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Abstract 

Cten is an oncogene promoting EMT in many signalling pathways, namely through Snail. We 

investigated whether Cten function could be mediated through Src. Cten levels were 

modulated by forced expression in HCT116 and gene knockdown in SW620 CRC (colorectal 

cancer) cell lines. In all cell lines, Cten was a positive regulator of Src expression. The 

functional importance of Src was tested by simultaneous Cten overexpression and Src 

knockdown. This resulted in abrogation of Cten motility-inducing activity and reduction of 

colony formation ability together with failure to induce Cten targets. In SW620ΔCten reduced 

Src expression increased following restoration of Cten, also leading to increased cell motility 

and colony formation, which were lost if Src was concomitantly knocked down. By qRT-

PCR we showed modulation of Cten had no effect on Src mRNA. However, a CHX pulse 

chase assay demonstrated stabilisation of Src protein by Cten. Finally, expression of Cten and 

Src was tested in a series of 84 primary CRCs and there was a significant correlation between 

them (p=0.001). We conclude that Src is a novel and functionally important target of the Cten 

signalling pathway and that Cten protein causes post-transcriptional stabilisation of Src in 

promoting EMT and possibly metastasis in CRC.  

Keywords: Src, Cten, epithelial‐mesenchymal transition (EMT), colorectal cancer, cell 

motility 
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Introduction  

C-terminal tensin-like (Cten, also known as tensin 4) is a member of the tensin protein family 

which localises to focal adhesion and comprises Tensin 1, Tensin 2, Tensin 3 and 

Cten/Tensin 4. Tensin 1-3 have extensive sequence and structural homology and have in 

common an actin binding domain, a Src homology 2 (SH2) domain and a phosphotyrosine 

binding (PTB) domain. Cten contains SH2 and PTB domains but it lacks the actin binding 

domain. Tensins localise to focal adhesions and absence of the capability to bind actin 

filaments is thought to be essential to the role of Cten 1 . The importance of Cten is 

underscored by data showing that it is a common and functionally active target for a 

multitude of different signalling pathways 2–6. 

During tumour invasion, epithelial cells lose their cell to cell adhesion and undergo a shift to 

a mesenchymal phenotype 7 known as Epithelial-Mesenchymal Transition (EMT) which is 

thought to be important in promoting cell migration and invasion 8. EMT has also been 

characterised by the acquisition of features of stemness 9 and is therefore considered to be a 

process which contributes to the development of metastasis.  

We have previously shown that Cten is involved in the acquisition of fibroblastic features, 

enhancement of motility (migration and invasion) and enhancement of colony formation 

efficiency in soft agar and can therefore be regarded as an inducer of EMT 10. This is 

mediated in part through proteins such as Integrin-Linked Kinase (ILK) and Focal Adhesion 

Kinase (FAK) 11,12 and culminates in the up-regulation of Snail and down-regulation of E-

cadherin 3,10. Additionally, we have shown that Cten expression has been associated with 

metastasis 11. Although some of the mechanisms of Cten activity have been previously 

described, the full understanding of additional layers of complexity and signalling pathways 

that may cooperate with Cten to regulate EMT remain to be investigated.  
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Src is a non-receptor cytoplasmic tyrosine kinase protein and one of the important kinases in 

focal adhesion complexes 13. Src has been found to form a complex with FAK at focal 

adhesions 12,14. Src signalling has also been reported to be implicated in regulation of EMT 

and it has been shown that suppression of Src activity with inhibitor or siRNA knockdown 

leads to reversal of EMT with up-regulation of E-cadherin and down-regulation of vimentin 

in breast carcinoma cell lines 15. Although Src is a well described oncogene, it is rarely 

mutated in epithelial tumours. This would imply that any role it has in epithelial neoplasia is 

most probably as a mediator of other oncogenic signalling pathways. 

We and others have shown that Cten confers the features which constitute EMT 3,10. Here we 

show, for the first time, that Cten signals through Src pathway to increase cell motility and 

promote colony formation. Furthermore, we demonstrate that Cten is positively correlated 

with both ROCK1 and Src protein expression in primary colorectal cancers. 

