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 70 

Abstract 71 

Using a new fossil-calibrated mitogenome-based approach, we identified 72 

macroevolutionary shifts in mitochondrial gene order among the freshwater 73 

mussels (Unionoidea). We show that the early Mesozoic divergence of the 74 

two Unionoidea clades, Margaritiferidae and Unionidae, was accompanied 75 

by a synchronous split in the gene arrangement in the female mitogenome 76 

(i.e. gene orders MF1 and UF1). Our results suggest that this 77 

macroevolutionary jump was completed within a relatively short time 78 

interval (95% HPD 201-226 Ma) that coincided with the Triassic–Jurassic 79 

mass extinction. Both gene orders have persisted within these clades for 80 

~200 Ma. The monophyly of the so-called “problematic” Gonideinae taxa 81 

was supported by all the inferred phylogenies in this study using, for the 82 

first time, the M- and F-type mitogenomes either singly or combined. Within 83 

Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to 84 

UF3) occurred in the Mesozoic and have persisted for ~150 and ~100 Ma, 85 

respectively. Finally, the mitogenomic results suggest ancient connections 86 

between freshwater basins of East Asia and Europe near the Cretaceous–87 

Paleogene boundary, probably via a continuous paleo-river system or along 88 

the Tethys coastal line, which are well supported by at least three 89 

independent but almost synchronous divergence events.  90 

 91 
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5 
 

Mitogenome rearrangements, macroevolutionary jumps, Triassic–Jurassic 93 

mass extinction 94 

  95 



 

6 
 

Introduction 96 

The tempo, timing and mode of evolution have attracted considerable 97 

debate among evolutionary biologists. Here we use a new approach using 98 

mitogenome rearrangements to investigate changes at the geological time 99 

scale in the speciose and imperilled freshwater mussels. 100 

In many taxonomic groups, the gene arrangement within mitogenomes is 101 

highly conserved, e.g. many vertebrate groups share the same gene order 102 

(Pereira 2000). Other faunal groups, such as the Bivalvia, exhibit a number 103 

of different mitochondrial gene arrangements (e.g., Yuan et al. 2012), which 104 

are the result of different mechanisms such as tandem duplication followed 105 

by gene loss (Boore 2000). Although local homoplastic arrangements have 106 

been identified in some invertebrate groups (e.g. Flook and Rowel 1995; 107 

Dowton and Austin 1999), complete gene orders generally remain unique 108 

and represent signatures with diagnostic value (Basso et al. 2017), 109 

providing a powerful signal for inferring ancient evolutionary relationships 110 

(Boore 2000).  111 

Among freshwater mussels of the order Unionida, which spans about 900 112 

species and represents the major bivalve radiation in the freshwater 113 

environment (Lopes-Lima et al. 2017a, 2018a), five mitogenome 114 

rearrangements have been described so far (Lopes-Lima et al. 2017b). 115 

Within the superfamily Unionoidea (Margaritiferidae + Unionidae), the 116 

mitochondria are furthermore unusual in that two highly divergent mtDNA 117 

molecules exist in males (Female or F- and Male or M-type) as a result of 118 

Doubly Uniparental Inheritance (DUI) (Zouros et al. 1994; Breton et al. 119 
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2009). This is in contrast to the vast majority of animal taxa, which inherit 120 

