝑂𝐶   (6) 

where SOC  and SOC  are the maximum and the minimum state of charge limits of the BESS 
respectively. 

2.3.3. BESS Rate of Change of Power Output 

This constraint (7) reflects the maximum ramp up/down rate for the BESS power output between 
two consecutive time slots. This constraint is added to keep the change of the BESS charge/discharge 
power between two consecutive time slots within certain limits to ensure smooth control and avoid 
large power changes that could affect the stability of the BESS. ∆P (t) ≤  ∆P  (7) 

Figure 2. Simplified representation of the microgrid architecture.

To apply the proposed EMS to the MG the equations that represent the correct model of the MG
need to be formulated.

2.1. Microgrid Power Balance Equation

The active power balance equation for the MG is formulated as

P Main_grid(t) = Pload(t) − PPV(t) − PBESS(t) (1)

where t is the time interval, P Main_grid(t) is the power drawn by the MG from the main electrical
grid at a time interval “t” (kW), where a +ve value means that the MG imports power from the main
grid, and a -ve value means that the MG exports power to the main grid, Pload(t) is the electrical load
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demand of the MG at a time interval “t” (kW), PPV(t) is the power generated by the PV system located
at the MG at a time interval “t” (kW), and PBESS(t) is the electrical power discharged/charged by the
BESS at a time interval “t” (kW), where a +ve value means that the HESS discharges, and a -ve value
means that the HESS charges.

2.2. Model of the Battery Energy Storage System

The BESS used in this research is represented by the following equations

E(t) =

 E(t− 1) − ∆T×Pb(t)
ηd

, Pb(t) > 0
E(t− 1) − ∆T × ηc × Pb(t), Pb(t) ≤ 0

(2)

SOC(t) =
E(t)

BCapacity
(3)

A power converter is used to control the BESS and acts as an interface between the BESS and the
MG. The following equation represents the power converter used in this research

PBESS(t) =

 Pb(t) × ηConv − Pcon_const, Pb(t) > 0
Pb(t)
ηConv

+ Pcon_const, Pb(t) ≤ 0
(4)

where E(t), E(t− 1) are the stored energy in the BESS at a time interval “t” and “t − 1” respectively
(kWh), and Pb(t) is the discharge/charge power from/to the battery at a time interval “t” (kW),
(+ve value for battery discharging, -ve value for charging), ηd, ηc are the efficiencies of the battery
discharging and charging processes respectively, BCapacity is the battery capacity (kWh), SOC(t) is the
state of charge of the battery at a time interval “t”, Pconv(t) is the converter output power at a time
interval “t” (kW), ηConv is the converter efficiency, and Pcon_const is the constant power losses in the
power converter (kW).

2.3. System Constraints

There are constraints associated with the operation of the MG. These constraints reflect the limits
of the generation units within the MG and also define the operating framework for the MG.

2.3.1. BESS Power Output

Constraint (5) is added to reflect the maximum power that can be charged/discharged by the BESS
over a fixed time interval. This constraint reflects the operating limits of the BESS. This constraint
must be considered in the optimization process to avoid solutions based on assumed values for BESS
charge/discharge power that cannot be actually realised because they are outside the power limits of
the BESS.

− PBESS max ≤ PBESS(t) ≤ PBESS max (5)

where PBESS max is the maximum power that can be produced by the BESS (kW) at time interval “t”,
+P means the maximum discharge power, −P means the maximum charge power.

2.3.2. BESS State of Charge (SOC)

Maximum and minimum SOC level constraints (6) have been added to avoid overcharging or
deep discharge of the BESS to maximise the lifetime of the BESS. Overcharging and deep discharging
of the BESS significantly reduce battery lifetime.

SOCmin ≤ SOC(t) ≤ SOCmax (6)
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where SOCmax and SOCmin are the maximum and the minimum state of charge limits of the BESS
respectively.

2.3.3. BESS Rate of Change of Power Output

This constraint (7) reflects the maximum ramp up/down rate for the BESS power output between
two consecutive time slots. This constraint is added to keep the change of the BESS charge/discharge
power between two consecutive time slots within certain limits to ensure smooth control and avoid
large power changes that could affect the stability of the BESS.

∆PBESS(t) ≤ ∆PBESSmax (7)

where ∆PBESS(t) is the variation of the BESS power output between two consecutive time slots and
∆PBESSmax is the maximum acceptable variation of the BESS power output for both the charging and
discharging stages.

2.3.4. Power Drawn from the Main Grid

There is a constraint over the power drawn by the MG from the main electrical grid. This constraint
is used to minimize the imported power from the main grid and increase self-consumption of the RES.
This constraint enables the MG operator to control the limit of the power drawn from the main grid
throughout the day. In this way, the MGEM can achieve lower operating costs.

P Main_G(t) ≤ P Main_G, MAX (8)

where P Main_G, MAX is the maximum power that can be drawn from the main electrical grid at a time
interval “t” (kW). For this research, this value is considered to be a constant value determined by the
distribution network operators.

3. High-Level Energy Management

This section describes the high-level energy management (HLEM) which focuses on minimizing
the daily cost of the energy drawn by the MG from the main electrical grid and increasing the
self-consumption of the RES. This target is achieved by using a BESS and a (TOU) tariff scheme.
The BESS will be charged during the off-peak time where the tariff for buying electricity from the main
grid is low, and this will be used to feed the load during the peak tariff periods. Any available PV
generation is used to feed the MG loads. If the PV generation exceeds the load demand, the excess
energy is stored in the BESS to be used later during the peak period. In this way, the daily energy
drawn from the main grid is reduced and also the local PV generation is consumed by the MG without
being exported to the main grid.