 

Materials and methods 

Cell Culture 

This work was performed in CRC cell lines, HCT116 and SW620, which were a kind gift 

from Prof Ian Tomlinson. We deleted Cten in SW620 to create the SW620ΔCten cell line as 

previously described 3. All cells were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) (Thermo Fisher Scientific, Carlsbad, CA) antibiotic free supplemented with 2mM 

L-glutamine and 10% foetal bovine serum (FBS) (Sigma, St.Louis, MO) and maintained at 

37°C in a 5% CO2 atmosphere. Cell line identities were authenticated by STR profiling.  
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Cell Transfection  

Lipofectamine 2000 (Thermo Fisher Scientific) was used to transfect the target cells with 

plasmid DNA and small interfering RNA (siRNA) duplexes following the manufacturer’s 

protocol. For gene knockdown experiments, cells were grown to 40-50% confluency and 

10nM siRNA duplexes targeting Cten, Src or Luciferase (supplementary Table 1) were 

transfected with 10 µl Lipofectamine. For forced expression experiments, cells were grown to 

60-70% confluency and 5 µg the GFP‐Cten CMV promoter-driven expression construct 

previously used 6, or an empty vector control with the same sequence except for Cten, 

expressing GFP only (GFP‐EV), were transfected with 10 µl Lipofectamine in Opti‐MEM 

media (Thermo Fisher Scientific) according to the manufacturer's protocol.. For co-

transfection experiments, cells were grown to 50% confluency and 10 µl Lipofectamine was 

transfected together with 5 µg plasmid and 10 nM siRNA in Opti‐MEM media according to 

manufacturer's instructions. Cells were incubated with the transfection reagents for 6 hours 

and experimentation performed 48 hours post transfection. 

 

Cycloheximide Chase Assay  

The CHX assay was commenced twenty-four hours post cell transfection. The media in all 

wells was replaced with fresh DMEM (supplemented with 10% FBS) containing 100 μg/ml 

CHX. Protein lysates were collected from the cells at different time points ranging from 0–24 

hours after CHX exposure. Western blot and densitometry were used to quantify protein and 

each sample was normalised to β-actin.  

 

Western Blot 
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Cell lysates were prepared using RIPA lysis buffer (Thermo Fisher Scientific) supplemented 

with phosphatase and protease inhibitor (Thermo Fisher Scientific). Fifty microgram of 

protein was added to NUPAGE LDS Sample Buffer (Thermo Fisher Scientific) containing 

5% β-mercaptoethanol. The protein samples were heated to 95⁰C on a heat block for 5 

minutes and cooled on ice for another 5 minutes. Following this, protein samples were 

fractionated on a pre-cast 4–12% NUPAGE Bis-Tris-HCl buffered (pH 6.4) polyacrylamide 

gel (Thermo Fisher Scientific) using the NUPAGE gel electrophoresis system with NUPAGE 

MOPS SDS Running Buffer (Thermo Fisher Scientific) at 125 V for 90 minutes. Proteins 

were transferred onto PVDF membrane (GE Life Sciences) using the Trans Blot semi‐dry 

transfer system (Biorad). Following blocking in 5% milk or 5% BSA in 0.1% tween PBS or 

0.1% tween TBS (dependent on antibody diluents), membranes were incubated with 

optimally diluted primary antibodies overnight at 4°C. Following washing, membranes were 

incubated with the appropriate anti‐mouse or anti‐rabbit secondary antibody for 1 hour at 

room temperature (supplementary Table 2). The ECL prime detection kit (GE Life Sciences) 

was used for protein band visualisation using the C‐DiGiT Blot Scanner (LI‐COR, Lincoln, 

NE). Densitometric analysis of the bands was performed using ImageJ gel analysis plugin. 

Pixel counts for each protein of interest were normalized to β‐actin.  