their mtDNA exclusively through the maternal lineage and thus exhibit only 121 

F-type mtDNA. In Unionoidea males, M-type mtDNA is restricted to the 122 

gonadal tissue inherited from the paternal lineage, and F-type mtDNA is 123 

present in all somatic tissues transmitted from the maternal lineage and 124 

also in female gonadal tissue (Breton et al. 2009; Froufe et al. 2016; 125 

Fonseca et al. 2016; Lopes-Lima et al. 2017b).  126 

In recent decades, complete mitochondrial genome sequences have been 127 

published for a wide range of taxa, enabling reconstruction of shallow and 128 

deep phylogenies in both vertebrates and invertebrates (e.g. Jacobsen et 129 

al. 2014; Liu et. al 2016). However, the number of available mitogenomes 130 

for Unionida is low, particularly for M-type genomes (Froufe et al. 2016; 131 

Fonseca et al. 2016; Lopes-Lima et al. 2017b; Huang et al. 2019). A further 132 

shortcoming is that published mitogenomes are restricted to only a few 133 

higher Unionida taxa, with no mitogenomes being available for several 134 

families and subfamilies. In fact, of the six recognized Unionida families 135 

(Lopes-Lima et al. 2014), published mitogenomes are essentially restricted 136 

to the Unionoidea (Unionidae + Margaritiferidae) with a distribution 137 

predominantly within the Northern Hemisphere. While some studies  have 138 

questioned the monophyly of the Unionoidea (e.g. Combosch et al. 2017; 139 

Whelan et al. 2011) the most comprehensive recent studies, using either 140 

full mitogenomes (Huang et al. 2019; Wu et al. 2019) or hundreds of 141 

nuclear loci (Pfeiffer et al. 2019) support its monophyletic status. Moreover, 142 

mitogenome-based Unionida phylogenies reconstructed to date have been 143 
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based on either F- or M-type mitogenomes (Froufe et al. 2016; Fonseca et 144 

al. 2016; Lopes-Lima et al. 2017b). Although in these studies the highly 145 

divergent F- and M-type mitogenomes recovered identical phylogenies, 146 

concatenated phylogenetic analyses of M- and F-type datasets would be 147 

expected to recover a more robust phylogeny.  148 

The Unionidae is the most species-rich Unionida family, comprising 620 149 

species in several subfamilies and distributed widely (Lopes-Lima et al. 150 

2017a). However, phylogenetic relationships within and between Unionidae 151 

subfamilies are still contentious and different phylogenies have been 152 

resolved with different analysed markers (e.g., Lopes-Lima et al. 2017a; 153 

Bolotov et al. 2017a).  154 

One of the least studied Unionidae subfamilies, the Gonideinae, has a 155 

scattered distribution in the Northern Hemisphere (Lopes-Lima et al. 156 

2017a). Species in this subfamily have suffered major declines, and half of 157 

the assessed Gonideinae species are currently listed as Near Threatened 158 

or Threatened (IUCN 2019). Moreover, 70% of recognized Gonideinae 159 

species have either never been assessed or are listed as Data Deficient by 160 

the IUCN Red List (IUCN 2019), indicating an urgent need for research into 161 

this family’s diversity, distribution and ecology. 162 

Another outcome of the general lack of data on Gonideinae is their 163 

unresolved phylogeny. In fact, monophyly of this sub-family is disputed. 164 

The first molecular study to include the so-called “problematic” Gonideinae 165 

taxa (Graf 2002) only examined the type species, i.e. Gonidea angulata 166 

(Lea 1838). Subsequent studies included several additional Gonideinae 167 
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taxa but the clade Gonideinae was never recovered as monophyletic (Graf 168 

and Cummings 2006; Whelan et al. 2011; Pfeiffer and Graf 2013). More 169 

recently, multi-marker and mitogenomic approaches have consistently 170 

recovered Gonideinae as monophyletic (Huang et al. 2013; Pfeiffer and 171 

Graf 2015; Fonseca et al. 2016; Froufe et al. 2016; Lopes-Lima et al. 172 

2017a, b). Bolotov et al. (2017a, b) subsequently elevated one of the four 173 

Gonideinae tribes established by Lopes-Lima et al. (2017a), i.e. 174 

Pseudodontini, to the subfamily level (i.e. Pseudodontinae).  175 

A good understanding of the evolutionary biogeography of the Gonideinae 176 

can be fundamental for reconstructing patterns of connections of freshwater 177 

systems through space and time on a global scale. Our knowledge in this 178 

respect is still far from complete. The first biogeographic scenarios 179 

developed using Unionida data (e.g. Starobogatov 1970; Banarescu 1991) 180 

proved highly inaccurate, as they were mostly descriptive and based solely 181 

on the (dis-)similarity between unionid faunas. Furthermore, these 182 

scenarios were generated at a time when unionid taxonomy was poorly 183 

resolved and included numerous paraphyletic higher-order taxa as well as 184 

nominal taxa, determined by shell shape rather than reliable indicators of 185 

true biological species (e.g. Bolotov et al. 2017a; Konopleva et al. 2017). 186 

Modern paleontology-based models seem to be much more reliable. Based 187 

on the fossil record from Vietnam, Schneider et al. (2013) developed the 188 

hypothesis of an independent development of Unionida faunas in the 189 

Yangtze and Mekong basins, at least during the entire Cenozoic. In 190 

addition, Van Damme et al. (2015) showed that the African Early 191 
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Cretaceous Unionida are representatives of Asian/Eurasian taxa with the 192 