The target is formulated as an objective function considering the system constraints, and an
optimization problem is formulated. Then, mixed integer linear programming is used to solve this
optimization problem.

3.1. Objective Function Formulation

The objective function is formulated to minimize the daily cost of the energy drawn from the
main grid “CMicro_G” and to increase the self-consumption of the RES located within the MG. This cost
can be developed in terms of payments and incomes. The payments include the cost of the electricity
purchased from the main grid; incomes consider the revenue of the energy sold to the main grid
(i.e., the excess electricity produced by the MG PV generation after satisfying the MG’s demand and
charging the BESS). The daily cost of the energy drawn from the main grid can be formulated as

CMicro_G = CMicrobuy + CMicrosell (9)
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CMicrobuy =

∆T ×
T∑
to

Tariffbuy(t) × P Main_grid(t), P Main_grid(t) > 0

0, P Main_grid(t) ≤ 0
(10)

CMicrosell =


∆T ×

T∑
to

Tariffsell(t) × P Maingrid(t), P Maingrid(t) < 0

0, P Maingrid(t) ≥ 0
(11)

where CMicro_G is the daily cost of the energy drawn by the MG from the main electrical grid (£/day),
CMicrobuy is the daily cost of the electrical energy purchased from the main electrical grid (£/day),
CMicrosell is the daily income from the exported electrical energy to the main electrical grid (£/day), ∆T
is the sampling time (hour), Tariffbuy(t) is the electricity purchase tariff from the main grid (£/kWh),
Tariffsell(t) is the tariff for selling electricity to the main electrical grid (£/kWh).

3.2. Mixed Integer Linear Programming

Mixed integer linear programming (MILP) is the mathematical optimization process that has been
used to solve the optimization problem. The role of the optimization is to find the best solution for
the objective function in the set of solutions that satisfy the constraints (constraints can be equations,
inequalities or linear restrictions on the type of a variable) [28,29]. The mathematical formulation of
the MILP problem is expressed as

Objective : minimize = Cx
Constraints : A · x ≤ b

xmin ≤ x ≤ xmax

where x ∈ Zn C, b are vectors and A is a matrix,
A solution that satisfies all constraints is called a feasible solution. Feasible solutions that achieve

the best objective function value are called optimal solutions.
There are three different approaches which are used for solving MILP problems, namely,

branch-and-bound, cutting plane, and feasibility pump. MILP problems are generally solved using a
branch-and-bound algorithm. Basic LP-based branch-and-bound algorithms (known as tree search)
can be described as follows. Start with the original mixed integer linear problem and remove all
restrictions: the resulting problem is called ‘linear programming relaxation’ of the original problem,
which is solved using the tree search algorithm. The tree is built using three main steps. (1) Branch:
pick a variable and divide the problem into two subproblems at this variable; (2) bound: solves the
LP-relaxation to determine the best possible objective value for the node; (3) prune: prune the branch
of the tree (i.e., the tree will not develop any further in this node) if the subproblem is infeasible [30].

4. Short Term Energy Forecasting for the MG’s Load and Generation Profiles

Electrical load demand forecasting, as well as RES generation forecasting, are cornerstone topics in
MGEM. Minimizing the daily cost of the energy drawn by the MG from the main grid and determining
the best operating points that achieve this target, require accurate forecasting for the load demand and
the renewable energy generation profiles for one day ahead. Also, these profiles have to be of high
resolution (i.e., small sample time), especially for small scale MGs, as in this paper, to accurately follow
the actual changes in load demand or RES generation.

Short term energy forecasting (STEF) algorithms are used to predict the load demand and the
renewable energy generation for a period of an hour up to 1 week ahead [31]. STEF plays an important
role in unit commitment problems and optimal MG operation [32]. AI techniques have received
increasing attention as a powerful computational tool for STEF forecasting since 1980. These techniques
cover artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), fuzzy systems
(FS), evolutionary computation, and swarm intelligence [33]. AI techniques are able to solve nonlinear
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problems, and complex relationships, and can be used for adaptive control and decision making under
uncertainty [32].

The short-term load forecasting (STLF) techniques used for EMS of the small scale MGs should
be characterized by two features: first, use an adaptive approach -this is due to the nature of the
loads in the small scale MGs, which change over time with the installation of new equipment such as
electric vehicle chargers, heating, and other devices [34]; adaptive forecasting techniques (compared to
non-adaptive techniques), can produce better results if the system changes [35]. Secondly, the forecasted
profiles should have a short sampling time (i.e., 15 min, half an hour or at maximum one hour) to reflect
the actual load changes through the day [36]. In this paper, an adaptive neuro-fuzzy inference system
(ANFIS) is used to forecast the MG’s load demand for one day ahead with a sample time of 15 min.

The forecasting of PV generation is essential for the MGEM because the forecasted PV generation
profile has a direct effect on the optimization process and on the EM behaviour [37]. In this paper, real
data available at the PVOutput.org website [38] for the generation profiles of 22 kW PV station located
at the University of Nottingham has been used to evaluate the EMS. A mean average percentage
error (MAPE) of 3.6% has been added to the real generation PV profiles to create the forecasted PV
generation profiles.

4.1. Adaptive Neuro-Fuzzy Inference System for Short Term Energy Forecasting

ANFIS is a type of artificial neural network (ANN) that is based on the Takagi–Sugeno fuzzy
inference system [39]. ANFIS is an adaptive network, which allows the implementation of a neural
network topology together with fuzzy logic and utilizes the characteristics of both methods. This method
uses a combination of least squares estimation and backpropagation for parameter estimation for the
membership functions [35], and can deal with linear, nonlinear, and complex problems [40].

