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Abstract

While successful in the structural determination of ordered biomolecules, the spec-

troscopic investigation of oligopeptides in solution is hindered by their complex and

rapidly changing conformational ensemble. The measured circular dichroism (CD) spec-

trum of an oligopeptide is an average of the signals coming from all the ensemble of

microstates, severely limiting its interpretation, in contrast to the successful structural

determination of ordered biomolecules. Spectral deconvolution methods to estimate the

secondary structure contributions in the ensemble are still mostly based on databases

of larger ordered proteins. Here we establish how the interpretation of CD spectra of

oligopeptides can be enhanced by the ability to compute the same observable from a set

of atomic coordinates. Focusing on two representative oligopeptides featuring a known

propensity towards an α-helical and β-hairpin motif, respectively, we compare and

cross-validate the structural information coming from: deconvolution of the experimen-

tal CD spectra, sequence-based de novo structure prediction and molecular dynamics

simulations based on enhanced sampling methods. We find that small conformational

variations can give rise to significant changes in the CD signals. Therefore, while for the

simpler conformational landscape of the α-helical peptide de novo structure prediction

can already give reasonable agreement with the experiment, an extended ensemble of

conformers needs to be considered for the β-hairpin sequence.

Keywords
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ble

Introduction

Oligopeptides and disordered proteins are characterized by an ensemble distribution of dy-

namic and rapidly changing conformers (microstates).1 Fundamental understanding of such
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conformational ensembles is key to the basic principles of protein folding and misfolding,

with important implications for the aggregation of proteins and their related diseases.2,3 In

these cases, solid-state based techniques such as X-ray diffraction, while extremely successful

in the structural determination of ordered proteins, are not informative, because they miss

a full consideration of the ensemble. Solution-based experimental structural investigation

methods, e.g. NMR or optical spectroscopies, also deliver incomplete information, since

they output a signal representative of the conformational macrostate, i.e. the Boltzmann

average of all ensemble microstates. However, the measured signals can be commonly anal-

ysed to estimate of the relative population of typical secondary structure elements within

this ensemble using deconvolution approaches.4–7

Among other solution-based methods, electronic circular cichroism (CD) spectroscopy is

widely used for identifying and quantifying the secondary structures of solvated biomolecules,

using regression techniques based on datasets of proteins with both accessible CD spectra

and crystal structures.8 A more direct observation of the conformations of oligopeptides

can be achieved via computational approaches such as all-atom molecular dynamics (MD)

based on classical force fields, given their proven ability to predict the dynamics of biomolec-

ular systems with high accuracy. However, so-called enhanced-sampling MD methods are

required to capture with statistical relevance all rare events contributing to intramolecular

conformational changes, and thus to explore the conformational ensemble of oligopetides.9 In

particular, Replica Exchange with Solute Tempering (REST)10 in combination with Meta-

Dynamics (MetaD)11 is an advanced-sampling MD method that has been successfully used

for this purpose.12–15

In this context, the ability to compute experimental observables from RESTMetaD tra-

jectories constitutes a valuable tool of cross-validation and can strengthen the interpretation

of the experimental data. The combination of CD spectroscopy and atomistic simulations has

been indeed successfully employed to gain some atomistic understanding of conformational

ensembles.14,15 This is due to the fact that a CD spectrum can be computationally predicted
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based on the atomic positions of a given biomolecular conformation.16–18 When dealing with

ensembles, however, the need to consider thousands of different conformations requires a

computationally efficient approach for predicting the CD spectra of the corresponding mi-

crostates. A popular approach is provided by the DichroCalc software platform,19 which

employs the so-called matrix method to calculate CD ellipticities from first principles using

exciton theory.

While promising in general, this approach has been proven to work best for oligopeptides

and proteins with high α-helical secondary structure content.14,15 This is due to the nature

of the electronic transitions in CD, which can be well captured by only a few matrix elements

in the case of α-helices.19 Moreover, the regularity of the α-helical hydrogen-bond pattern

produces intense spectral features in well-defined wavelength regions, facilitating the com-

putational prediction.6 On the quest towards a generalization of this approach, it would be

desirable to tackle the higher structural variability of conformations associated with other

secondary structure motifs, in particular β-sheets and turns.4,5

The aim of this paper is to move in this direction, by choosing two oligopetides fea-

turing, respectively, a preferential α-helical and a β-hairpin conformation, and determining

both experimentally and theoretically their CD spectra in order to evaluate and compare

their conformational ensembles. For the helical model peptide, we choose the 4DAR5 se-

quence,20,21 which some of us investigated previously,14 demonstrating for the first time the

possibility of predicting experimental CD spectra from enhanced-sampling MD simulations.