lack of Gondwanan elements, while the African Jurassic assemblages are 193 

distinctly related to those in Eurasia.  194 

Recently, a first statistical biogeographic model for the Unionidae at the 195 

global level indicated that the Unionidae most likely originated in Southeast 196 

and East Asia in the Jurassic, with the earliest expansions into North 197 

America and Africa (since the Albian), following the colonization of Europe 198 

and India (Bolotov et al. 2017a). However, the Jurassic fossil record of 199 

western North America (for a review see Watters 2001) and Africa (Van 200 

Damme et al. 2015) indicate that these continents were colonized before 201 

the Cretaceous. Additionally, two species-rich monophyletic mussel 202 

radiations with an early Cenozoic or even pre-Cenozoic origin were 203 

discovered within the paleo-Mekong catchment (Bolotov et al. 2017a, b). 204 

These findings revealed that the largest river systems (e.g. Mekong, 205 

Yangtze and Mississippi) may represent ancient evolutionary hotspots of 206 

freshwater mussels (Scholz and Glaubrecht 2004; Wesselingh 2007).  207 

On the basis of the most comprehensive dataset of mitogenomes sampled 208 

to date, including eight newly sequenced mitogenomes, this paper aims to 209 

improve our understanding of the higher-order phylogeny and classification 210 

of Unionidae by: 1) testing the monophyly of the poorly known Gonideinae 211 

subfamily using both full F- and M- mitogenomes and, for the first time, 212 

mitogenomes concatenated; 2) estimating macroevolutionary patterns in 213 

freshwater mussels of the Unionidae using, for the first time, a fossil-214 

calibrated mitogenomic approach; 3) estimating the timing of major 215 
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divergence events and comparing them to those of mitogenome 216 

rearrangements; and 4) developing an updated integrative approach to the 217 

systematics of Unionidae, on the basis of the mitogenomic results. This will 218 

allow the reconstruction of the potential origin and ancient radiations of the 219 

Unionidae and detect the most probable ancestral areas.  220 

 221 

Methods 222 

 223 

Sampling, DNA extractions, sequencing, assembly and annotation 224 

One male specimen of Chamberlainia hainesiana, Microcondylaea bonellii, 225 

Pilsbryoconcha exilis and Monodontina vondembuschiana were dissected 226 

for sampling of gonadal (to recover M-type mtDNA) and mantle (to recover 227 

F-type mtDNA) tissues. DNA extractions followed Froufe et al. (2016). The 228 

complete M- and F-type mitogenome sequencing and assemblage followed 229 

Gan et al. (2014), while annotations were performed using MITOS (Bernt et 230 

al. 2013). The final limits of tRNA genes were rechecked with ARWEN 231 

(Laslett and Canbäck 2008). All F- and M- mitogenomes have been 232 

deposited in GenBank database under the accession numbers XXXXXXX 233 

(submitted), respectively and were visualized using GenomeVx (Conant 234 

and Wolf 2008).  235 

DNA (NUC) and amino acid (AA) sequences of all mtDNA protein-coding 236 

genes (PCG), except ATP8 and the gender-specific open reading frames 237 

(M-ORF, H-ORF and F-ORF; Breton et al. 2011), were used in the 238 

phylogenetic analyses. The sequences of each gene were aligned using 239 
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MAFFT software (version 7.304, Katoh and Standley 2013) and trimmed 240 