 

Co-immunoprecipitation 

Co-immunoprecipitation (co-IP) was performed to investigate complex formation and 

binding interaction between proteins. To prepare the cell lysates, a pre-clearing stage was 

performed to reduce non-specific binding. First, 1 mg of protein was pre-cleared by 

incubation with 20 μl of Protein G/A agarose beads (Calbiochem IP05) with gentle rotation at 

4°C for 30 minutes. The lysate was then centrifuged at 4°C at 13,000 rpm for 5 minutes to 
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pellet the beads and the supernatant retained. Subsequently, 1 μg of ROCK1 (10 μl), Snail (4 

μl), Cten (2 μl), or Src (3 μl) antibody was added to 300 μL of the pre-cleared lysate and 

incubated with gentle rotation overnight at 4°C. In addition, 300 μL of pre-cleared lysate 

(without antibody) was also incubated with the pre-cleared beads for the negative control. 

The following day, 30 μl of the Protein A/G beads were added to the reactions and incubated 

on a rotator for a further 24 hours at 4°C. The beads were pelleted by centrifugation at 13,000 

rpm at 4°C for 5 minutes and washed twice in ice cold PBS. The sample was re-suspended in 

30 μl 2X NUPAGE loading Buffer and heated at 95° for 5 minutes, kept on ice for 5 minutes 

and centrifuged for 2 minutes at 13,000 rpm before loading onto an SDS gel for western blot 

analysis.  

 

Quantitative reverse transcription‐PCR (qRT‐PCR)  

qRT‐PCR was used to quantify mRNA expression. RNA was extracted using the Total RNA 

Extraction Kit (Sigma) according to manufacturer's protocol. For cDNA synthesis, 1 µg RNA 

plus 0.5 µg Random hexamers (Thermo Fisher Scientific) were heated for 5 min at 70°C and 

then cooled for 5 min at 4°C. This was reverse transcribed using 200U of M‐MLV Reverse 

Transcriptase (Promega) and 0.5 mM dNTPs (Promega), heated at 37°C for 1 h followed by 

95°C for 10 minutes. Gene quantification was performed on the 7500 Fast Real-Time PCR 

System (Applied Biosystems) using Go Taq Mastermix (Promega, Madison, WI) and 250 nM 

each primer (Supplementary Table 3). The run cycle was comprised of a denaturation step at 

95°C for 2 minutes, 40 cycles (95°C for 30 seconds, annealing at 60°C for 30 seconds) and a 

melt curve stage 95°C for 15 seconds, 60°C for 1 minute, 95°C for 15 seconds, and 60°C for 

15 seconds. Negative controls included no template and no-RT (RNA only) templates. Each 

sample was run in triplicate. HPRT was used as the endogenous control and the primer 
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efficiency was determined using a standard curve method. Since primer pairs had similar 

efficiency the 2‐ΔΔCt method was used for gene quantification. 

 

Transwell Migration and Invasion Assays 

The changes in cell migration were assessed in 24 well plates using the Transwell system 

(Corning, Corning, NY). The Transwell inserts (6.5 mm diameter; 8 μm pore size) were 

incubated in DMEM at 37°C for 1 hour prior to use. Following this, 600 μl of DMEM (20% 

FBS) was added to the receiver wells of the Transwell plate and the Transwell inserts placed 

inside. A total of 1 × 105 cells in DMEM (10% FBS) were seeded onto the Transwell insert. 

The plate was incubated at 37°C for 24 hours. Following this, the cells that had migrated 

through and were present on the bottom of the well were manually counted. The Transwell 

invasion assay was performed similarly with the exception that 2 × 105 cells were seeded onto 

a Transwell insert coated with growth factor reduced (GFR) Matrigel (0.3 mg/ml, Corning) 

and cells allowed to migrate for 48 hours prior to counting. Triplicate wells were seeded for 

each experimental condition. 

 

Wound Healing  

The wound healing ‘scratch assay’ was performed to confirm and assess cell migration. 