For the β-hairpin model, we choose the C-terminal fragment of the B1 domain of protein G

(called GB1 throughout this paper), which has been intensely studied experimentally and

theoretically.22–30 Our analysis will focus both on rapid de novo secondary structure predic-

tion tools and more demanding RESTMetaD simulations, from which CD spectra will be

calculated and compared with our own experiments.

In doing so, we will attempt to separately assess the predictive power and limitations

of two different key elements involved in the theoretical CD prediction, namely (i) the pa-
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rameter sets of the DichroCalc method, and (ii) the influene of the force fields used in the

MD simulations. The latter is crucial to predict the correct equilibrium distribution of

conformational microstates, a task that has proven very hard especially for short peptides

with non-helical structures. The former should lead to quantitatively correct spectra when

applied to the correct ensemble of microstates. The consideration of peptides with known

conformational phase spaces will allow us to distinguish between these two potential sources

of errors and thus help us apply the same methodology to new oligopeptide sequences with

unknown conformations in future studies.

Materials and Methods

Circular dichroism (CD) experiments

CD experiments were performed with oligopeptides with sequences Ac-DDDDAAAAARRRR-

Am (4DAR5), GEWTYDDATKTFTVTE (GB1-uncapped) and Ac-GEWTYDDATKTFTVTE-

Am (GB1) synthezised by JPT (purity≥ 95 % Berlin, Germany). The as-purchased oligopep-

tide 4DAR5 was dissolved in ddH2O (18MΩ cm−1, MilliQ, Synergy, Millipore, Germany) at

a stock concentration of 1mg ml−1, as quantified by absorbance at 205 and 214 nm.31,32

The as-purchased oligopeptides GB1 and GB1-capped were dissolved in a 3mM PBS solu-

tion (41mM NaCl; P4417, Sigma Aldrich, Germany) at a concentration of 1mg ml−1, as

quantified by absorbance at 205 and 214 nm.

CD spectra were recorded with an Applied Photophysics Chirascan spectrometer running

the Pro-Data Chirascan software (v4.2.22). At least three repeat scans for each sample were

measured at 25◦C, over the wavelength range of 190 to 250 nm using intervals of 1 nm, in

Suprasil quartz cells (Hellma UK Ltd.) with a pathlength of 0.05 cm. The scans were

averaged, the respective baseline subtracted and the resulting net spectra smoothed with a

Savitsky-Golay Filter using smoothing windows of 5 to 10 data points.
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The mean residue ellipticity (ΘMRE) was defined as33

ΘMRE =
Θ

c · l · n
(1)

where Θ is the raw CD ellipticity (mdeg), n is the number of amino acids in the solvated

peptide, l is the pathlength of the used quartz cuvette (mm) and c the molar concentration of

the peptides. To estimate the relative amount of specific secondary conformational elements

in the samples, the CD spectra were analysed using the BeStSel webserver.4,5 This analysis

decomposes the whole CD spectrum in terms of individual secondary structure contributions

using an extended set of eight independent elements with special emphasis on the different

types of β-sheets defined by different twist angles in the polypeptide backbone.4,5

De novo secondary structure prediction

The intrinsic conformational propensities of the two investigated peptides are evaluated with

the PEP-Fold secondary structure prediction server.34–36 PEP-Fold first predicts Structural

Alphabet (SA) letters from the primary peptide sequence using a hidden Markov model

approach. The letter fragments are then assembled by a Greedy procedure driven by a

modified OPEP coarse-grained force field energy score followed by a clustering procedure,

leading to a maximum of five most-probable 3D structures.

Enhanced sampling Molecular Dynamics (MD) simulations

MD simulations were performed with LAMMPS,37 employing the Amber03 force field,38,39

following Meissner et al.14 In the GB1 case, a further simulation employing the Amber14SB

force field was performed, for comparison.40 Visualization and analysis of the trajectories

were performed with VMD.41 Free energy profiles for both peptides, in capped form, along

the respectively chosen collective variables were computed with Replica Exchange with So-

lute Tempering (REST)10,42,43 combined with Metadynamics (MetaD),11 as employed in
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previous works.13,14 Both peptides were defined as the ‘solute’ in the REST simulations,

whose temperature was scaled in the different system replicas (‘hot’ system region). The

water and the salt ions remained at the base temperature T0 = 300K (‘cold’ system region).

