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Quasiparticle energies of the atoms H–Ne have been computed in the GW approximation in
the presence of strong magnetic fields with field strengths varying from 0 to 0.25 atomic units
(0.25B0 = 0.25 ~e−1a−2

0 ≈ 58763 T). The GW quasiparticle energies are compared with equation-
of-motion ionization-potential (EOM-IP) coupled-cluster singles-and-doubles (CCSD) calculations
of the first ionization energies. The best results are obtained with the evGW@PBE0 method, which
agrees with the EOM-IP-CCSD model to within about 0.20 eV. Ionization potentials have been
calculated for all atoms in the series, representing the first systematic study of ionization potentials
for the first-row atoms at field strengths characteristic of magnetic white dwarf stars. Under these
conditions, the ionization potentials increase in a near-linear fashion with the field strength, reflecting
the linear field dependence of the Landau energy of the ionized electron. The calculated ionization
potentials agree well with the best available literature data for He, Li, and Be.
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I. INTRODUCTION

The study of atoms in strong magnetic fields is moti-
vated by the existence of strong magnetic fields on white
dwarf stars (up to about 105 T), neutron stars (up to
about 108 T), and magnetars (up to about 1011 T).
An important aspect of such studies is to understand
the relative abundance of neutral and ionized atomic
species under prevalent conditions. It is then necessary to
know the ionization energies of atoms in magnetic fields.
We here present calculations of ionization energies from
GW quasiparticle energies, which are compared with
highly accurate equation-of-motion ionization-potential
(EOM-IP) coupled-cluster singles-and-doubles (CCSD)
results and literature data. We restrict ourselves to
field strengths up to 0.25 B0 (where B0 = ~e−1a−20 ≈
2.3505 × 105 T is the atomic unit of magnetic field
strength), characteristic of white dwarfs. For a recent
review of the observational and theoretical characteris-
tics of magnetic white dwarfs, see Ref. 1.

Atoms in strong magnetic fields have been studied us-
ing a number of techniques. Early work has been re-
viewed by Schmelcher2 and Lai,3 while more recent work
is covered by Thirumalai and Heyl.4 The first systematic
investigation of atoms in the He–Ne series in strong mag-

netic fields was carried out by Ivanov and Schmelcher us-
ing their two-dimensional mesh Hartree–Fock method.5–8
The lighter atoms in this series have also been studied
at higher levels of theory, including full configuration-
interaction (FCI) studies of Schmelcher and coworkers
of the helium atom,9–11 the lithium atom,12 and the
beryllium atom.13 Recently, Wunner and coworkers have
studied the neutral He–Fe series14 and the ions in the
He–Ne series15 in a magnetic field using a diffusion
Monte Carlo (DMC) technique. Stopkowicz and cowork-
ers investigated atoms in strong magnetic fields using
the coupled-cluster singles-and-doubles (CCSD) model
and the CCSD-perturbative-triples (CCSD(T)) model
in 2015,16 and using the coupled-cluster equation-of-
motion (EOM) method at the CCSD level in 2017.17 The
lighter atoms helium and lithium have been studied using
Hylleraas-type explicitly correlated methods,18–20 while
the variational Monte Carlo method has been applied to
helium21 and lithium.22 We also mention here the pseu-
dospectral Hartee–Fock method of Thirumalai and Heyl
for neutron-strength magnetic fields.23 Many of the stud-
ies above concern not only the total energies of ground
or excited states but also ionization energies.5–15,21,22

In the present paper, we calculate the ionization po-
tentials (IPs) of the electronic ground states of the atoms
in the series He–Ne using a recently developed GW mod-
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ule within the Turbomole24 and Quest25,26 packages,
comparing with EOM-IP-CCSD results obtained using
the coupled-cluster code of Hampe and Stopkowicz17 in-
terfaced with the London program.27,28 When available,
we compare with literature data.

The remainder of this paper is structured as follows. In
Section II, we review the GW and EOM-IP-CCSD meth-
ods with focus on aspects related to the use of complex
variables. Computational details are given in Section III,
while results are presented and discussed in Section IV.
Some concluding remarks are made in Section V.

II. THEORY

A. Hamiltonian

We will be concerned with the atomic electronic Hamil-
tonian for infinite nuclear mass in a uniform and constant
magnetic field B. For the symmetric gauge of the vector
potential, the following one-electron operator is added to
the Kohn–Sham or Fock operator (in atomic units):

ĥ(B) =
1

2
B ·
(

ˆ̀ + 2ŝ
)

+
1

8
(B× r)

2
, (1)

where 1
2B · ˆ̀ and B · ŝ are the orbital and spin Zeeman

terms, respectively, and where 1
8 (B× r)

2 is the diamag-
netic term.