with GUIDANCE2 (Sela et al. 2015; see Froufe et al. (2016) for the 241 

parameters used).  242 

The gene alignments were then concatenated, resulting in two alignments 243 

with the following length: 13449 aligned nucleotide positions and 3870 244 

aligned amino acids positions + 1889 aligned nucleotide positions from the 245 

rRNA genes. The optimal partitioning scheme for each alignment was 246 

selected using PartitionFinder v. 2.1.1 software (Lanfear et al. 2016) under 247 

the greedy algorithm with proportional branch lengths across partitions. The 248 

best substitution models of DNA and protein evolution for each partition 249 

were selected under the BIC ranking method (Schwarz 1978). The codon 250 

positions of the protein-coding genes and each rRNA were defined as the 251 

initial data blocks for the partitioning schemes search.  252 

An additional dataset was also created, concatenating both F- and M-type 253 

gene alignments, with the following length: 26780 aligned nucleotide 254 

positions and 7661 aligned amino acid positions + 3797 aligned nucleotide 255 

positions from the rRNA genes. This alignment included 45 Unionida 256 

species plus Mytilus galloprovincialis as an outgroup (Table 1) using the 257 

same partitioning method and model selection as described above. 258 

 259 

Phylogenetic analyses 260 

All phylogenetic analyses were performed using both Maximum Likelihood 261 

(ML) and Bayesian Inference (BI) methods. ML analyses were performed 262 

using RAxML (v. 8.0.0, Stamatakis 2014) with 100 rapid bootstrap 263 



 

13 
 

replicates and 20 ML searches. The BI was applied using MrBayes v. 264 

3.2.7a (Ronquist et al. 2012) with two independent runs (107 generations 265 

with a sampling frequency of 1 tree for every 100 generations), each with 266 

four chains (3 hot and 1 cold). All runs reached convergence (average 267 

standard deviation of split frequencies below 0.01). The posterior 268 

distribution of trees was summarized in a 50% majority rule consensus tree 269 

(burn-in of 25%). 270 

 271 

Divergence time estimates 272 

The time-calibrated mitogenomic phylogeny was reconstructed in BEAST v. 273 

1.8.4 based on two reliable fossil calibrations (Supplementary Table 1) 274 

using a lognormal relaxed clock algorithm with the Yule speciation process 275 

as the tree prior (Drummond et al. 2006, 2012; Drummond and Rambaut 276 

2007). Calculations were performed at the San Diego Supercomputer 277 

Center through the CIPRES Science Gateway (Miller et al. 2010). The 278 

sample of M-type mitogenomes was used as outgroup. Similar settings to 279 

each gene partition as in the MrBayes analyses were specified but using a 280 

simplified evolutionary model (HKY; see Bolotov et al. 2017a for details). 281 

Five replicate BEAST searches were conducted, each with 5 × 107 282 

generations and a tree sampling every 5,000th generation. The log files 283 

were checked visually with Tracer v. 1.7 for an assessment of the 284 

convergence of the MCMC chains and the effective sample size of 285 

parameters (Rambaut et al. 2018). The chains in one run did not reach the 286 

convergence and were excluded, the other runs were compiled with 287 
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LogCombiner v. 1.8.4 (Drummond et al. 2012) using an appropriate burn-in 288 

depending on the start of convergence of MCMC chains in each run. Most 289 

of ESS values were recorded as >300, with a few ESS values >100. The 290 

maximum clade credibility tree was obtained from the post-burn-in trees 291 

using TreeAnnotator v. 1.8.4 (Drummond et al. 2012). 292 

 293 

Ancestral gene order and ancestral area reconstructions 294 

TreeREx (Bernt et al. 2008) was used for inferring the most parsimonious 295 

putative ancestral gene orders and gene rearrangements along the 296 

obtained Unionidae F-haplotype phylogenetic sub-tree with the default 297 

settings (http://pacosy.informatik.uni-leipzig.de/185-0-TreeREx.html). 298 

Ancestral area reconstruction models were calculated for the Unionidae  299 

using three different approaches, i.e., Statistical Dispersal-Vicariance 300 

Analysis (S-DIVA), Dispersal-Extinction Cladogenesis (Lagrange 301 

configurator, DEC), and Statistical Dispersal-Extinction Cladogenesis (S-302 

DEC) implemented in RASP v. 3.2 (Yu et al. 2015) following Bolotov et al. 303 

(2017a). Margaritiferidae were not used in this analysis due to the limited 304 

number of available mitogenomes. Four possible distribution areas of the 305 

in-group taxa were coded as follows: (A) Southeast Asia, (B) East Asia, (C) 306 

North America, and (D) Europe. From the input matrix, two geographically 307 

unreliable constrains (AC and AD) were excluded. 308 

 309 

Results  310 

 311 
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Mitogenome characteristics and gene arrangements 312 