For the peptide 4DAR5 we used seven replicas at temperatures Ti corresponding to 300,

325, 350, 375, 400, 425 and 450K, respectively.14 For the peptide GB1 ten replicas were

applied using temperatures of 300, 328, 360, 394, 432, 474, 519, 569, 624 and 684K following

a geometric distribution. Defining βi = 1/(kBTi), where kB is the Boltzmann constant, the

Lennard-Jones parameters ε of the hot atoms in the i-th replica were scaled by the factor

βi/β0, and their charges q by the factor
√
βi/β0. Of the bonded interactions, only the di-

hedral force constants were scaled. Exchanges between the replicas were attempted every

0.5 ps, following a Metropolis-Hastings acceptance criterion.

Further conformational sampling was achieved by means of the ‘well-tempered’ metady-

namics method introduced by Barducci et al.,11 with a bias factor of 10. For the peptide

4DAR5 the helicity H was used as the collective variable (CV).14 This was defined, as in

PLUMED 1.3,44 by the deviation of the dihedral angles Φj and Ψj from the ideal angles of

an α-helix, Φ0 = −68.75◦ and Ψ0 = −45.0◦ :14

H =
1

N − 2

N−1∑
i=2

i+1∏
j=i−1

1

4

[
cos(Φj − Φ0) + 1

][
cos(Ψj −Ψ0) + 1

]
(2)

with N corresponding to the total number of amino acids in the helix (N = 13) and the

index i spanning between 11 residues. An ideal helix assumes a value H = 100%, whereas a

completely unordered structure assumes a value H = 0%. In accordance with Bussi et al.,12

for GB1 the radius of gyration RGyr and the number of hydrogen bonds NH were used as

the CVs. They are defined in PLUMED 144 as follows:

RGyr =

(∑n
i mi|ri − rCOM |2∑n

i mi

) 1
2

, (3)

where mi and mi are the positions and masses of the heavy atoms of the backbone of the
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peptide, respectively, and rCOM is the position of the center of mass;

NH =
∑
i∈O

∑
j∈H

1−
( (ri−rj)

d0

)6
1−

( (ri−rj)
d0

)12 , (4)

with d0 = 2.5 Å, and the sum running only over the O and H atoms of the peptide back-

bone.12 Along all CVs, Gaussian hills with a height of of 0.7 kcalmol−1 were deposited with

a frequency of 0.5 ps−1. The widths of the Gaussian hills were 0.1, 0.25 and 0.05 Å for H,

RGyr and NH , respectively.

Structural and cluster analysis

Cluster analysis of the conformational microstates sampled by the RESTmetaD trajectories

in selected regions of the free energy landscapes was performed using the GROMOS algo-

rithm,45 as implemented in Gromacs, according to the differences in the root-mean square

displacement (RMSD) values of individual conformers, using an RMSD cutoff of 3Å applied

to the atoms of the backbone. The conformers were aligned by a rigid rotation and trans-

lation to minimize the RMSD variation prior to clustering. For comparison, a hierarchical

clustering was performed, on selected regions, using the distance in inter-residue contact

maps. For further validation, average inter-residue contact maps were also computed for the

most populated clusters obtained by backbone RMSD clustering. The secondary structures

of the most populated clusters were also analyzed via the STRIDE algorithm.46 The Φ and

Ψ dihedrals of the peptides backbones along the trajectories were computed via the ‘chi’

program in Gromacs to create Ramachandran plots.

Calculation of theoretical CD spectra and analysis

Theoretical CD spectra of individual conformational microstates were calculated using the

DichroCalc web interface.17,19 DichroCalc estimates the mutual interactions between elec-

tronic transitions with a model exciton Hamiltonian matrix;19 the sign and magnitude of
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the interactions is dictated by the relative orientation and separation of chromophores, i.e.,

by the precise structure of the protein/peptide. The matrix elements were computed using

three different parameter sets modelling the n→ π∗ and πnb → π∗ transitions of the peptide

bond chromophore, namely: a set derived from semi-empirical calculations,47 a set based

on ab initio calculations,48 and another ab initio set in which the vibrational structure of

the πnb → π∗ transition is explicitly included.49 The vibrational structure, arising from the

Franck Condon progression of the πnb → π∗ transition, contributes to the broadening of CD

bands and is thus important to improve the agreement with experimental spectra. In all cal-

culations, neither the πb → π∗ transition nor charge-transfer transitions were included. The

calculated line spectra were convoluted with Gaussian bands of bandwidth 12.5 nm, except

for the spectra calculated with the parameters incorporating vibrational structure, where a

narrower bandwidth of 10 nm was applied, to avoid double-counting.