We will choose the magnetic field along the z-axis and
perform unrestricted Hartree–Fock and Kohn–Sham cal-
culations, in which the orbitals are eigenfunctions of the
operators ˆ̀

z and ŝz with quantum numbers m` and ms,
respectively. Accordingly, the corresponding (Hartree–
Fock or Kohn–Sham) determinant is an eigenfunction of
the z projections L̂z and Ŝz of total angular momentum
and total spin with quantum numbers ML and MS , re-
spectively.

For very large field strengths (much larger than 1 B0),
finite nuclear mass and center-of-mass corrections to IPs
become important,29,30 but for the field strengths consid-
ered by us, corrections beyond the infinite nuclear mass
approximation can be neglected.

B. GW approach

The GW approach provides direct access to the atom’s
ionization energies, which are obtained as the negatives
of its quasiparticle energies. We have therefore gener-
alized the GW approach for use on atoms in a finite
magnetic field. The main purpose of the present sec-
tion is to provide correct expressions for GW compu-
tations using complex-valued quantities (e.g., spinors).
Note that in the present work’s formulation, the numer-
ator of the first term on the right hand side of Eq. (11)
reads V ∗m(x)Vm(x′)φk(x)φ∗k(x′), whereas the correspond-
ing numerator of Ref. 31 reads Vm(r)V ∗m(r′)φl(x)φ∗l (x

′).

It is important to note that equation 10 of Ref. 31 can-
not be used when complex-valued quantities occur in the
theory. Instead, Eq. (11) of the present work should be
used.

We nevertheless closely follow Ref. 31 and define the
charge-fluctuation potential

Vm(x) =

∫ ∞
−∞

v(r− r′)ρm(x′)dx′ , (2)

where m denotes an excited state, where v(r) = 1/|r|
is the Coulomb potential, and where the space-spin-
coordinate x ≡ (r, σ) includes both space and spin co-
ordinates. The charge fluctuation is given as

ρm(x) =
∑
ia

[φ∗a(x)φi(x)Xm
ia + φ∗i (x)φa(x)Y mia ] . (3)

Here and in the following, we use the indices i, j, k, . . .
for occupied spinors, a, b, c, . . . for unoccupied (virtual)
spinors, and p, q, r, . . . for arbitrary spinors.

In Eq. (3), Xm
ia and Y mia refer to the elements “ia” of

the mth columns of the matrices X and Y, which are ob-
tained by solving the direct random-phase approximation
(dRPA) equation(

A B
−B∗ −A∗

)(
X Y∗

Y X∗

)
=

(
X Y∗

Y X∗

)(
ω 0
0 −ω

)
, (4)

with

X†X−Y†Y = 1 . (5)

On its diagonal, the matrix ω contains the real-valued
dRPA energies ωm of the excited states m, and the ele-
ments of the matrices A and B are given as

Aia,jb = (εa − εi)δijδab + (ia|bj) , (6a)
Bia,jb = (ia|jb) , (6b)

where εp is the energy level of the spinor φp, and where
the two-electron integrals are written in Mulliken nota-
tion,

(pq|rs) =

∫ ∫
φ∗p(x)φq(x)v(r− r′)φ∗r(x

′)φs(x
′)dxdx′ .

(7)

The correlation contribution to the optical potential in
the GW approximation is

Σc(x,x
′;ω) = − 1

2πi

∫ ∞
−∞

eiω
′0+Wc(x,x

′;ω′)

×G(x,x′;ω + ω′)dω′ ,

(8)

where G is the one-electron Green’s function

G(x,x′;ω) =
∑
p

φp(x)φ∗p(x
′)

ω − εp + iδsgn(εp − µ)
. (9)



3

Here, δ is a small positive number. The Fermi-level chem-
ical potential µ is chosen to lie between the energy levels
of the lowest unoccupied and highest occupied spinors,
and Wc is the correlation contribution to the linearly
screened potential,

Wc(x,x
′;ω) =

∑
m 6=0

[
V ∗m(x)Vm(x′)

ω − ωm + iδ
− Vm(x)V ∗m(x′)

ω + ωm − iδ

]
.