ANFIS is used for STEF as a method for tuning an existing rule base of a fuzzy system, with a
learning algorithm based on a collection of training data found in an ANN. As the parameters are
of a fuzzy system rather than a conventional ANN, the ANFIS is trained faster and more accurately
than conventional ANNs. An ANFIS corresponding to a Sugeno type fuzzy model with two inputs
and a single output is shown in Figure 3 [40]. It is obvious from the figure that the ANFIS structure is
multi-layer. The function of each layer is described in Table 1.
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The common rule set of two fuzzy ‘if-then’ rules used for a Sugeno fuzzy model is

Rule 1 : If k1 is A1 and k2 is B1, then F1 = p1k1 + q1k2 + r1

Rule 2 : If k2 is A2 and k2 is B2, then F2 = p2k1 + q2k2 + r2
(12)
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Table 1. ANFIS layer description.

Layer Known As Function

Layer 1 Fuzzification layer The input data are fuzzified and neuron values are
represented by parameterized membership functions.

Layer 2 Rule layer Each node in this layer represents the number of rules
generated by the Sugeno fuzzy logic inference system.

Layer 3 Normalization layer Each node accepts all nodes coming from the rule layer as
input values and calculates the normalized value of each rule.

Layer 4 Defuzzification layer

The weighted result values of a given rule are calculated at
each node. The consequent part is obtained via linear
regression or multiplication between the normalized level and
the output of the respective rule.

Layer 5 Summing layer The real value of the ANFIS is produced by an algebraic sum
over all rules outputs.

4.2. Load Forecasting Using ANFIS

The historical load profiles used for STLF using ANFIS are for the period from 1 January 2014
to 1 February 2015 (i.e., 13 months of data). The load profiles used are for a UK based community
and have been created using a model from the Centre for Renewable Energy Systems Technology
(CREST) (Richardson and Thompson [41]) based on actual measurements. The weather data used
(i.e., temperature and humidity) is actual data obtained from the SODA site for solar energy services
for the city of Nottingham, UK for the period between 1 January 2014 and 1 February 2015 [42].

The ANFIS model used for load forecasting consists of seven input variables:

- Time of the day (i.e., every quarter hour);
- Weather data (temperature ◦C);
- Weather data (humidity %);
- Day of the year: used for differentiating between different seasons;
- Type of the day: working day, weekend or a public holiday;
- Previous day same time load (kW);
- Previous week same day same time load (kW).

Each input variable has three membership functions. The membership functions are defined
by training the ANFIS using a large set of data for historical load profiles. Also, 10 epochs are used
for each training phase. The ANFIS model is trained with one year of data (from 1 January 2014 to
31 December 2014), and tested for one month of data (from 1 January 2015 to 1 February 2015). All the
data have a 15 min sample time.

To evaluate the use of this approach in STEF, the mean absolute error (MAE) and the mean
absolute percentage error (MAPE) are used for studying the performance of the data output.

M.A.E =
1
N

T∑
to

|At − Ft| (13)

M.A.P.E =
1
N

T∑
to

∣∣∣∣∣At − Ft

At

∣∣∣∣∣× 100 (14)

where At is the actual point, Ft is the forecasted point and N is the number of observation points.
The sharpness of the load profiles for small communities, in addition to using a short sample

time to reflect the actual load changes that occur, make STLF for this type of load a great challenge.
Figure 4a shows a comparison between both the forecasted load and the actual load for one month
(from 1 January 2015 and 1 February 2015). Also, Figure 4b shows the difference between the actual and
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the forecasted load demand. The MAPE of the forecasted loads over this month is 8.9% and the MAE is
0.38 kW. These values are acceptable for this type of kW load profile (for small scale MGs), compared
to MAPE and MAE values obtained when forecasting MW loads for large grids [43]. Figure 5 shows
a comparison between both the forecasted and the actual load demand for a working day using a
sample time of 15 min. The MAPE for the forecasted load is 8.03% and the MAE is 0.35 kW. The results
obtained demonstrate the capability of the proposed ANFIS in achieving good results for STLF in a
small-scale MG.Energies 2019, 12, x FOR PEER REVIEW 10 of 26 
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4.3. Comparison between Using ANFIS Versus ANN in Short Term Load Forecasting for Small Scale MGs

One of the drawbacks of using an ANN in load forecasting is not being an adaptive forecasting
method. The ANN is trained to forecast a certain system with a certain load profile. If the system
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changes or the loads increase/decrease, the ANN will not be able to generate accurate forecasted profiles.
The ANFIS is an adaptive forecasting technique that can adapt to systems that constantly change.

In small scale MGs, system changes have a great effect on the load profile, (for example by
adding new equipment such as electric vehicle chargers and/or heating devices [34], or if one or
more of the community houses are not used for a long time) and this has a detrimental effect on the
forecasting process. Table 2 shows a comparison between using an ANFIS versus an ANN in STLF for
the small-scale MG used in this paper. The table shows the resulting MAPE for the forecasted loads
when the load demand is changed from the original one used in the training of the forecasting model.
This change is achieved by increasing or decreasing the input variables used for forecasting—previous
day, same time load and previous week, same day, same time load—using a randomly generated
multiplying factor. The percentage change is shown in Table 2 (first column), as well as the effect of
this change on the MAPE of the new forecasted load.

Table 2. Comparison between using ANFIS versus ANN in STLF for a small MG and the resultant MAPE.