Briefly, 5 to 7 x 104 cells were seeded onto both sides of a culture insert (ibidi) attached in 6 

well plates and incubated until confluence (24 hours). After cell attachment, the “scratch” 

was created by removing the culture inserts, and pictures were taken at various timepoints 

using an inverted microscope (Nikon) at 10x magnification. The width of the cell free gap 

was approximately 500 microns (+/- 50 microns) at 0 hours. The wound area was quantified 
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using the MRI Wound Healing Tool (http://dev.mri.cnrs.fr/projects/imagej-

macros/wiki/Wound_Healing_Tool), with the ImageJ software. Experiments were performed 

in duplicate and on at least two separate occasions 

 

Immunohistochemistry (IHC) 

Immunohistochemical (IHC) staining was performed on a tissue microarray slides (TMA) 

from a series of 84 primary colorectal cancers. This series was created specifically for the 

purpose of evaluating biomarker expression in colorectal tumours and there was an unbiased 

selection of consecutive cases collected in Nottingham Sciences Biobank at the Queens 

Medical Centre, Nottingham, UK. Local ethical approval was granted prior to the 

construction of the TMAs, destined to IHC studies. Formalin-fixed paraffin embedded tissue 

blocks were retrieved from the archives and a TMA established as previously described 16. 

 

Immunohistochemical staining was carried out on tissue microarray (TMA) sections (4 μm 

thickness) mounted on glass slides using the Novolink Polymer Detection Kit (Leica) in 

accordance with the manufacturer’s recommended instructions. Briefly, TMA slides were 

heated at 60⁰C for10 minutes, followed by dewaxing in xylene and dehydration in industrial 

methylated spirits (IMS) using the Autostainer XL (Leica). Antigen retrieval was 

accomplished by heating the samples at 95⁰C in 10 mM sodium citrate buffer at pH 6.0 or in 

Tris/EDTA buffer at pH 9.0 for 20 minutes. Slides were then incubated with Peroxidase 

Block solution at room temperature for 5 minutes and washed with Tris-Buffered Saline 

(TBS) (pH 7.6) followed by Protein Block for 5 minutes and a TBS wash. Following 

blocking, the primary antibodies diluted in Antibody Diluent (Leica) were incubated with 

http://dev.mri.cnrs.fr/projects/imagej-macros/wiki/Wound_Healing_Tool
http://dev.mri.cnrs.fr/projects/imagej-macros/wiki/Wound_Healing_Tool
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slides for 1 hour at room temperature (Supplementary Table 4). Slides were then incubated 

with Post Primary Block for 30 minutes at room temperature. Following this, slides were 

washed, and Novolink Polymer was applied for 30 minutes, followed by a further wash with 

TBS. Visualisation of bound antibody was achieved using diaminobenzidine (DAB) prepared 

from DAB Chromogen and DAB Substrate Buffer. This was incubated for 5 minutes, washed 

with TBS and following this, slides were counterstained with haematoxylin for 6 minutes. 

Finally, slides were cleared in xylene and rehydrated in IMS using the Autostainer XL before 

mounting in DPX. 

 

Whole slides were scanned using the Nanozoomer digital slide scanner (Hamamatsu) and 

viewed with NDP.view 2 software (Hamamatsu). Immunostaining was scored by AA and 

MT. Protein expression within the tumour tissues was assessed using the semi-quantitative 

Histo-score (H-score) where different staining intensities were multiplied by the percentage 

of representative cells in the tissue for each intensity (0 for negative staining, 1 for weak 

staining, 2 for moderate staining and 3 for strong staining), producing a range of values 

between 0 and 300 17. Folded cores, those containing exclusively normal and/or stromal 

tissue or showing tumour tissue less than 15% of the whole core area were excluded from the 

scoring.  

 

Statistical Analysis  

All in vitro experiments were performed using GraphPad Prism (version 6). Results were 

tested for a normal distribution, and unpaired t-test or the analysis of variance (ANOVA) 



11 
 

statistical tests were applied following for experiments with two or more treatment groups 

respectively. 

All statistical analysis of IHC TMA staining was performed using IBM SPSS statistics 

software (v 22). The expression of protein was categorised into low and high based on the 

median. The Chi square test was used to test for associations between marker expression (i.e. 

low or high) and clinicopathological parameters. The Spearman’s rank test was performed to 

determine correlations between expression of two different markers. For all statistical tests, a 

p-value < 0.05 was considered significant.  