(10)
The ω′ integration in Eq. (8) is most easily carried out
by applying Cauchy’s residue theorem, yielding

Σc(x,x
′;ω) =

∑
k

∑
m6=0

V ∗m(x)Vm(x′)φk(x)φ∗k(x′)

ω + ωm − εk − iη

+
∑
c

∑
m6=0

Vm(x)V ∗m(x′)φc(x)φ∗c(x
′)

ω − ωm − εc + iη
,

(11)

where η = 2δ. We thus obtain the following working
equation for the real-valued correlation contribution to
the quasiparticle energy:

〈p|Σc(εp)|p〉 =
∑
k

∑
m 6=0

|(pk|ρm)|2D+
p,k,m

+
∑
c

∑
m 6=0

|(cp|ρm)|2D−p,c,m ,
(12)

with

D±p,q,m =
εp − εq ± ωm

(εp − εq ± ωm)2 + η2
. (13)

The two-electron integrals (pq|ρm) are computed as

(pq|ρm) =
∑
ia

[(pq|ai)Xm
ia + (pq|ia)Y mia ] . (14)

Eq. (12) is the central result of the present work.
Note that the spinor product φ∗p(x)φk(x) occurs in the
first term on the right-hand side of the equation while
φ∗c(x)φp(x) occurs in the second term. The complex con-
jugate of the spinor φp occurs in the first product but not
in the second. Obviously, correct complex conjugation is
essential when an external magnetic field is applied.

The exchange self-energy is

〈p|Σx|p〉 = −
∑
k

(pk|kp) , (15)

and in the eigenvalue-only self-consistent GW approach
(evGW ),32 the quasiparticle energies are computed by
means of the iterative scheme

ε(n+1)
p = ε(0)p + 〈p|Σc(ε(n)p ) + Σx − Vxc|p〉 , (16)

which starts with Kohn–Sham energies, ε(0)p = εKS
p , and

where Vxc is the exchange–correlation potential of the
underlying Kohn–Sham method. Note that all energies

εp are updated in each iteration.
The (linearized) G0W0 quasiparticle energies are com-

puted as33,34

εG0W0
p = ε(0)p + Zp〈p|Σc(ε(0)p ) + Σx − Vxc|p〉 , (17)

with

Zp =
{

1− 〈p|(∂Σc(ε)/∂ε)ε=ε(0)p
|p〉
}−1

. (18)

C. EOM-IP-CCSD approach

The starting point for equation-of-motion coupled-
cluster theory for ionization potentials (EOM-IP-CC) is
the coupled-cluster wave function

|ΨCC〉 = eT̂ |Φ0〉 , (19)

where Φ0 is a reference Slater determinant (usually the
Hartree–Fock determinant), and where

T̂ = T̂1 + T̂2 + . . . , (20a)

T̂n =

(
1

n!

)2∑
ij...

∑
ab...

tab...ij... â
†
aâ
†
b . . . âj âi (20b)

is the cluster operator.35,36 In the presence of a magnetic
field, ΨCC will be complex.16,17 As described in Ref. 35,
the coupled-cluster equations for a given N -electron wave
function are solved, yielding the amplitudes tab...ij... .

Using T̂ , the similarity transformed Hamiltonian H̄ =

e−T̂ ĤeT̂ is formed, which preserves the eigenvalue spec-
trum of Ĥ. In the presence of a magnetic field, Ĥ con-
tains the one-electron operators given in Eq. (1). Diag-
onalization in a basis constructed from (N−1)-electron
determinants {Φµ} using a modified Davidson method
for non-Hermitian matrices yields both the parameters
to describe the final wave functions Ψn and the corre-
sponding energies En,

H̄rn = Enrn. (21)

The eigenvector rn contains the amplitudes rµ,n that
parametrize the final wave function

|Ψn〉 = R̂n |ΨCC〉 , (22)

where R̂n is an operator containing strings of quasiparti-
cle creation operators Ω̂µ that produce the determinants
spanning the diagonalization space when acting upon Φ0,

R̂n =
∑
µ

rµ,nΩ̂µ. (23)

To obtain the EOM-IP-CC scheme accounting for single
and double excitations (EOM-IP-CCSD),35,37 T̂ is cho-
sen to be limited to T̂ = T̂1 + T̂2. Furthermore, the
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determinantal basis is limited to all determinants that
can be obtained by removing an electron from Φ0 plus
those determinants with one removed and one addition-
ally excited electron, that is,

R̂n =
∑
i

ri,nâi +
1

2

∑
ij

∑
b

rbji,nâ
†
bâj âi . (24)

The limitation of the diagonalization space leads to an
approximate eigenvalue spectrum. Notably, in com-
parison to diagonalization of the bare Hamiltonian in
the same basis the description of the states is greatly
improved.38–40 A more detailed description of the under-
lying theory and details on the implementation will be
published elsewhere.