Percentage Change in
Load Demand

MAPE of the Forecasted Load: Percentage Change in
Load Demand

MAPE of the Forecasted Load:
Using ANN Using ANFIS Using ANN Using ANFIS

No change 9.98% 8.43% Decrease by (0–5%) 10.1% 8.85%
Increase by (0–5%) 10.5% 8.6% Decrease by (6–10%) 11.16% 9.88%

Increase by (6–10%) 11.7% 8.9% Decrease by (11–20%) 15.1% 14.4%
Increase by (11–20%) 14.11% 12.3% Decrease by (21–40%) 29.3% 25.7%
Increase by (21–40%) 22.45% 20.5%

It can be seen from Table 2 that ANFIS shows success in dealing with system changes. The results
obtained from Table 2 demonstrate that ANFIS can be used in load forecasting for small scale MGs
without being trained again when the system changes. The results show that, with up to 20% increase
or decrease in the system demand (i.e., increase/decrease in a random manner), the ANFIS still forecasts
the load for the next day with nearly the same accuracy compared to the ANN that losses accuracy
quickly with any load changes.

5. Real-Time Predictive Controller

This section presents the real-time predictive controller (RTPC) that controls the settings of the
BESS in real time to ensure the MG follows its reference value obtained from the HLEM layer.

5.1. Real-Time Predictive Controller Operation Algorithm

The RTPC is a real-time controller that controls the settings of the BESS in real time, in a way that
makes the MG follow the reference values for the power drawn from the main electric grid. The RTPC
depends on a rolling horizon base and a predictive technique. The operating principle of the RTPC
is based on determining the correct setting of the BESS over the next time step (the time step is one
minute) by predicting accurately the net demand of the MG (load demand minus PV generation) over
the next time step and comparing it with the reference values for the power drawn from the main
electric grid (obtained from the HLEM stage). This process is repeated over a rolling horizon with
a 1 min sample time. The operation is completed using very short-term forecasting of load and PV
generation, as well as the model of the BESS. Figure 6 shows the complete operating process of the
RTPC as a part of the whole operating algorithm of the proposed EMS. Figure 6a shows the HLEM
stage used to determine the reference value, Figure 6b shows the adaptive autoregression forecasting
algorithm used to feed the RTPC with the required data (which will be described in details in Section 2),
Figure 6c shows the operating procedure of the RTPC.

The novelty in using a real-time predictive controller based on an autoregression forecasting
algorithm appears in the integration of a simple and fast forecasting technique such as autoregression
(AR) and a rule-based controller, all within a rolling horizon environment, to achieve real-time control
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of the BESS. This controller performs as a model predictive controller but without using the system’s
state space model.Energies 2019, 12, x FOR PEER REVIEW 12 of 26 
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Where Pnet f orec_minute(t + 1) is the forecasted net demand of the MG for the next
minute, P load f orec_minute(t + 1) is the forecasted load demand of the MG for the next
minute, P pv f orec_minute(t + 1) is the forecasted PV generation of the MG for the next minute,
and Pdrawnref(t + 1) is the reference value for the power drawn from the main electric grid in
the next minute (obtained from the HLEM stage). The actual SOC of the BESS is measured every
sample time (i.e., 1 min) and is used to calculate the SOC of the BESS for the next minute. This step is
used to keep the RTPC updated with the actual SOC of the BESS.

5.2. Integration of the Adaptive Autoregression Algorithm and the Real-Time Predictive Controller

The RTPC depends on the forecasted net demand for the next minute to calculate the correct BESS
settings. From this point of view, it is essential to select an appropriate algorithm to feed the RTPC
with the required data with high accuracy.
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The forecasting of the load demand and PV generation for the next minute or minutes is called
very short-term energy forecasting (VSTEF). An autoregression (AR) algorithm is one of the most
popular algorithms in VSTEF [44]. In this paper, an adaptive AR algorithm is used to accurately
forecast the load demand of the MG and the PV generation for the next minute. AR is a simple method
that can be used to obtain accurate forecasts for time series problems. Energy forecasting using the
AR model is based on using a time series model that depends on stochastic calculations in which the
future values are predicted based on past values. As the model uses data from the same input variable
at previous time steps to forecast the next value, it is termed autoregression. Adaptive AR forecasting
is used in this paper as it is a simple method, has a fast execution time (only 1 s for forecasting the next
point), is adaptive and can be trained easily for the time series used.

The AR model used in this research is defined by the equation

yt = Φ +ψ1yt−1 +ψ2yt−2 + . . .+ψpyt−p + At (15)

where yt is the forecasted value, ψ1,ψ2, . . .ψp and Φ are coefficients found by optimizing the model
on training data, yt−1, yt−2, . . . .yt−p are the past series values (lags), P is the order of the AR model
and At is white noise, is assumed zero in this paper. Figure 6b shows the adaptive autoregression
algorithm to forecast the load demand and the PV generation for the next minute.

6. High-Level Energy Management Simulation Results and Performance Analysis

In this section, the simulation results for the HLEM stage of the MG are presented. The simulation
process is performed using the parameters shown in Table 3, and the algorithm executed using a script
operating in MATLAB. The tariff scheme used is a time of use (TOU) tariff for purchasing electrical
energy from the main grid, and a fixed tariff for selling electric energy to the main grid [45–47]. Table 4
shows the values of the tariff periods used.

Table 3. Microgrid parameters used in the simulation process.

Parameter Value Parameter Value

Sample time (∆T) 15 min Pcon_const 0.33 kW
Battery Capacity 48 kWh ηConv 95%

SOCmin 20% ∆PBESSmax 7 kW
SOCmax 90% ηc, ηd 90%

PBESS max 7 kW P Main_G, MAX 10 kW

Table 4. Purchasing and selling electricity tariffs.