Results

Circular dichroism experiments

We first report the experimentally measured CD spectra of the two model peptides 4DAR5

and GB1. In agreement with previous investigations,20,21 the CD spectrum of 4DAR5 is

characterized by two minima at 208 and 222 nm and a maximum at 190 nm, an overall

shape which is commonly associated with helical conformations (Figure 1 a). However, the

BestSel analysis of the spectrum reveals a helical content of only 24.5 ± 0.8 % and a major

contribution of unordered conformations (‘other’ elements). The CD spectrum of GB1 is

reported in Figure 1 b. Since a capping of the end groups has been reported to stabilize the

β-hairpin conformation of the peptide,50 we have also measured the CD signal for the native

form of GB1 (GB1-uncapped, Figure S1 in Supporting Information). However, we do not

report any difference between the two forms, suggesting that the acetyl-amidation does not

have a significant effect on the conformational ensemble. In the following, we will only refer
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Figure 1: Experimental CD spectra of 4DAR5, dissolved in ddH2O (a), and GB1 dissolved
in a 3mMPBS solution (b). The amount of secondary structure elements obtained by
spectral analysis is reported as pie charts in the insets, together with the primary sequences.
The shaded area in the GB1 spectrum indicates a region of limited accessibility due to the
prominent absorbance of the buffer solution.

to the capped versions of GB1. The spectrum shows a minimum at 200 nm and a shoulder

ranging from 210 nm to 230 nm. The wavelength region below 200 nm is not accessible,

because the poor solubility of the peptide in pure water makes the usage of phosphate buffer

saline (PBS) necessary, resulting in too strong absorption in this spectral region.51 BeStSel

predicts the macrostate secondary structure to comprise of two different anti-parallel β-sheet

components (27.2± 1.4 % in total), a ’turn’ component (16.2± 1.4 %) and unordered ’other’

components (c.f. Figure 1 b)). Indeed, NMR experiments on GB1 in solution also reveal

that the peptide is only 30 % folded in water at 25◦ C.22

De novo structural predictions

We now evaluate the intrinsic conformational propensity of 4DAR5 and GB1 with the Pep-

Fold de novo secondary structure prediction server.34–36

All five most-probable structures for 4DAR5 (labelled PF1 to PF5) present a helical con-
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formation with different extent of disorder in their termini (Figure 2 (a)). For all structures,

we compute the corresponding CD spectra using DichroCalc and three different parameter

sets, as described in the Methods section (Figure 2 (b)). The semi-empirical parameter set

gives a very good qualitative agreement to the experimental spectrum, predicting the two

minima at 206 and 222 nm for all structures. The structures in best agreement (PF1 and

PF3) present a helicity value H of 65% and 60%, respectively, as computed with equation 2.

The ab initio parameter set is not able to reproduce the experimental CD spectrum for any

of the structures, predicting a single minimum at about 210 nm. The inclusion of vibrational

transitions (ab initio + vib) improves the predictions and reveals the two minima at 208

and 222 nm. However, the (negative) signal intensities are overestimated with respect to

experiment.

Figure 2: De novo predicted secondary structures and calculated CD spectra for the 4DAR5
peptide. Structure naming refers to the internal Pep-Fold classification. (a) Visualization
of the predicted structures from Pep-Fold.34–36 (b) Calculation of the associated CD spectra
using three different parameter sets implemented in DichroCalc.19
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The predicted structures for GB1 all present β-hairpin configurations, differing mostly in

the number of residues within the antiparallel β-strands and in their mutual twisting (Figure

3 (a)). Irrespectively of the employed parameter set, a large variability can be observed in

the corresponding DichroCalc CD spectra (Figure 3 (b)). The spectra of PF1, PF3 and PF4

present maxima in the region between 200 and 220 nm, which are entirely absent in the

experiments. Only the ‘ab initio + vib’ parameter set predicts spectra for PF2 and PF5

that follow at least qualitatively the experimental spectral shape. A further validation of the

parameter sets was also performed on selected results of the enhanced sampling simulations,

vide infra and Supporting Information.

Figure 3: De novo predicted secondary structures and calculated CD spectra for the GB1
peptide. Structure naming refers to the internal Pep-Fold classification. (a) Visualization of
the predicted structures from Pep-Fold34–36. (b) Calculation of the associated CD spectra
using three different parameter sets implemented in DichroCalc.19
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Enhanced sampling simulations

The whole conformational ensembles of the two peptides are explored with RESTmetaD,

following our previous work.14 The free-energy profile associated with the folding/unfolding

of the 4DAR5 peptide in TIP3P water along the collective variable H is reported in Figure 4

(top panel). As already discussed in Ref.,14 and also obtained before for the folding/unfolding

of the C-terminal helix of chymotrypsin,15 the shallow profile presents a series of 12 dicrete

local minima with depths of about 0.8 kcalmol-1, corresponding to different numbers of amino

acids in the folded conformation, as an effect of the helicity CV definition (Eq. 2). The global

profile’s minimum is located at about H = 65%. Boltzmann integration of the entire profile

predicts an average value of helicity H = 63.5%, which agrees very well with the prediction

of the de novo PepFold server.