III. COMPUTATIONAL DETAILS

The calculations were performed in fully decontracted
d-aug-cc-pwCVQZ basis sets (d-aug-cc-pVQZ for H and
He).41–43 The GW calculations were performed using
spherical shell components, whereas the coupled-cluster
calculations were performed using Cartesian Gaussians.
To avoid near-linear dependencies, basis functions were
removed from the uncontracted sets when the ratio of two
exponents within an angular-momentum set was smaller
than 1.35. Double augmentation (d-aug) for Li and Be
is not available in the literature. For these atoms, we
added diffuse functions by means of straightforward ex-
trapolation using the smallest two exponents ζn−1 and
ζn in each set: ζn+1 = ζ2n/ζn−1. Basis sets of the types
8s5p4d3f for H, 9s5p4d3f for He, 14s11p7d5f3g for Li and
Be, and 14s10p7d5f3g for B–Ne resulted.

Each GW calculation was performed in two indepen-
dent manners with the program packages Quest25,26 and
Turbomole,24 yielding identical results. In the GW
calculations, the aug-cc-pwCV5Z auxiliary basis set of
Hättig44 was used for the resolution-of-the-identity ap-
proximation of the two-electron integrals. The param-
eter η was set to 0.01 Eh in G0W0 calculations and to
0.03 Eh in evGW calculations. The evGW iterations
were considered to be converged when changes in the
quasiparticle energies of the HOMO and LUMO levels
were smaller than 10−6 Eh. The PBE0 functional was
used to approximate the Kohn–Sham level.45–47

With the magnetic field along the z-axis, the Hartree–
Fock and Kohn–Sham spin orbitals were constrained to
be eigenfunctions of the one-particle angular-momentum
and spin operators ˆ̀

z and and ŝz. This constraint was
also applied to the B = 0 case.

The EOM-IP-CCSD calculations were performed with
the coupled-cluster code of Hampe and Stopkowicz,17
which was interfaced to the London program.27,28

FIG. 1. evGW@PBE0 HOMO quasiparticle energies (eV)
plotted against the CCSD reference values. Color code: H
= dark gray, He = brown, Li = red, Be = orange, B = yel-
low, C = green, N = cyan, O = blue, F = violet, Ne = black.

FIG. 2. Normalized Gaussian distributions of the Hartree–
Fock, PBE0, evGW , and G0W0 deviations from the CCSD
reference values.

IV. RESULTS AND DISCUSSION

For all field strengths up to 0.25 B0 for the CCSD level
as well as for the PBE0 and Hartree–Fock (HF) levels,
we found the followingMS/ML quantum numbers for the
ground states of the atoms H, He, N, O, F, and Ne: – 1

2/0,
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FIG. 3. evGW@PBE0 correction to the Koopmans-like PBE0
ionization potentials (eV) as a function of the magnetic field
strength. Color code: H = dark gray, He = brown, Li = red,
Be = orange, B = yellow, C = green, N = cyan, O = blue,
F = violet, Ne = black.

TABLE I. Quantum numbers MS/ML for the atoms Li, Be,
B, and C as a function of the field strength.

B/B0

0.00 0.05 0.10 0.15 0.20 0.25

Li CCSD – 1
2/0 – 1

2/0 – 1
2/0 – 1

2/0 – 1
2/–1 – 1

2/–1
PBE0 – 1

2/0 – 1
2/0 – 1

2/0 – 1
2/0 – 1

2/–1 – 1
2/–1

HF – 1
2/0 – 1

2/0 – 1
2/0 – 1

2/0 – 1
2/–1 – 1

2/–1
Be CCSD 0/0 0/0 –1/–1 –1/–1 –1/–1 –1/–1

PBE0 0/0 0/0 –1/–1 –1/–1 –1/–1 –1/–1
HF 0/0 –1/–1 –1/–1 –1/–1 –1/–1 –1/–1

B CCSD – 1
2/–1 – 1

2/–1 – 1
2/–1 – 3

2/–1 – 3
2/–1 – 3

2/–1
PBE0 – 1

2/–1 – 1
2/–1 – 1

2/–1 – 3
2/–1 – 3

2/–1 – 3
2/–1

HF – 1
2/–1 – 1

2/–1 – 3
2/–1 – 3

2/–1 – 3
2/–1 – 3

2/–1
C CCSD –1/–1 –1/–1 –1/–1 –1/–1 –1/–1 –1/–1

PBE0 –1/–1 –1/–1 –1/–1 –1/–1 –1/–1 –1/–1
HF –1/–1 –1/–1 –1/–1 –1/–1 –2/0 –2/0

0/0, – 3
2/0, –1/–1, –

1
2/–1, and 0/0, respectively. For the

atoms Li, Be, B, and C, changes of the ground state as
a function of the magnetic field strength were observed.
The respective quantum numbers for each method and
field strength are given in Table I.