Tariff Type Time Applied Value

Off-peak purchasing tariff From 12 am to 7 am 4.99 pence/kWh
Mid-peak purchasing tariff From 7 am to 4 pm 11.99 pence/kWh

Peak purchasing tariff From 4 pm to 8 pm 24.99 pence/kWh
Mid-peak purchasing tariff From 8 pm to 12 am 11.99 pence/kWh

Fixed selling tariff All day 4.85 pence/kWh

To demonstrate the capability of the proposed EM strategy for dealing with different scenarios,
the EMS has been evaluated for all four seasons, and for both weekdays and weekends.

6.1. Spring

In this part, a day in spring has been simulated. Figure 7a shows that the proposed EMS managed
to reduce the energy that is imported from the main grid at the peak time (between 4 pm and 8 pm)
by enabling the BESS to feed the majority of the MG’s needs during this time period. This can be
compared to the case where no EMS or BESS is used, where the MG will consume all available PV
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generation when it can, and then import all additional power from the main electric grid, usually at
peak tariff which leads to high daily operating costs. From the simulation results, the proposed EM
strategy was able to decrease the estimated daily cost of the energy drawn by the MG from the main
grid from £10.9 before using any management techniques or storage system, to £7.1 after using the
proposed EM strategy with the BESS (i.e., the reduction percentage is 35% per day).Energies 2019, 12, x FOR PEER REVIEW 14 of 26 
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Figure 7a,b shows that the proposed EMS managed to store the excess PV generation in the BESS
and avoided exporting any to the main grid. This appears in the period between 11:00 a.m. and
12:30 p.m. Figure 7c shows that the BESS charges at off-peak time (between 12:00 a.m. and 7:00 a.m.)
when the purchase tariff of the electrical energy from the main grid is low, to be used later at peak tariff
times. Also, it is observed from the same figure that the proposed strategy managed to keep the SOC
of the BESS within limits (between 20% and 90%) while reducing the daily cost of the energy drawn
from the main grid.

6.2. Summer

A day of the summer season was also simulated. In summer seasons, the EMS faces a different
challenge as the generated PV energy in many of the summer days is greater than the load consumption
during the day, and the EMS should prioritize the capture of excess PV energy to be consumed in the
MG. Figure 8b shows the load demand and PV generation profiles for a summer day and Figure 8a
demonstrates that the EMS prioritizes self-consumption of the PV energy, as no power is exported to
the main grid during the periods that have excess PV generation (8:00 a.m. to 10:30 a.m., and 12:00 p.m.
to 4:30 p.m.). Figure 8c shows that the BESS only receives minimal charging overnight (in contrast to
spring); instead, it charges during the periods that have excess PV generation.

From the simulation results, the proposed EMS decreases the estimated daily cost of the energy
drawn by the MG from £5.5 before using any management strategy or storage system, to £2.2 after
using the proposed EM strategy with the BESS (i.e., reduction of 60% per day). The reduction of
cost in the summer compared to spring is clearly due to efficiently capturing the extra PV energy
now available.
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6.3. Autumn

This EMS/BESS behaviour for autumn resembles the behavior for spring, but with lower PV
generation. Figure 9 shows that the EM strategy managed to determine the reference values for the
power drawn by the MG from the main grid, in a way that: (1) minimizes the purchased energy
during the peak times; (2) maximizes the self-consumption of the RES; (3) makes a good use of the
BESS, keeping it within its limits. In this way, the estimated daily cost of the energy drawn by the MG
decreased from £10.9 (without EMS, BESS), to £6.5 (i.e., reduction of 40% per day). Figure 9c shows
that the BESS is charged at off-peak times, and then discharged at peak times.Energies 2019, 12, x FOR PEER REVIEW 16 of 26 
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6.4. Winter

Figure 10b shows forecasted consumption and generation during a weekend day in
winter—studied to demonstrate that the proposed EMS can deal with different load profiles. It is
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obvious that the electricity demand is more in winter than in other seasons, due to the increased use
of heating and lighting systems. Figure 10a shows that the BESS feeds most of the load at peak time,
but it could not feed the whole load due to the BESS power limits. Figure 10c shows that the SOC
of the BESS falls to its minimum value (i.e., 20%) at 8 pm, and this point shows the importance of
selecting the best size for the BESS to be used—a bigger BESS capacity may be of benefit for a few days
in winter, but may not be cost effective when considering its performance over a full year. The optimal
sizing of a BESS is not studied in this paper. The large difference between demand and generation
can be mainly avoided using a proper sizing for generation units (e.g., battery energy storage and
photovoltaic system) to be able to feed the loads almost all the time. Also, it is clear that the EMS
does not allow the BESS to supply any loads during the mid-peak times (from 7:00 a.m. to 4:00 p.m.),
and instead, energy from the main grid is used to supply the load during this time period. This is to
keep the BESS at a maximum SOC (90%) to be used at the peak times where the purchasing tariff of the
energy from the main grid is about twice its value during the mid-peak times.
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The EMS/BESS was able to reduce the estimated daily cost of the energy drawn from the main
grid by 21% (i.e., from £16.9 before using any management or storage system, to £13.3 after using the
proposed EMS with the BESS).

6.5. Economic Analysis

The overhead incurred by using a very short sampling time can be summarized in terms of
payments and incomes. Payments include the cost of the required infrastructure for data collection
and processing for a sample time of 1 min. The income is the extra reduction in daily operating costs
that can be achieved compared to previous methods with a long sample time.