Following the established literature, the RESTmetaD simulations of GB1 in pure water

are performed biasing the dynamics along both the radius of gyration RGyr (Eq. 3) and the

number of interstrand hydrogen bonds NH (Eq. 4).

The resulting two-dimensional free energy profile is reported in Figure 5, top right. It

shows a shallow triangularly shaped basin, characterized by three main minima. The first

minimum is located in an elongated valley region around NH ' 0, spanning the RGyr range

between 5 and 12Å. This region, together with the second minimum located nearby (around

NH ' 1 and RGyr ' 6 Å), corresponds to a molten state dominated by partially folded

α-helical structures (vide infra). The third minimum, corresponding to the native β-hairpin

conformation, is located in a broader region with 3 < NH < 5 and RGyr ' 7. It is important

to recall at this point that the relative free energy values of these three minima are known to

depend strongly on the choice of the force field employed in the simulations.23,24 The Amber03

force field, employed here for consistency with the 4DAR5 simulations, overestimates α-

helices over other secondary structures,52 which causes the free energy landscape of GB1 to

be deeper at NH < 1 than in the β-hairpin region, where the global minimum should in

fact be located.22 Nevertheless, this known and expected inconsistency does not hinder our
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Figure 4: The free energy landscape of 4DAR5. Top: RESTmetaD free energy profile of
4DAR5 in solution with respect to the peptide’s helicity H (Eq. 2). The black vertical
lines delimit the regions that were considered for the subsequent cluster analysis. Bottom:
visualization of the most populated clusters within the selected regions, accompanied by the
corresponding computed CD spectra. The central structure of each cluster is drawn as a
solid ribbon, colored according to Figure 1, while all other structures are superimposed in
a transparent view. Percentages indicate the number of frames in the selected region that
belong to the cluster. The CD spectra report both the computed spectra from the cluster
(black) and their average (dark blue). The experimental spectrum (cyan) is also included
for comparison.
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Figure 5: The free energy landscape of GB1. Top-right: two-dimensional RESTmetaD free
energy surface of GB1 in solution with respect to both the radius of gyration RGyr (Eq. 3)
and the number of hydrogen bonds NH (Eq. 4). The black rectangles delimit the regions that
were considered for the subsequent cluster analysis. White stars represent the values of RGyr

and NH calculated for the five de novo predicted structures of Figure 3 a. Surrounding the
profile: visualization of the most populated clusters within the selected regions, accompanied
by the corresponding computed CD spectra. The central structure of each cluster is drawn
as a solid ribbon, colored according to Figure 1, while all other structures are superimposed
in a transparent view. Percentages indicate the number of frames in the selected region that
belong to the cluster. The CD spectra report both the computed spectra from the cluster
(black) and their average (purple). The experimental spectrum (magenta) is also included
for comparison.
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further analysis, in which CD spectra pertinent to ensembles of conformers constrained in

local regions of the sampled phase space are calculated.

Structural cluster analysis and calculation of CD spectra

The RESTmetaD ensembles presented above are now used to compute averaged CD spectra,

which are compared with the experimental ones. In the present work, rather than considering

the entire sampled phase space, we first select constrained regions of interest (delimited

by black lines in Figures 4 and 5). We then apply a clustering algorithm based on the

RMSD of backbone positions (see Methods) to all sampled microstates within each region,

identify the most populated clusters, and then compute the averaged CD spectra pertinent

to such clusters. To check for issues with the chosen clustering approach, we performed a

clustering on selected regions of 4DAR5 and GB1 based on the RMSD between inter-residue

contact maps. An overlap between the central structures of the most populated clusters

obtained with the two norms reveals a very good agreement (Figure S3 of the Supporting

Information). The calculations are performed only with the ‘ab initio + vib’ parameter set,

whose predicted spectra associated with the de novo structures were in good agreement with

experiments both for 4DAR5 and GB1 (see above). A further verification, employing the

different parameter sets available in DichroCalc, was also performed on selected regions (vide

infra). Additionally, a STRIDE secondary structure determination is performed on the same

clusters, to help assign the dominant conformation in each region of the CV space depending

on the sequence position of each individual amino acid residues in the oligopeptides. The

results are reported in Figure 6.