All the eight sequenced haplotypes include the 13 protein-coding genes 313 

(PCGs) typically found in metazoan mitochondrial genomes, the sex-314 

specific ORF described for all Unionida mitogenomes with DUI system 315 

(Breton et al. 2009, 2011) and 22 transfer RNA (tRNA) and two ribosomal 316 

RNA (rRNA) genes (Fig. 1). As expected, the length of the four newly 317 

sequenced M-type mitogenomes is larger than the corresponding F-type 318 

(Breton et al. 2009), ranging from 16,267 bp in P. exilis to 17,465 bp in C. 319 

hainesiana, while the F-type ranged from 16,020 bp in M. bonellii to 16,746 320 

bp in C. hainesiana (Table 2). The A+T content, and GC and AT skews are 321 

similar in all sequenced species in both F and M mtDNA types, averaging 322 

around 60%, 37 (+) and -0.23 (+), respectively (Table 2). 323 

The gene arrangements of Microcondylaea bonellii, P. exilis and 324 

Monodontina vondembuschiana are identical to all Gonideinae 325 

mitogenomes available on GenBank (2018), named UF2 (Lopes-Lima et al. 326 

2017b). However, C. hainesiana has a new and distinct gene arrangement, 327 

here named UF3 (Fig. 2). 328 

 329 

Phylogenetic analyses 330 

All the phylogenies inferred in this study that are based on M and F 331 

mitogenomes alone (i.e. not combined) support the monophyly of 332 

Gonideinae (Fig. 3). Moreover, the four tribes Chamberlainiini, Gonideini, 333 

Lamprotulini and Pilsbryoconchini, are also monophyletic in both M- and F-334 

type trees (Fig. 3). The same results were obtained when using for the first 335 



 

16 
 

time the M and F mitogenomes combined, despite the lower number of 336 

species (Fig. 4). The only unsupported result on the topology is seen in the 337 

relationship among the tribes Gonideini, Pilsbryoconchini and Lamprotulini 338 

in the ML AA data set (Fig. 4). 339 

 340 

Ancestral gene order and ancestral area reconstructions 341 

The TreeREx analysis indicated that the evolution of gene orders in the 342 

Unionidae F-type mtDNA is characterized by two independent events of 343 

tandem duplication and random loss (TDRL), with every ancestral gene 344 

order showing the highest consistency scores. The analysis suggests that 345 

the ancestral gene order for Unionidae F mitogenome is UF1, which is also 346 

found in the contemporary species of the subfamilies Ambleminae and 347 

Unioninae (Fig. 5). The fossil-calibrated mitogenomic analysis placed the 348 

split between the UF1 and MF1 gene orders in the Late Triassic (mean age 349 

= 208 Ma, 95% high posterior density (HPD) 201-226 Ma) (Fig. 6A). 350 

The ancestral gene order of the Gonideinae species represented in our 351 

study is UF2, which results from a TDRL event of an mtDNA segment 352 

involving nad3, trnH, trnA, trnS2, trnS1, trnE, nad2, and trnM (Fig.2 Box A). 353 

In UF2, the genes trnH, trnS1, nad2 and trnM pertain to the original 354 

segment, while the remaining genes – nad3, trnA, trnS2, and trnE – are 355 

present in the duplicated segment (Fig.2 Box A). The fossil-calibrated 356 

model developed suggests that the UF1 and UF2 gene orders split near the 357 

Jurassic – Cretaceous boundary (mean age = 149 Ma, 95% HPD 138-162 358 

Ma) (Fig. 6A). 359 
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Finally, the UF3 gene order also arises after a TDRL event within 360 