For the proposed EMS, the required infrastructure needed for data collection and processing is the
same as that used for any other MGEM system. This infrastructure consists of measurement devices,
data aggregators, signal processing servers, and a communication network. The only difference for
the case of using the proposed EMS is that the data collection and processing needs to be achieved
in a 1 min sample time. This can still be achieved using relatively low-cost data acquisition and
communications equipment.
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Table 5 shows a comparison between the seasonal costs of the energy drawn by the small-scale
MG from the main electrical grid, as well as the yearly amount of PV self-consumption when using the
proposed EMS compared to other control approaches.

Table 5. Seasonal costs of the energy drawn by the small-scale MG from the main electrical grid as well
as the yearly PV self-consumption percent using the proposed EMS and other control approaches.

Case
Seasonal Cost of the Small-Scale MG (£) Yearly PV

Self-ConsumptionSummer Season Winter Season Autumn Season Spring Season

Without using EMS or
storage system 379.3 1267.8 795.4 739.6 54.33%

Using EMS of 2 h sample time +
Forecasted profiles * 167.1 989.05 533.1 499.08 78.95%

Using EMS of 1 h sample time +
Forecasted profiles * 161.2 980.2 524.06 480.9 82.7%

Using EMS of half an hour sample
time + Forecasted profiles * 157.9 971.9 517.9 463.1 83.6%

Using EMS of 15 min sample time
+ Forecast profiles * 153.6 964.1 509.3 441.5 88.64%

Using the proposed two-layer
EMS + RTPC+ ANFIS forecasting 146.8 957.6 498.5 434.1 91.75%

Best case (EMS of 1 min +
Perfect forecasting) ** 131.8 944.5 486.6 423.3 96.67%

* The forecasted profiles for load demand and PV generation are assumed to be the real profiles with Gaussian
white noise to represent the forecasting errors. Also, the percentage change in load demand (as shown in Table 2)
has been considered in these cases to reflect the nature of the loads of a small-scale MG throughout the year. ** the
best case is the ideal case in which the forecasted profiles are 100% accurate and the EMS is performed using the
minimum possible sampling time.

When evaluating the proposed EMS for the whole year, the yearly cost of the energy drawn by the
MG from the main grid is estimated to be £3182 without the EMS/BESS. The cost saving when using
the proposed EMS/BESS is estimated to be £1145 (i.e., 36% saving per year). The local self-consumption
of the RES within the small-scale MG increases from 54.33% (without EMS, BESS) to 91.75% after using
the proposed EMS/BESS. The results obtained encourage investment in the EMS/BESS as it ensures a
reduction in the total operating cost of the MG.

7. Experimental Verification

The whole EMS was implemented experimentally in real time. This included the high-level EM
stage which determines the control signals for the BESS settings and the periodic measurement of
the real SOC of the BESS. The aim of this experiment was to: (1) ensure that the proposed EMS can
be applied in a real system without any difficulties; (2) Observe the system response while using
a real BESS; (3) Ensure that the proposed strategy will operate correctly in the presence of a real
communication system which can introduce a time-lag in the control signals.

7.1. Laboratory-Based Microgrid Architecture and Parameters

The experimental system was implemented in the University of Nottingham FlexElec Laboratory,
using the microgrid shown in Figures 11 and 12. The components of the MG and the parameters of
the BESS are listed in Appendix A. The software development packages used in this experiment are:
LABVIEW software—which is used as a graphical user interface GUI and a control tool to implement
the proposed control algorithm, and MATLAB software—which is used to run the optimization
algorithm that is used in the high level EM stage and perform the forecasting process.
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The microgrid is connected to an isolated busbar. The main source for this MG is a 90 kVA
Triphase converter [48] which is a programmable source acting as the main grid connection. Two 10 kW
bidirectional Gendrive power converters are connected between the main utility bus and the MG: these
inject or absorb active power and reactive power into the MG according to references received from a
CANBUS communication interface [49,50]. They are used to emulate the load and the PV profiles by
following references (generated using the same load and PV data used for the simulation work) sent
from the central control platform. A 24 kWh battery system is also connected to the MG using a 7 kW
Triphase power converter. The reference for the battery is received from the central control platform via
a CANBUS interface. The central control platform is the hierarchical control structure (EMS) presented
in this paper, implemented using LABVIEW on a PC and communicating with all MG elements.
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7.2. Experimental Results Using the Proposed EMS

The HLEM stage is implemented using LABVIEW software which includes embedded MATLAB
functions for short term load forecasting, short term PV generation forecasting and the MILP
optimization process. The reference setting obtained from the high level stage is updated and passed
to the RTPC every 15 min using a CAN communication system [49,50]. The RTPC is implemented
using LABVIEW software and is executed every minute such that: (1) It receives the measured SOC of
the BESS using the CAN system; (2) it updates the forecasted load and the forecasted PV generation
for the next minute using the integrated adaptive AR algorithm; (3) it sends the optimal power setting
to the BESS. The CAN communication system plays an important role in delivering the settings to
the BESS and receiving the SOC at a high sample rate (less than 20 ms). Figure 13 shows the net time
required for measuring, computing, and communicating through high-level energy management layer
and real-time predictive controller layer respectively.

Energies 2019, 12, x FOR PEER REVIEW 19 of 26 

 

7.2. Experimental Results Using the Proposed EMS 

The HLEM stage is implemented using LABVIEW software which includes embedded 
MATLAB functions for short term load forecasting, short term PV generation forecasting and the 
MILP optimization process. The reference setting obtained from the high level stage is updated and 
passed to the RTPC every 15 min using a CAN communication system [49,50]. The RTPC is 
implemented using LABVIEW software and is executed every minute such that: (1) It receives the 
measured SOC of the BESS using the CAN system; (2) it updates the forecasted load and the 
forecasted PV generation for the next minute using the integrated adaptive AR algorithm; (3) it sends 
the optimal power setting to the BESS. The CAN communication system plays an important role in 
delivering the settings to the BESS and receiving the SOC at a high sample rate (less than 20 ms). 
Figure 13 shows the net time required for measuring, computing, and communicating through high-
level energy management layer and real-time predictive controller layer respectively. 