For 4DAR5, four regions are chosen at increasing helicity values (Figure 4). In each of

the regions, the superposition of all backbone conformers in the most populated clusters

are shown with the central structure highlighted in color, together with the percentage of

conformers belonging to the cluster. As expected, with increasing helicity the conformational

order of the ensemble grows accordingly. A completely unfolded helix corresponds to 0%
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< H < 2% (region 1) and a partially folded helix to 10% < H < 19% (region 2). Up

to this point, the most populated clusters contain less than 50% of the total frames in

each region. Around the global free energy minimum at 63% < H < 72% (region 3),

the cluster comprises almost all conformers and reveal a very high degree of helical order.

The order is almost completed at 89% < H < 100% (region 4), i.e. leading to a fully

folded helix. From the visualization of the central structures, it can be inferred how the

folding of the helix seems to proceed from the N-terminus, starting from a horseshoe-like

unfolded conformation. A similar conclusion can be obtained by looking at the evolution of

the dihedral angle distribution in the Ramachandran plots at increasing helicity, where the

C-terminal residues are the last to enter the α-helical region (Figure 6 (a)).

The computed CD spectra for each cluster reveal a correlation between degree of helicity

and spectral variability among the clustered structures. A wide range of spectra is obtained

within the most populated cluster of region 1, displaying, for instance, both minima and

maxima around 200 nm. Going from region 2 to 4, the spectra within the most populated

clusters converge towards spectral signatures associated with α-helices. As regard the com-

parison with the experiment, it is notable how the best agreement is obtained with the

most populated cluster of region 3 (the free energy minimum), while the spectra of region

4 largely overshoot the experimental signal intensities. The deconvolution of the averaged

spectrum of the most populated cluster of region 3 via BeStSel gives a α-helical composition

of 39.6 ± 1.4 % and a 42.2 ± 1.4 % contribution of ‘other’, minor contributions are found

of ‘turn’ and anti-parallel β-sheets. For this region we also compared the influence of the

different parameter sets implemented in DichroCalc, which can be found in Figure S2 of

the Supporting Information. In comparison with the STRIDE analysis and the associated

Ramachandran plots (c.f. Figure 6 a)), we find around 30% of the amino acids reveal a

partially unordered conformation according to the STRIDE analysis and the presence of

amino acids with backbone dihedrals in a β-sheet conformation. However, it is important

to remember that the conformational/structural description of CD spectra based solely on
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Figure 6: Ramachandran plots for the most populated clusters of a) 4DAR5 and b) GB1, in
each selected region of their free energy landscapes, accompanied by a WebLogo representa-
tion53 of the secondary structure components (from a STRIDE analysis): C, coil; T, turn;
H, α-helix; G, 3-10 helix; E, extended strand in parallel or anti-parallel β-sheets.
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backbone dihedrals is not sufficient.

Five regions were selected in the phase space of GB1, along the path of minimal free

energy (Figure 5): 1) 0 < NH < 0.5 and 12.3 < RGyr < 16.0; 2) 0 < NH < 0.5 and 8.6 <

RGyr < 12.3; 3) 0 < NH < 0.5 and 5.3 < RGyr < 8.6; 4) 0.5 < NH < 1.5 and 5.4 < RGyr <

6.5; 5) 3.0 < NH < 5.0 and 6.0 < RGyr < 8.0. An additional sixth region (0.5 < NH < 5.4

and 5.4 < RGyr < 8.6) encompasses the whole free energy valley at low RGyr. Regions 1 to

3 follow the decrease in RGyr from an extended structure to a partially folded state within

the minimum free energy valley at low NH . Regions 4 and 5 include the free energy minima

at increasing NH , with region 5 corresponding to the folded β-hairpin conformation.

Strong structural clustering (> 50% frames in the most populated cluster) is obtained for

regions 1, 4 and 5, while larger conformational variability characterize the remaining selected

areas. As already anticipated above, the central cluster structures in regions 2, 3 and 4 have

a significant portion of residues in an α-helical conformation, at the N-terminus in region 2

and the C-terminus in regions 3 and 4. In region 5, almost all conformers (92%) are tightly

grouped together around the expected β-hairpin structure. A β-hairpin conformation is also

the central cluster structure in region 6, although in this case only 44% of the frames belong

to the most populated cluster. The angle distributions in the corresponding Ramachandran

plots (c.f. Figure 6 b)) confirm the STRIDE secondary structure assignments. However, at

variance with 4DAR5, the residues are spread in a wider Φ/Ψ range. Noteworthy, only in

the most populated cluster of region 5 the K10 residue of GB1 adopts torsional angles char-

acteristic of the αL region of the Ramachandran plot, which is usually populated by residues

in a turn conformation.23 Inter-residue average contact maps for the most populated clusters

in each region of the GB1 free energy landscape (Figure S4 in Supporting Information) also

confirm the previous structural assignment, with typical α-helical signatures in regions 2, 3

and 4 and β-hairpin signatures in regions 5 and 6.