FIG. 4. evGW@PBE0 ionization potentials (eV) as a function
of the magnetic field strength. Color code: H = dark gray,
He = brown, Li = red, Be = orange, B = yellow, C = green,
N = cyan, O = blue, F = violet, Ne = black.

A. Quasiparticle energies

Tables II and III show the computed quasiparticle en-
ergies of the highest occupied molecular orbital (HOMO)
at the G0W0@PBE0 and evGW@PBE0 levels. The abso-
lute values of these quasiparticle energies refer to IPs with
respect to a removed electron at infinite distance, at rest,
and without magnetic field. These absolute quasiparticle
energies can be compared with the EOM-IP-CCSD re-
sults given in Table IV. In Figure 1, the evGW@PBE0
absolute quasiparticle energies are plotted against the
EOM-IP-CCSD values, which we regard as reference val-
ues. The mean deviation of the evGW@PBE0 values
from these reference values amounts to 0.20 eV, and the
deviations are scattered with a standard deviation of 0.15
eV about the mean deviation. The mean absolute devia-
tion and the root-mean-square deviation amount to 0.22
and 0.25 eV, respectively.

The evGW@PBE0 HOMO quasiparticle energies are
slightly more accurate than their G0W0@PBE0 coun-
terparts, which show a mean deviation of −0.25 eV
with a standard deviation of 0.25 eV. Figure 2 shows
the distributions of the evGW@PBE0 and G0W0@PBE0
deviations, assuming that these are Gaussian distribu-
tions. In the figure, a comparison is also made with the
Hartree–Fock and Kohn–Sham (PBE0) values obtained
from Koopmans’ theorem (as the negative of the energy
of the HOMO). The PBE0 values are very poor (visible in
the lower left corner of Figure 2), and the GW quasiparti-
cle energies yield dramatically improved values relative to
the EOM-IP-CCSD values. The Hartree–Fock and PBE0
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mean deviations are 0.46 and −4.1 eV, respectively, with
standard deviations of 0.62 and 1.3 eV.

The error distributions shown in Figure 2 for the atoms
H–Ne in various magnetic fields are in accord with the
observations made in earlier density-functional theory
(DFT), G0W0, and evGW studies of ionization potentials
of molecules in the absence of external fields, whereG0W0

is also a dramatic improvement over DFT, and where
evGW is also a significant improvement over G0W0.32,33
The correction to the IP by the GW approach is in fact
only weakly dependent on the magnetic field strength.
This is shown in Figure 3, where the evGW increment
(∆IP) is plotted. Except for Li and Be, the evGW incre-
ment is nearly constant in the range 0 ≤ B ≤ 0.25 B0.
The data used to generate Figure 3 are given in the Sup-
plementary Material.

B. Ionization potentials in a magnetic field

When calculating IPs, we must take into account the
energy of the emitted electron in the magnetic field, as-
suming that the electron goes into the lowest Landau
level consistent with the electron’s orbital and spin an-
gular momentum. In atomic units, the Landau energy is
given by49

ELandau
n,m`,ms

=
(
n+ 1

2m` + 1
2 |m`|+ms + 1

2

)
B , (25)

where n = 0, 1, 2, . . . is the radial quantum number of the
electron, m` = 0,±1,±2, . . . its orbital angular momen-
tum quantum number, and ms = ±1/2 its spin angular
momentum quantum number. Assuming no motion in
the field direction, the lowest energy of the emitted elec-
tron is given by

(
1
2m` + 1

2 |m`|+ms + 1
2

)
B. Noting that

the electron’s Zeeman energy is given by
(
1
2m` +ms

)
B,

we may view the remainder
(
1
2 |m`|+ 1

2

)
B ≥ 0 as the

diamagnetic contribution to the Landau energy, the zero-
point energy 1

2B arising from the confinement of the elec-
tron by the magnetic field. For negative orbital angular
momentum m` < 0, the negative orbital Zeeman energy
is cancelled by a diamagnetic contribution, giving rise to
an infinite degeneracy of Landau levels with non-positive
m`.