 

Results  

Cten is a positive regulator of Src expression in CRC cells 

CRC cell line HCT116 which expresses very low endogenous levels of Cten was transfected 

with either GFP-EV control (expressing GFP) or GFP-Cten (expressing GFP-tagged Cten) 

expression constructs. Changes in protein level of Src, ROCK1 and Snail were determined by 

western blot and quantified by densitometry (Supplementary Figure S1). We have previously 

shown that Snail is a target of Cten 3 and, more recently, we have shown that ROCK1 is a 

target of Cten (Asiri et al., submitted). These constructs were used to validate the effect of 

modulation of Cten expression. Forced expression of GFP-Cten in HCT116 resulted in 

upregulation of Src expression as well as ROCK1 and Snail expression compared to cells 

transfected with GFP-EV control. To confirm this, Cten was also transiently knocked down 

using Cten targeting siRNA duplexes in SW620 which expresses high endogenous levels of 

Cten. Knockdown of Cten resulted in downregulation of Src, ROCK1 and Snail protein 

expression (Supplementary Figure S1).  
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Cten signals through Src to promote motility and colony formation 

We next tried to ascertain whether the effects of Cten signalling on Src were functionally 

relevant to Cten signalling. Cten was forcibly expressed in HCT116 and Src was 

simultaneously knocked down. When GFP-Cten and luciferase siRNA were co-transfected 

into HCT116, as expected, there was an increase in Src, ROCK1 and Snail protein levels 

compared to empty vector (GFP-EV) co-transfected with luciferase siRNA control (Figure 

1A). However, when GFP-Cten and Src siRNA were co-transfected (producing a condition of 

high Cten but depleted Src), the increase in Snail and ROCK1 expression was reduced 

(Figure 1 A) demonstrating that Src was important in the induction of these Cten targets. The 

functional importance of Src in Cten signalling was confirmed in a variety of assays. 

Depletion of Src when Cten was forcibly expressed resulted in a reduction of cell migration 

(by transwell migration and would healing, p<0.001 for each, Figure 1 B, C) and cell 

invasion through matrigel (p<0.001, Figure 1 D). We have previously shown that Cten 

enhances colony formation in soft agar 3 and we observed that Src depletion resulted in a 

reduction in colony forming efficiency (p<0.001, Figure 1 E).  

 

Validation of the relationship between Cten and Src 

New technologies such as CRISPR allow genes to be somatically deleted and therefore 

enable protein function to be tested using a variation of Henle-Koch postulates 18. We have 

previously described the cell line SW620ΔCten – a subclone and isogenic variant of SW620 in 

which the Cten gene has been deleted 3. SW620ΔCten showed lower expression of Src, 

ROCK1 and Snail protein levels compared to native SW620 (Figure 2 A). Cten was then 
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forcibly re-introduced by transfection of GFP-Cten vector which resulted in the restitution of 

Src, ROCK1 and Snail protein expression (Figure 2 B). Taken together, the data validate our 

observations that Cten positively regulates Src and confirm ROCK1 and Snail as targets of 

Cten. 

Functional experiments were repeated in SW620ΔCten i.e. Cten was forcibly re-expressed in 

SW620ΔCten with concomitant knockdown of Src (Figure 3A). Consistently with previous 

observations, restitution of Cten expression in SW620ΔCten resulted in up-regulation of Src, 

Snail and ROCK1 but concomitant depletion of Src resulted in failure to up-regulate Snail 

and ROCK1. Similarly, restitution of Cten expression in SW620ΔCten resulted in up-regulation 

of cell motility assessed by wound healing - p<0.05, transwell migration – p<0.01 and 

invasion – p<0.05 (Figure 3 B, C, D) and colony forming efficiency (p<0.001) (Figure 3 E) 

when compared to SW620ΔCten transfected with control vector. Depletion of Src and Cten 

forced expression, resulted in a comparative failure to induce these functions (wound healing 

(p=0.003), transwell migration, invasion and colony formation (each p<0.001, Figure 3 B, C. 

D, E).  

Taken together, these data suggest Src is an important mediator of Cten signalling upstream 

of ROCK1 and Snail. 