 
Figure 13. Net time required for measuring, computing, and communicating through (a) high-level 
energy management layer (repeated every 15 min); (b) real-time predictive controller layer (repeated 
every 1 min). 

It is obvious from Figure 13a that the net time required for measuring, computing and 
communicating through high-level energy management layer is only 13 s. This time is very short and 
does not affect the EMS results-compared to the time period in which this layer is updated (i.e., 
updated every 15 min). Figure 13b shows that the net time required for measuring, computing and 
communicating through the real-time predictive controller layer is 4.12 s. As this layer is repeated 
every 1 min, the time used for measuring, computing and communicating is acceptable and does not 
affect the accuracy of the results. 

In this experiment, the control system runs in real time but the time slot of the PV generation 
profile, load consumption profile, and the control signals are scaled down from 1 min to 30 s [24, 27]. 
This enables the experimental emulation of a whole day in 12 h only instead of 24 h. Also, the capacity 
of the battery used has been scaled in the same proportion, to be 24 kWh (i.e., the battery used in the 
experiment) instead of 48 kWh as in the real system. The relation used in the scaling process is 𝐵 = 𝐵  × 3060     

Figure 14a shows the actual and the reference values for the power drawn by the small-scale MG 
from the main electricity grid. Figure 14b shows the actual electrical load and PV generation profiles 
used in the experiment. Figure 15a shows the settings sent to the BESS. Figure 14b shows the 
measured state of charge of the BESS. Figures 14 and 15 are of 1 min sample time. It is obvious from 
Figure 14a that the proposed EMS succeeded in forcing the small scale MG to follow the reference 
value for the power drawn from the main electricity grid (obtained from the HLEM) wherever 
possible. The MAPE of the actual power drawn away from the desired reference values is 4.85%. (i.e., 
the major part of this error is due to the BESS reaching its SOC limits and not from the RTPC itself or 
its predictive mechanism). The adaptive AR forecasting method integrated with the RTPC forecasts 

7 6 0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a)

Load demand and PV generation forecasting using ANFIS

MILP optimization

Processing data to RTPC layer

Time (second) 

2 1.5 0.6
0.02

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

(b) 

Parallel measurement of load demand, PV
generation, and BESS SOC
Integrated Autoregression (AR) forecasting

real time predictive controller

Send optimal setting to BESS

Time (second) 

Figure 13. Net time required for measuring, computing, and communicating through (a) high-level
energy management layer (repeated every 15 min); (b) real-time predictive controller layer (repeated
every 1 min).

It is obvious from Figure 13a that the net time required for measuring, computing and
communicating through high-level energy management layer is only 13 s. This time is very short
and does not affect the EMS results-compared to the time period in which this layer is updated
(i.e., updated every 15 min). Figure 13b shows that the net time required for measuring, computing
and communicating through the real-time predictive controller layer is 4.12 s. As this layer is repeated
every 1 min, the time used for measuring, computing and communicating is acceptable and does not
affect the accuracy of the results.

In this experiment, the control system runs in real time but the time slot of the PV generation
profile, load consumption profile, and the control signals are scaled down from 1 min to 30 s [24,27].
This enables the experimental emulation of a whole day in 12 h only instead of 24 h. Also, the capacity
of the battery used has been scaled in the same proportion, to be 24 kWh (i.e., the battery used in the
experiment) instead of 48 kWh as in the real system. The relation used in the scaling process is

BCapacityexp = BCapacityreal system ×
30
60

Figure 14a shows the actual and the reference values for the power drawn by the small-scale MG
from the main electricity grid. Figure 14b shows the actual electrical load and PV generation profiles
used in the experiment. Figure 15a shows the settings sent to the BESS. Figure 14b shows the measured
state of charge of the BESS. Figures 14 and 15 are of 1 min sample time. It is obvious from Figure 14a
that the proposed EMS succeeded in forcing the small scale MG to follow the reference value for the
power drawn from the main electricity grid (obtained from the HLEM) wherever possible. The MAPE
of the actual power drawn away from the desired reference values is 4.85%. (i.e., the major part of
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this error is due to the BESS reaching its SOC limits and not from the RTPC itself or its predictive
mechanism). The adaptive AR forecasting method integrated with the RTPC forecasts the load demand
for the next minute with a MAPE of 6%, and the PV generation for the next minute with MAPE of 2.5%.
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Between 8:30 p.m. and 9:00 p.m., the RTPC has not followed the reference values for the power
drawn from the main grid as the BESS has reached its minimum SOC limit as shown in the highlighted
zoom in Figures 14a and 15b. The reason for this is that the forecasted load which is used to determine
the reference values for the power drawn in the high-level EM stage does not exactly match the actual
load. Figure 15b demonstrates the capability of the EMS to keep the SOC of the BESS within limits
(between 20% and 90%). The experimental results demonstrate feasibility for implementation of the
proposed EMS for real Energy MG systems using 1 min sample time and neither the computation nor
the communication time have a significant effect on the results.
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Figure 16a–d show a comparison between the actual power drawn by the MG from the main
electricity grid when using the proposed two-layer EMS compared to using an EMS of longer sampling
time and a single layer. Figure 16e shows the state of charge curve of the BESS, and Figure 16f shows
the electrical load and PV generation profiles (1 min sample time).Energies 2019, 12, x FOR PEER REVIEW 21 of 26 
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Figure 16. Actual power drawn by the MG from the main electricity grid in case of using the proposed
two-layer EMS comparing to: (a) Single layer EMS of 2 h sample time; (b) Single layer EMS of 1 h
sample time; (c) Single layer EMS of 30 min sample time; (d) Single layer EMS of 15 min sample
time; (e) The state of charge curve of the BESS; (f) Electrical load and PV generation profiles (1 min
sample time).
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Figure 16a–d show that the proposed EMS using the two-layer structure (HLEM and RTPC)
managed to minimize the power drawn from the main grid during the peak-time tariff period and
avoids exporting the extra energy to the main grid, compared to the other EMS systems which have a
longer sampling time and only a single layer, which suffer from inaccurate results.