Within the GW approximation, the IP of an atom in
a magnetic field B is now given by

IPm`,ms
(B) =− εm`,ms

(B)

+ 1
2 (m` + |m`|+ 2ms + 1)B , (26)

where εm`,ms
(B) is the GW quasiparticle energy of the

ionized orbital and 1
2 (m` + |m`|+ 2ms + 1)B the Lan-

dau energy of the emitted electron. The ionization
threshold for a given electronic state is the lowest IP of
the atom, bearing in mind that the ionization with the
lowest IP may not be from the HOMO but from a lower
spin orbital of different angular momentum if this gives
a lower Landau energy.12,13

In Figure 4, we have plotted the lowest IP of each
atom H to Ne calculated at the evGW@PBE0 level of
theory for field strengths B ≤ 0.25 B0. The data used
to generate Figure 4 are given in the Supplementary Ma-
terial. The IPs increase monotonically with increasing
field strength except for discontinuous changes when the
ground state changes, which in the plotted interval oc-
curs for Li, B, and Be. At B = 0.170 B0, the IP of Li
changes from 7.23 to 7.11 eV, at B = 0.058 B0, the IP of
Be changes from 9.92 to 8.10 eV, and at B = 0.115 B0,
the IP of B changes from 11.29 to 10.91 eV. Information
about the electronic states of the atoms and the ioniza-
tion processes is given in Table V.

From the plots in Figure 4, we see that the IPs increase
in a near-linear manner with increasing field strength.
To understand this behavior, we note that the electron’s
Zeeman energy 1

2m`B +msB is conserved in the ioniza-
tion process. Subtracting this energy contribution from
the quasiparticle energy εm`,ms

(B) to obtain εdiam`,ms
(B)

and from the Landau energy in Eq. (26), we arrive at the
following expression for the IP:

IPm`,ms(B) = −εdiam`,ms
(B) + 1

2 (|m`|+ 1)B . (27)

Since εdiam`,ms
(B) depends quadratically on B for small B,

it has a zero slope at B = 0. The initial slope of the IP
curves in Figure 4 is therefore equal to 1

2 |m`|+ 1
2 . With

increasing field strength, this slope decreases slightly, in a
concave manner. In the considered field interval, there-
fore, the field dependence of the IPs is dominated by
the linearity of the Landau energy 1

2 (|m`|+ 1)B, with a
much smaller quadratic contribution from the quasipar-
ticle energy. We conclude that, for the field strengths
considered here, the increased stability of atoms to ion-
ization in a magnetic field is caused by an increase in the
zero-point Landau energy of the emitted electron rather
than by changes in the atom.

For the atoms considered by us, the slope of the IP
curve is approximately one half atomic unit for ionization
from 1s, 2s, or 2p0 but one atomic unit for ionization from
2p−1, as occurs for the Li atom in the 2P state, the Be
atom in the 3P state, the B atom in the 2P state, and for
the O atom in the 3P state; see Figure 4 and Table V.

As anticipated, ionization in a magnetic field does not
always occur from the HOMO. Specifically, in a suffi-
ciently strong magnetic field B ≤ 0.25 B0, we found that
C, N, and Ne do not ionize from the 2p±1 HOMO but
from the lower-lying 2p0 orbital, whose ionized electron
has a smaller Landau energy.

Since the Zeeman energy is conserved upon ionization,
the ionization of He occurs with equal probability from
the 1sα and 1sβ spin orbitals. Likewise, Be ionizes from
2sα and 2sβ, while Ne ionizes from 2p0α and 2p0β.

Interestingly, there are only two distinct IP values from
the six 2p spin orbitals of Ne: the lowest, doubly degen-
erate IP from 2p0α and 2p0β and the higher, quadruply
degenerate IP from 2p±1α and 2p±1β.
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C. Comparison with literature values

There are many studies of ionization energies of neu-
tral atoms and their ions in strong magnetic fields – in
particular, for H, He, Li, and Be. We compare mostly
with the FCI results of Schmelcher and coworkers for
helium,9,11 for lithium12 and for beryllium.13 The exten-
sive studies of Ivanov and Schmelcher for H–He at the
Hartree–Fock level of theory and of Schimerczek et al.14
for He–Fe at the DMC level of theory assume near cylin-
drical symmetry of the atoms rather than near spherical
symmetry as assumed by us. Their studies are therefore
for fields stronger than those considered by us (at least
B ≥ 0.5 B0 rather than B ≤ 0.25 B0) and not relevant
for comparisons with our study.

Our evGW/PBE0 and EOM-IP-CCSD ionization en-
ergies for helium agree well with the FCI values of Becken
et al.9 and the explicitly correlated values of Zhao et
al.,50 the EOM-IP-CCSD results being 0.012–0.014 eV
lower than the FCI results and about 0.022 eV lower than
the explicitly correlated results over the range 0 ≤ B ≤
0.25 B0. The evGW/PBE0 ionization energies are about
0.1 eV larger than the FCI and explicitly correlated val-
ues in this range.