 

Cten up-regulates Src expression through protein stabilisation 

Having shown that Cten positively regulates Src expression we investigated whether this 

regulation was at the transcriptional level. Cten was forcibly expressed in HCT116 and 

knocked down in SW620 cells and quantitative reverse-transcription PCR (qRT-PCR) was 

performed to quantify changes in Src mRNA expression level. In both cases there was no 
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change in Src mRNA level compared to the control (Figure 4 A, B) indicating that Cten does 

not induce Src transcription. To investigate whether Cten up-regulates Src expression through 

post-transcriptional mechanisms such a protein stabilisation, HCT116 cells were transfected 

with GFP-Cten (or GFP-EV) and treated with CHX. Src protein levels were measured and 

quantified by densitometry at several time points by Western blot (Figure 4 C and D). The 

Src decay curve was found to be much steeper (indicating faster decay) in the samples from 

GFP-EV control than the samples from GFP-Cten transfected cells. The half-life of Src 

protein was ∼6 h in the cells transfected with GFP-EV control but was appreciably longer, 

∼12 h, in the presence of GFP-Cten. This indicates that Cten up-regulates Src protein 

expression through enhanced protein stability. 

Since Cten has been shown to form a complex with a proteins such as β catenin 19, we 

hypothesised that Cten could form a complex with Src as a potential mechanism for 

stabilisation of Src protein. Immunoprecipitation (IP) was performed using an antibody to Src 

but it did not pull down Cten. Similarly, there was no evidence of complex formation with 

ROCK1, Src or Snail (Figure 4 E). 

 

Cten, Src, and ROCK1 Expression in Colorectal Cancer  

The expression of Cten, Src and ROCK1 was tested in a series of primary CRC cases which 

was studied using immunohistochemical staining.  

Cten expression was shown to localise mostly to the cytoplasm as previously described 10 

(Figure 5 A). Cten expression was not associated with the clinical features including tumour 

grade, tumour stage, lymph node stage, vascular invasion, Dukes’ stage resection margin and 

KRAS mutation (supplementary Table 5). Both cytoplasmic and membranous expression of 
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Src was seen in the tumour cells (Figure 5B) and each was scored separately. Src staining 

was not associated with the clinicopathological features as determined using the Chi-square 

statistical test (supplementary Table 6).  

Comparison of Cten expression and Src expression showed a positive correlation of Cten 

expression and membranous Src expression (p=0.001) as determined by the Spearman’s rank 

statistical test (Figure 6 A). 

We have found that ROCK1 is a target of Cten (Asiri et al., submitted) and it would seem that 

Src is able to induce ROCK1 expression. Immunostaining for ROCK1 was performed and 

cytoplasmic ROCK1 expression was observed (Figure 5C). ROCK1 staining was not 

associated with any clinicopathological features (supplementary Table 7). ROCK1 

cytoplasmic did however positively correlate with Cten cytoplasmic staining (Figure 6 B) and 

both ROCK1 cytoplasmic and membranous expression correlate with Src cytoplasmic and 

membranous staining (Figure 6 C,D,E,F). 

 

Discussion  

Cten has been shown to induce EMT in a variety of different tumour tissues 10,12,20–22. Based 

on our previous data on the interaction between Cten and Snail 3 and on published data on the 

interaction between Src and Snail 13,14, we sought to investigate the possibility of Src acting 

as a target of the Cten signalling pathway. This is the first report of Src as a functionally 

important target of Cten signalling. Using multiple approaches we have shown that Src is 

positively regulated by Cten and that, in the absence of Src, the ability of Cten to induce 

target genes (ROCK1 and Snail) and EMT-related functions (cell motility and colony 

formation) is reduced. We tried to fulfil the Henle-Koch postulates of causation by 
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demonstrating that deleting Cten in SW620ΔCten results in reduction of EMT features and 

target gene expression. Ectopic expression of Cten restores these functions/targets and if Src 

is knocked down, the ability of ectopic Cten to restore the functions/targets is lost.  