Gonideinae (Fig.2 Box B). It involved an mtDNA segment containing twelve 361 

genes: trnQ, trnC, trnI, trnV, trnL2, nad1, trnG, nad6, nad4, nad4l, atp8 and 362 

trnD. In UF3, the genes trnC, trnI, trnV, trnG, nad6, atp8 and trnD are 363 

retained in the original segment, whilst genes trnQ, trnL2, nad1, nad4 and 364 

nad4l were not lost in the duplicated one (Fig.2 Box B). The fossil-365 

calibrated model placed the split between the UF2 and UF3 gene orders in 366 

the Cretaceous near the Albian – Cenomanian boundary (mean age = 102 367 

Ma, 95% HPD 77-124 Ma) (Fig. 6A). 368 

 369 

The combined ancestral area reconstruction model suggests that the Most 370 

Recent Common Ancestor (MRCA) of the crown group of the Ambleminae 371 

+ (Gonideinae + Unioninae) clade used to be widely distributed across the 372 

supercontinent of Laurasia (probability 100%) (Fig. 7). The earliest split was 373 

between the Laurentian (Ambleminae) and Eurasian (Gonideinae + 374 

Unioninae) taxa. This vicariance event is placed in the Late Jurassic (mean 375 

age = 159 Ma, 95% HPD 155-170 Ma). Early diversification of the 376 

Gonideinae + Unioninae clade is placed within East Asia (probability 100%; 377 

Fig. 7). The origin of the MRCA of this large clade (mean age = 149 Ma, 378 

95% HPD 138-162 Ma) and subsequent splitting into two subclades (mean 379 

ages of crown groups = 137 and 106 Ma and 95% HPD 123-152 and 90-380 

124 Ma for Gonideinae and Unioninae, respectively) most likely resulted 381 

from an intra-area radiation (probability 100% in each case) during the early 382 

Cretaceous. The Yangtze and Mekong unionid faunas have likely been 383 
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separated since the Albian (mean ages = 95-102 Ma, 95% HPD 77-124 384 

Ma) (Fig. 7). 385 

 386 

Discussion 387 

 388 

Phylogenetic patterns 389 

The new mitogenomic results presented here place the Pilsbryoconchina 390 

subtribe (previously under the Pseudodontinae as described by Bolotov et 391 

al. 2017a) as a subclade within the monophyletic Gonideinae in both the M- 392 

and F-type phylogenies. Our results are thus in agreement with the 393 

phylogeny  recovered by Lopes-Lima et al. (2017a), which is also 394 

supported by morphological data. However, the recovered results 395 

contradict that of Bolotov et al. (2017a, b), which suggested elevation of the 396 

Pseudodontini to the subfamily level. 397 

Our results further indicate that the number of recognized subfamilies within 398 

the Unionidae is most likely lower than has been suggested by recent 399 

phylogenetic studies (Lopes-Lima et al. 2017; Bolotov et al. 2017a, b). The 400 

mitogenomic results fully support three large subfamily-level clades: 401 

Ambleminae, Gonideinae and Unioninae. It is important to note that our 402 

analyses did not include members of the Parreysiinae and Rectidentinae. 403 

Nor did it include sequences of Modellnaia siamensis, the only species of 404 

the monotypic Modellnaiinae, which is characterized by a number of 405 

morphological and anatomical autapomorphies suggesting its separation 406 

within the Unionidae as a “phylogenetic relic” (Brandt 1974; Heard and 407 
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Hanning 1978). Future studies including full mitogenomes of several taxa 408 

from Parreysiinae, Rectidentinae and Modellnaiinae are needed to fully 409 

resolve the higher-level phylogeny of the global Unionidae. 410 

Our results highlight that resolving the systematics of a large, species-rich 411 

clade such as the Unionidae is a complex task. Previous taxonomic 412 

schemes for the Unionidae included only two levels of family-group names, 413 

i.e., subfamilies and tribes (reviews: Lopes-Lima et al. 2017a; Bolotov et al. 414 