For the lithium atom, the crossover from 2S to 2P oc-
curs at 0.17 B0 in our PBE0 calculations and at 0.19 B0

in the FCI calculations of Al-Hujaj and Schmelcher.12
In the 2S state at field strengths 0, 0.05 B0, 0.10 B0,
and 0.15 B0, the EOM-IP-CCSD ionization energies of
5.39, 5.97, 6.39 and 6.68 eV agree roughly with the FCI
values of 5.46, 6.13, 6.54, and 6.89 eV (the last value
interpolated). The corresponding evGW@PBE0 values
are 5.78, 6.38, 6.82, and 7.13 eV. The variable differences
between the evGW/PBE0 and FCI calculations reflect
a less smooth field dependence of the ionization poten-
tial in the FCI calculations than in the evGW@PBE0
calculations plotted in Figure 4. See also Figure S1
in the Supplementary Material. For the 2P state, the
EOM-IP-CCSD ionization potential of 7.12 eV obtained
at 0.2 B0 compares well with FCI result of 7.11 eV; no
other comparisons are possible for this state. Recently,
Salas et al.20 presented explicitly correlated calculations
on lithium in the 2S state, but a graphical representation
makes a comparison with our results difficult.

For the beryllium atom, there are, in addition to
the FCI calculations by Al-Hujaj and Schmelcher,13
full-core-plus-correlation (FCPC) calculations by Wang
and Qiao.51 Our evGW@PBE0 and EOM-IP-CCSD
singlet ionization potentials agree rather poorly with
the FCI results, the EOM-IP-CCSD values of 9.32 eV
at zero field and 9.95 eV at 0.05 B0 being considerably
higher than the corresponding FCI values of 8.59 and
9.28 eV. The agreement is better with the FCPC values
of 9.19 and 9.81 eV (interpolated) at zero field and at
0.05 B0, respectively.51 In view of the constant shift of
0.13–0.14 eV of the EOM-IP-CCSD values relative to
the FCPC values, and since our EOM-IP-CCSD value
of 9.323 eV at zero field agrees to within 0.001 eV with

the experimental IP of Be (see Ref. 48), we consider the
EOM-IP-CCSD values more accurate than the FCI and
FCPC values. For ionization from the triplet state, the
agreement between the EOM-IP-CCSD and FCI results
is better than for ionization from the singlet state.
At 0.1 B0 and 0.2 B0, our EOM-IP-CCSD ionization
energies of 9.02 and 10.96 eV are slightly higher than
the FCI values 8.82 and 10.72 eV, respectively. Wang
and Qiao report the values 8.83 and 10.76 eV for these
field strengths.51

V. CONCLUSIONS

We have computed quasiparticle energies of the atoms
H–Ne in the presence of a magnetic field of strength
B ≤ 0.25 B0 at the GW levels of theory, comparing with
HF, DFT, and EOM-IP-CCSD calculations. The corre-
sponding first ionization energies have been calculated,
analysed, and compared with available literature data.
Our study is the first systematic study of ground-state
ionization potentials for first row atoms at field strengths
appropriate for magnetic white dwarfs.

Our study shows that the evGW@PBE0 model pro-
vides quasiparticle energies in good agreement with
CCSD values, slightly outperforming the G0W0@PBE0
model. These values are more accurate than those ob-
tained from HF theory and represent a substantial im-
provement over density-functional values using the PBE0
functional, which significantly underestimate ionization
potentials. Our EOM-IP-CCSD ionization energies agree
well with the best literature data, giving a uniformly
good description of the ionization potentials of the first-
row atoms in a magnetic fields of strength B ≤ 0.25
B0. At these field strengths, the ionization potentials
increase in a near-linear fashion with the applied field,
arising from the linear dependence of the Landau energy
of the ionized electron in the field. The increased stabil-
ity of atoms under such conditions therefore arises mostly
from the increased energy of the ionized electron rather
than from changes in the electronic structure of the atom.

SUPPLEMENTARY MATERIAL

See supplementary material for all of the raw data that
have been used to generate Figures 3 and 4. Figure S1
compares the present work’s results for Li with data from
the literature.
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TABLE II. G0W0@PBE0 quasiparticle energies (in eV) of the HOMO level as a function of the magnetic-field strength.