Figure 16a shows that using an EMS with a 2 h sampling time and a single layer could not manage
to minimize the power drawn from the main grid during the peak-time tariff period or increase the
self-consumption of the PV generation within the MG which is obvious from the circled areas (1-a) and
(2-a). It is obvious from circle (1-a) that in the case of using EMS of 2 h sampling time, the MG exports
power to the main grid although the BESS is not fully charged (Figure 16e). The EMS should save this
power to be used later to feed the loads at peak tariff times instead of exporting it to the main electrical
grid. Also, it is obvious from circle (2-a) that in the case of using EMS of 2 h sampling time, the MG
imports power from the main grid during the peak tariff time, which increases the daily cost of the
power drawn from the main grid. The reason for this undesired imported/exported power appearing
in circles (1-a) and (2-a) is that using an EMS with a 2 h sampling time updates the BESS settings every
2 h, so if the load or the PV generation changed during this period, no action can be taken.

It is also obvious from circles (1-b), (1-c), and (1-d) that the value of the undesired exported power
to the main grid decreases by using a shorter sampling time. Also, from circles (2-b), (2-c), and (2-d),
the undesired imported power by the MG from the main grid at peak tariff time is reduced when using
shorter sampling time.

8. Conclusions

A new hierarchical energy management system has been proposed for energy communities.
It comprises a high-level energy management system which uses a mixed integer linear programming
approach to solving the MG optimization problem which aims to minimize the cost of electricity for
the small scale MG and maximise self-consumption of the locally generated PV energy. The HLEM
provides a reference for the grid power drawn by the small-scale MG and this is then controlled using
a low-level real-time predictive controller which uses very short-term predictions of load and PV
generation to control a battery energy storage system.

The proposed EMS succeeds in reducing the daily cost of the energy drawn by the small-scale
MG and increasing the self-consumption of the RES and has been shown to work successfully in each
of the four seasons. A daily cost reduction of 21 to 60% can be achieved depending on the season,
the tariff scheme used, and on the BESS capacity. The local self-consumption of the RES within the
small-scale MG increases to 91% after using the proposed EMS/BESS.

The use of the RTPC enables the small scale MG to follow the reference values for the power
drawn from the main electricity grid with high accuracy, and hence, the main electric grid can consider
the small scale MG as one controllable unit that imports/exports power based on a predefined scenario,
in a way that works for the benefit of the whole grid. Also, the use of ANFIS for short term energy
forecasting shows great success in forecasting the highly fluctuating load demand with high accuracy.

The proposed methodology successfully dealt with small scale MGs using a very short sample
time of 1 min. This short sample time enables the proposed methodology to observe and respond to
the small changes in the load and generation throughout the day, which achieves a better profit for
MG customers.

The experimental results demonstrate the proposed strategy can work in real time with a real
communication system providing an interconnect between the system elements.
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Abbreviations

EMS Energy management system
EM Energy management
MG Microgrid
RES Renewable energy resources
DERs Distributed energy resources
ESS Energy storage systems
MGEM Microgrid energy management
MILP Mixed integer linear programming
BESS Battery energy storage system
TOU Time of use tariff
PV Photovoltaic
SOC State of charge
HLEMS High level energy management
STEF Short-term energy forecasting
AI Artificial intelligence
ANN Artificial neural networks
ANFIS Adaptive neuro-fuzzy inference system
FS Fuzzy system
STLF Short-term load forecasting
MAPE Mean average percentage error
CREST Center for Renewable Energy Systems Technology
MAE Mean absolute error
RTPC Real-time predictive controller
VSTEF Very short-term energy forecasting
AR Autoregression algorithm
CAN Controller area network
AI Artificial intelligent
ANN Artificial neural networks

Appendix A

Table A1. Components of the MG used in this experiment.

Equipment Description

2 busbars, 2000 A each One busbar is used as the MG busbar, and the other
one represents the utility (i.e., main grid)

6 disconnecting switches, 63 A each Used to protect the whole MG

2 Gendrive converters, 10 kW each Used as emulators to emulate the load profile and the
PV generation profile

Battery energy storage system (BESS) One BESS consists of a 24 kWh Li-ion battery and a
7 kW power converter to interface with the MG

CANbus communication system, Speed 1 Mbps

Controller Area Network (CAN) is the
communication system used in this experiment,
it represents the nervous system that enables the
communication between all MG’s parts

1 PC Core i3-7100 CPU, 3.91 GHz, 8 GB RAM

Nominal system voltage/frequency 380 V/50 HZ
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Table A2. Parameters of the battery energy storage system used.

Parameter Rating Parameter Rating

Nominal battery capacity 24 kWh SOCmin 20%
Nominal battery voltage 400 V SOCmax 90%

Battery efficiency (ηd) 90% BESS power converter (rated power) ±7 kW
Battery ramp-up rate 7 kW/1 min Converter efficiency (ηConv) 95%

Battery ramp-down rate 7 kW/1 min Converter fixed losses (PC_conv) 0.33 kW
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