The observed conformational richness within the computed free energy landscape makes

the GB1 system an interesting playground to test the predictive capability of the DichroCalc

19



parameter sets. The average spectrum corresponding to the most extended and energetically

unfavored conformation (region 1) is qualitatively not dissimilar from the average spectrum

of unfolded 4DAR5, although with larger spectral intensities. The spectra in regions 2, 3 and

4 do reveal α-helical signatures (e.g. local minima at about 220 and 225 nm), in agreement

with the cluster and STRIDE analyses (Figure 5 and 6). However, the spectral variability

among the single microstates within these clusters is very high, consistent with the overall

poor degree of order therein. A high variability of CD spectra is found also in region 5,

even though the structure of the conformers inside the most populated cluster are tightly

overlaid. We note that a similar variability was observed in the computation of CD spectra

for the de novo predicted GB1 structures (c.f. Figure 3), that, indeed, locate themselves

within the same region of the CV space (stars in Figure 5). Despite this intrinsic variability,

the averaged CD spectra in regions 5 and 6 reproduce relatively well the experimental trend,

although a shallow maximum instead of an extended shoulder is predicted between 222 and

227 nm. Regarding the BestSel analysis, deconvolution of the averaged spectrum of the most

populated cluster of region 5 gives a β-sheet anti-parallel composition of 30.5 ± 4.5 % and

a 18.5 ± 4.5 % contribution of ‘turn’, in good agreement with the experiment (27.2 ± 1.4 %

and 16.2 ± 1.4 %, respectively, as reported in Figure 1 (b)). We computed the influence of

the different parameter sets available in DichroCalc for region 5 of GB1 (in Figure S2 of the

Supporting Information.). The calculation of the CD spectra for the representative regions

of 4DAR5 and GB1 using the different parameter sets confirms the applicability of the ab

initio + vib parameter towards a generalized approach for CD spectra calculation beyond

α-helical peptides

Discussion

Our analysis has focused on two model oligopeptides with suggested conformational propensi-

ties towards an α-helix (4DAR5) and a β-hairpin structure (GB1), respectively. In the case of
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4DAR5, advanced-sampling RestMetaD simulations with the Amber03 force field combined

with DichroCalc calculations are able to predict both the structural and the CD spectral

features. In particular, the theoretical CD spectrum of the most-populated structural cluster

around the global free energy minimum is in very good qualitative and in reasonable quanti-

tative agreement with experiments, employing the general ‘ab initio + vib’ parameter set of

DichroCalc (see Figure 4). The predicted amount of helicity (about 60%) agrees both with

experimental CD studies in the literature21 and with the de novo predictions of the PepFold

server (see Figure 2).

Notwithstanding this agreement, the BestSel secondary structure analysis applied to

either the experimental or the theoretically predicted CD spectra only assign 20 to 40% of

secondary structure elements to α-helical structures (see Figure 1 (a)). Given the simplicity

of the conformational ensemble of 4DAR5, this is, at a first glance, surprising. Indeed, the

structural variability of its backbone in the most populated cluster around the free energy

minimum is rather limited, even though the residues close to the termini of the peptides are

not considered via the collective variable. However, we have already noticed in our previous

analysis of the same oligopeptide14 that the CD ellipticity values for one and the same value

of helicity H span a rather broad range for instance at 222 nm. This results in a wide CD

spectral variability even in narrow regions of the conformational space (such as region 3 in

Figure 4). From a structural point of view, we can interpret our results in the following

way. The rather shallow shape of the free energy landscape along H allows for pronounced

thermal fluctuation of the oligopeptide backbone, while still keeping the conformers within

an evidently helical structure.54 This results in CD spectral contributions similar to those

arising from the disordered structures used in the reference basis set corresponding to ‘other’

secondary structure elements in BeStSel. In other words, we suggest that the CD response

of solvated oligopeptides is very sensitive to the local conformational ordering, even among

conformers presenting small RMSD variations from each other, thus resulting in a large

spectral variability despite a limited structural variability.
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This situation is even more evident in the case of the GB1 peptide. For instance, although

the five most probable structures predicted by the de novo server all present a characteristic

β-hairpin shape (see Figure 3 (a)), their computed CD spectra vary by a very large extent

(see Figure 3 (b)) irrespectively of the employed DichroCalc parameter set. This finding

confirms the sensitivity of CD spectra towards minor differences in β-sheet conformations.