B/B0

Atom IPa/eV 0.00 0.05 0.10 0.15 0.20 0.25

H 13.606 −13.16 −13.83 −14.48 −15.11 −15.71 −16.29

He 24.592 −24.05 −23.36 −22.66 −21.95 −21.21 −20.47

Li 5.392 −5.73 −6.34 −6.81 −7.14 −7.49 −8.13

Be 9.323 −9.13 −8.40 −8.77 −9.81 −10.75 −11.61

B 8.300 −8.01 −9.34 −10.57 −10.89 −11.39 −11.84

C 11.267 −11.01 −11.67 −12.28 −12.85 −13.38 −12.57

N 14.553 −14.14 −14.12 −14.05 −13.93 −13.76 −13.55

O 13.618 −13.19 −13.17 −13.11 −13.00 −12.85 −12.65

F 17.441 −17.08 −16.37 −15.65 −14.91 −14.13 −13.33

Ne 21.616 −21.06 −19.68 −18.28 −16.85 −15.38 −13.89

a) Zero-field CCSDTQ5 ionization potential from Ref. 48.

TABLE III. evGW@PBE0 quasiparticle energies (in eV) of the HOMO level as a function of the magnetic-field strength.

B/B0

Atom IPa/eV 0.00 0.05 0.10 0.15 0.20 0.25

H 13.606 −13.56 −14.22 −14.86 −15.47 −16.06 −16.62

He 24.592 −24.68 −23.99 −23.29 −22.56 −21.82 −21.06

Li 5.392 −5.78 −6.38 −6.82 −7.13 −7.52 −8.14

Be 9.323 −9.21 −8.47 −9.06 −10.09 −11.03 −11.87

B 8.300 −8.40 −9.72 −10.94 −11.27 −11.75 −12.18

C 11.267 −11.51 −12.16 −12.77 −13.32 −13.71 −12.76

N 14.553 −14.75 −14.72 −14.64 −14.51 −14.33 −14.11

O 13.618 −13.77 −13.74 −13.67 −13.55 −13.38 −13.18

F 17.441 −17.74 −17.05 −16.32 −15.56 −14.77 −13.96

Ne 21.616 −21.84 −20.47 −19.05 −17.61 −16.14 −14.63

a) Zero-field CCSDTQ5 ionization potential from Ref. 48.

TABLE IV. EOM-IP-CCSD reference values (in eV) as a function of the magnetic-field strength.

B/B0

Atom IPa/eV 0.00 0.05 0.10 0.15 0.20 0.25

H 13.606 13.60 14.27 14.90 15.50 16.06 16.60

He 24.592 24.57 23.88 23.17 22.45 21.70 20.94

Li 5.392 5.39 5.97 6.39 6.68 7.12 7.73

Be 9.323 9.32 8.59 9.02 10.04 10.96 11.79

B 8.300 8.35 9.66 10.87 11.11 11.59 12.02

C 11.267 11.32 11.98 12.58 13.13 13.37 12.42

N 14.553 14.57 14.55 14.46 14.33 14.14 13.91

O 13.618 13.57 13.55 13.47 13.34 13.17 12.95

F 17.441 17.37 16.67 15.95 15.19 14.40 13.59

Ne 21.616 21.49 20.11 18.70 17.26 15.78 14.27

a) Zero-field CCSDTQ5 ionization potential from Ref. 48.
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TABLE V. IPs of the first-row atoms in their ground states up to field strength B = 0.25 B0. For each atom, we have listed the
zero-field term symbol and ground-state electron configuration, the ionized spin orbital (ISO), its order number n in HOMO-n,
the Landau energy, and the initial IP slope in units of Eh/B0. When more than one ground state exists in the considered field
range, we give information on each state.

Atom Field Electronic Statea ISOb HOMO-n Landau Slope
H 2S(1s) 1sβ 0 0 1

2

He 1S(1s2) 1sα 0 B 1
2

1sβ 1 0 1
2

Li ≤ 0.170 2S(1s22s) 2sβ 0 0 1
2

≥ 0.170 2P(1s22p−1) 2p−1β 0 0 1
Be ≤ 0.058 1S(1s22s2) 2sα 0 B 1

2

2sβ 1 0 1
2

≥ 0.058 3P(1s22s2p−1) 2p−1β 0 0 1
B ≤ 0.115 2P(1s22s22p−1) 2p−1β 0 0 1

≥ 0.115 4P(1s22s2p−12p0) 2p0β 0 0 1
2

C 3P(1s22s22p−12p0) 2p0β 0, 1 0 1
2

N 4S(1s22s22p−12p02p+1) 2p0β 1, 2 0 1
2

O 3P(1s22s22p2−12p02p+1) 2p−1α 0 B 1
F 2P(1s22s22p2−12p202p+1) 2p0α 0 B 1

2

Ne 1S(1s22s22p2−12p202p2+1) 2p0α 1 B 1
2

2p0β 4 0 1
2

aSingle occupied spin orbitals have beta spin. Zero-field notation used.
b All degenerate ionization processes are given.