Although this is the first description of a relationship between Cten and Src, interaction 

between the two molecules is not surprising since both localise to focal adhesions and Src is 

reported to be important in the biology of focal adhesion complexes 13,14. We have provided 

some mechanistic insight into Cten-Src signalling by showing that upregulation of Src by 

Cten is due to stabilisation of Src protein rather than transcriptional induction. We 

investigated whether the mechanisms of stabilisation could be formation of a complex which 

could stabilise Src. However, immunoprecipitation studies failed to show any physical 

complex formation between Cten and Src. The mechanism of Cten-mediated Src protein 

stabilisation is therefore uncertain although it may involve complex formation with other 

proteins at the focal adhesions or, if it becomes phosphorylated as part of Cten signalling, this 

may result in stabilisation of the protein 23,24. Additionally, previous studies have suggested 

that Src protein stabilisation is most likely to be induced through the upregulation of 

Akt/mTOR/4E-BP1 pathways and inhibition of calpain-mediated Src protein degradation by 

ErbB2 signalling25. Cten has been shown to be induced by ErbB2 signalling 4  and negatively 

regulated by calpain 6 One can conjecture that the ErbB2 pathway could protect Cten through 

calpain inhibition and this in turn could lead to Src protein stabilisation. Therefore, it would 

be interesting to explore whether Cten signalling is involved in this process. 

We tested the expression of Cten, Src and ROCK1 in a series of primary CRCs by 

immunohistochemistry (IHC). We found that there was a significant positive correlation 

between Cten expression and Src membranous expression and between Cten and ROCK1 

cytoplasmic expression. Furthermore, there was a significant positive correlation between Src 
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and ROCK1. Whilst IHC is a snapshot view of a tumour, these data are supportive of our in-

vitro observations and our hypothesis that there may be a Cten-Src signalling pathway which 

then activates ROCK1 and Snail in CRCs. We have previously shown that Cten expression is 

associated with metastasis 11. The metastatic process requires acquisition of features of cell 

migration, cell invasion and “stemness”. Our proposed Cten signalling pathway promotes all 

of these features and thus supports the possibility that Cten is important in the development 

of metastasis.  

In summary, we have previously shown that Cten induces EMT and herein we show that this 

may be mediated through the recruitment of Src. This pathway results in the stabilisation of 

Src although its mechanism is not clear. This pathway also activates ROCK1 and Snail which 

may be downstream effectors of the pathway. Further investigations are required to obtain a 

greater granularity level of this pathway and determine whether these findings could be 

further explored for therapeutic development of cancer metastasis. 
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Figure Legends 

Figure 1:  Cten regulates cell functions through Src signalling in HCT116 cells. A) HCT116 

cells were overexpressed with GFP-EV or GFP-Cten together with either luciferase or Src 

targeting siRNA and the changes in Src, ROCK1 and Snail protein expression were 

determined by western blot. Graph on the lower panel represents the densitometry values 

calculated for each protein band normalised to actin. B) Wound healing assay showed 

increased closure of wound following Cten forced expression (P = 0.0049) and this was 

inhibited when Src was subsequently knocked down (P = 0.0010). C) Overexpression of Cten 

was associated with an increase in cell migration (P = 0.0002) and this was reduced following 

Src knockdown (P ≤ 0.0001). D) Overexpression of Cten increased cell invasion (P = 0.0001) 

and this was lost with subsequent Src knockdown (P ≤ 0.0001). E) Overexpression of Cten 

induced colony formation efficiency (P = 0.0004) and this was lost on Src knockdown (P ≤ 

0.0001). Results are representative of at least 3 experimental replicates (* = p < 0.05, ** = p 

< 0.01, *** = p < 0.001, **** = p < 0.0001).  

 

Figure 2: Cten regulates ROCK1, Src, and Snail protein expression. A) Knockout of Cten 

resulted in a decrease in ROCK1, Src, and Snail protein expression. B) Forced expression of 

Cten in SW620ΔCten was associated with an increase in ROCK1, Src, and Snail expression. 