A similar picture emerges from analysis of the CD spectra associated will all ensemble mi-

crostates within the β-hairpin region of the free-energy landscape of GB1 (region 5 and 6

in Figure 5). Besides a shift in the minimum position, the larger disagreement is found

in the wavelength region between 223 and 227 nm (c.f. Figure 5, CD spectra of region

5 and 6), where the experimental spectrum presents a shallow negative shoulder, whereas

the theoretical spectrum presents a shallow positive maximum. This possibly indicates that

the conformational ensemble of GB1 comprises not entirely of microstates with β-hairpin

propensity, but also of a substantial amount of microstates with (partially) unordered con-

formers. This is indeed in agreement with experimental NMR investigations, proposing that

GB1 is only 30,% folded as a β-hairpin in water.22 Indeed the STRIDE analysis performed

in this regions assigns 4 out of 16 residues partially to a random coil conformation and 4 out

of 16 to a turn conformation. In terms of CD reference spectra, both of these conformations

would be charaterised by positive values in the wavelength region between 222 and 227 nm.

As a matter of fact, the BeStSel basis set is constructed from CD spectra of larger proteins,

whose characteristic secondary structure elements are well characterised by X-ray diffraction

or NMR measurements.4,5 The protein environment exerts a strong stabilizing action over

the atomic positions of such structure elements, even if they occupy terminal positions,15

which is the case of the GB1 fragment. Solvated oligopeptides, even if carrying the same

sequence and possessing the same intrinsic conformational propensity in the folded state,

are subjected to larger structural fluctuations, and thus, to a considerably magnified extent,

to large CD spectral variability. The CD community has recognised this fact, especially for

the case of β-sheets elements and their sensitivity to mutual strand twisting.4,5,55 BeStSel,
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for instance, considers an extended parameter set associated with various kinds of β-sheets,

which makes its secondary structure analysis generally more robust than other approaches,

especially if applied to oligopeptides.56

We suggest that further improvements could be achieved if the spectral data set was

extended in a way that is able to capture the large thermal fluctuations of oligopeptides

within confined regions of the peptide’s conformational phase space. To reach this aim, the

inclusion of theoretically predicted CD spectral variability in the spirit of the approach pre-

sented in this paper could be highly beneficial. Taking into account not only the intrinsic

structural variability of oligopeptides but also the CD spectral variability for each represen-

tative structural motif (as identified e.g. via cluster analysis techniques) will be essential

especially to rationalise the conformational phase space of intrinsically disordered peptides

and proteins.57–59

A further crucial point regarding the prediction of structural propensities of oligopeptides

via combined experimental CD analysis and theoretical exploration of their conformational

phase space is the choice of the force field.40 When no knowledge about the structure is

available a priori, it is not guaranteed that the employed force field predicts correctly the

relative energy levels of the various local minima of the free energy surface, no matter which

collective variable are chosen for the analysis. For instance, the Amber03 force field employed

here notoriously overestimates the stability of helical motifs, as observed in the case of GB1.

As a direct comparison, however, we found that also the more recent Amber14SB force field

fails to capture the correct free energy landscape for the peptide (Figure S5 in Supporting

Information). Recent developments for force fields aim at an accurate description of the

ensembles of intrinsically disordered proteins,60–62 which could also be very promising for

oligopeptides. However, it is very reassuring to learn that the cluster-averaged CD spectrum

predicted by the ‘ab initio + vib’ parameter set of DichroCalc for confined regions of the free

energy surfaces with clear structural ordering (e.g. around the minimum corresponding to a

β-hairpin fold) does agree well with the experimental measurement.
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Conclusions

We have shown that conformational ensembles can be described with atomistic precision

by means of Circular Dichroism spectroscopy coupled with all-atom molecular dynamics

simulations based on enhanced sampling methods. In particular, the recently introduced ’ab

initio + vib’ parameter set for the calculation of CD spectra within DichroCalc was proven

capable of reproducing the spectral features of peptides with both helical and β-sheet intrinsic

conformational propensities. This is despite the observed sensitivity of CD spectra prediction

with respect to the geometry of the individual conformers composing the ensemble. The effect

of this sensitivity is that de novo structure prediction can give reasonable results in term

of computed CD spectra in the case of extremely simple conformational phase spaces, such

as pure helices, while an extended ensemble of conformers already needs to be considered

for β-sheets. Aiming at a generalization of the employed approach, we envisage that for

preferentially unordered oligopeptides and proteins a sequence-based structure prediction

with a limited amount of conformers will be even more inappropriate. This makes essential

both the usage of advanced sampling simulations combined with accurate cluster analysis

and the experimental acquisition of CD spectra also in the wavelength region below 190 nm,

as accessible by Synchrotron techniques.
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