Graphs on the lower panel represent the densitometry values calculated for each protein band 

normalised to actin. Results are representative of at least 2 experimental replicates (* = p 

< 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001). 
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Figure 3: Cten regulates cell functions through Src signalling in SW620ΔCten cells. A) 

SW620ΔCten cells were overexpressed with GFP-EV or GFP-Cten together with either 

luciferase or Src targeting siRNA and the changes in Src, ROCK1 and Snail protein 

expression were determined by western blot. Graph on the lower panel represents the 

densitometry values calculated for each protein band normalised to actin. B) Overexpression 

of Cten in SW620ΔCten increased closure of wound (P = 0.0182) which was lost with 

subsequent Src knockdown (P = 0.0033). C) Overexpression of Cten resulted in an induction 

of cell migration (P = 0.0021) and this was inhibited when Src subsequently knocked down 

(P = 0.0006). D) Overexpression of Cten increased cell invasion (P = 0.0124) and this was 

lost with subsequent Src knockdown (P = 0.0003). E) Overexpression of Cten was associated 

with an increase in colony formation efficiency (P ≤ 0.0001).and this was lost on Src 

knockdown (P ≤ 0.0001). Results are representative of at least 3 experimental replicates 

(* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001).  

 

Figure 4: Cten increases Src protein stability. A) Src mRNA expression level did not change 

following transfection of GFP-Cten in HCT116 cells compared to empty vector (EV) control 

transfected cells (P = 0.0589). B) The mRNA level of Src expression remined unchanged 

following transfection of Cten targeting siRNA in SW620 cells compared to luciferase 

siRNA control transfected cells (P = 0.4696). C) Src protein was stabilised for much longer in 

HCT116 cells expressing GFP-Cten construct compared to GFP-EV control following 

treatment with CHX (100 µg/ml) for 0-24 h. D) The Src decay curve following treatment 

with CHX. Src protein expression was normalised to actin and then normalised to the 0 h 

time point. E) Endogenous full length Cten does not co-immunoprecipitate with either Src, 
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ROCK1 or Snail. in SW620 cells. Results are representative of at least 3 experimental 

replicates 

Figure 5: Cten Src, and ROCK1 staining of colorectal tumour tissues. A) TMA cores of CRC 

revealed Cten staining in the cytoplasm. B) Src staining in the cytoplasm and membrane. C) 

ROCK1 expression in the cytoplasm.  

 

Figure 6: The correlation of Cten and its downstream targets staining of colorectal tumours 

(Spearman’s rank test): A) Cten cytoplasmic and Src membranous expression (P = 0.001), B) 

Cten cytoplasmic and ROCK1 cytoplasmic expression (P = 0.024); The correlation of Src 

and ROCK1 staining of colorectal tumours (Spearman’s rank test). C) The graphs show the 

correlations of Src cytoplasmic and ROCK1 cytoplasmic (P < 0.001), D) Src cytoplasmic and 

ROCK1 membranous (P = 0.050), E) Src membranous and ROCK1 cytoplasmic (P = 0.045), 

F) Src membranous and ROCK1 membranous (P = 0.027).  
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Supporting Figure legend 

Supplementary Figure S1: Cten regulates ROCK1, Src, and Snail protein expression. 

Forced expression of Cten in HCT116 was associated with an increase in ROCK1, Src, and 

Snail expression. Knockdown of Cten resulted in a decrease in ROCK1, Src, and Snail 

protein expression. Graphs on the lower panel represent the densitometry values calculated 

for each protein band normalised to actin. Results are representative of at least 2 experimental 

replicates (* = P < 0.05, ** = P < 0.01, *** = P < 0.001). 
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Supporting Table Legends 

 

Supplementary Table 1: siRNA sequences 

Supplementary Table 2: Optimised antibody conditions for western blot 

Supplementary Table 3: qRT-PCR primer sequences 

Supplementary Table 4: Optimised antibody conditions for immunohistochemistry (IHC) 

Supplementary table 5: Association of Cten staining in the cytoplasmic localisation and the 

clinicopathological parameters. Significance was tested using the chi squared test. 

Supplementary Table 6: Association of Src staining of the colorectal tumours and the clinicopathological 

features (chi-squared statistical test applied). 

Supplementary Table 7: The association between ROCK1 expression in colorectal tumours and the 

clinicopathological features using the chi-squared statistical test. 
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