2017a, b). However, our whole mitogenome analyses reveal that despite 415 

the limited number of taxa included, the Unionidae classification scheme 416 

could be better explained by including three levels of family-group names 417 

(i.e. subfamilies, tribes and subtribes) to accurately reflect the presence of 418 

several levels of highly divergent clades within this family (Fig. 6A). 419 

Subfamilies represent the largest clades that are fully supported by the 420 

mitogenomic approach (Fig. 7); some of which may be characterized by 421 

unique morphological synapomorphies, although several subfamilies have 422 

been supported by molecular data only (e.g., Lopes-Lima et al. 2017a). 423 

The most recent nuclear-based Unionoida phylogeny (using hundreds of 424 

nuclear protein-coding loci; Pfeiffer et al. 2019) shows strong similarity to 425 

our own findings in regard to the relationships of both families and 426 

subfamilies. Moreover, mitogenome data currently available suggest that 427 

the Unionidae comprise seven (Lopes-Lima et al. 2017a) or eight (Bolotov 428 

et al. 2017a) subfamily clades. Of these, the Gonideinae (encompassing 429 

Pseudodontinae), Unioninae (encompassing the Anodontinae) and 430 

Ambleminae were well supported in the mitogenomic results obtained  431 
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herein, whilst the validity and placement of the Parreysiinae, Rectidentinae 432 

and Modellnaiinae clades are yet to be confirmed by mitogenomic 433 

analyses.  434 

The largest monophyletic clades, within each subfamily, exhibiting 435 

significant morphological synapomorphies and fully supported by the 436 

present mitogenomic results, are herein considered as tribes. Therefore, 437 

using these criteria, the Gonideinae comprise two tribes, i.e. Gonideini 438 

(trapezoidal to rectangular shells with none or only vestigial hinge teeth and 439 

tetragenous brooding type) and Chamberlainiini (round oval shells, with a 440 

well-developed hinge structure and ectobranchous brooding type). 441 

The subtribes represent smaller but distant clades within the tribes, 442 

comprising several genera or even a single highly divergent genus that 443 

usually does not reveal any unique synapomorphies but can be 444 

distinguished on the basis of molecular characters. Based on data available 445 

to date, including the present results, the Gonideini comprise at least five 446 

subtribes, i.e. Chamberlainiina, Gonideina, Lamprotulina, Pilsbryoconchina 447 

and Pseudodontina (Lopes-Lima et al. 2017a; Bolotov et al. 2017a, b). 448 

 449 

Macroevolutionary patterns of the Unionidae 450 

The new mitogenomic analysis presented herein supports the hypothesis of 451 

an ancient Mesozoic origin and diversification of the Unionoidea (Taylor 452 

1988; Ma 1996; Van Damme et al. 2015; Bolotov et al. 2016; Araujo et al. 453 

2017; Bolotov et al. 2017a, b). The new results indicate that the Late 454 

Triassic split between the Margaritiferidae and Unionidae coincided 455 
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approximately with the Triassic–Jurassic extinction that was one of the 456 

largest mass extinction events in the Phanerozoic (Watters 2001; Hesselbo 457 

et al. 2002; Bogan and Weaver 2012; Percival et al. 2017; Smithwick and 458 

Stubbs 2018). The divergence event between the two families was 459 

associated with TDRL event leading to formation of the two stable 460 

mitochondrial gene orders, i.e., MF1 and UF1, which have persisted without 461 

changes for ~200 Ma. However, there were at least two additional 462 

Mesozoic splits in the mitochondrial gene order (i.e., UF1 vs. UF2 and UF2 463 

vs. UF3) within the Unionidae, with UF2 and UF3 being restricted to a 464 

single subfamily, the Gonideinae. The first split coincided with the origin of 465 

this subfamily but the UF3 is a third, new and distinct gene arrangement 466 

derived from UF2 present in a single species, Chamberlainia hainesiana. 467 

These two mitochondrial gene orders have also persisted for long-term 468 

periods of ~150 and ~100 Ma for UF2 and UF3, respectively. 469 

At least two splits in the mitochondrial gene order were associated with the 470 

origin of the MRCAs of large and diverse clades of family (Unionidae vs. 471 

Margaritiferidae) or subfamily (Unioninae vs. Gonideinae) levels. With 472 

respect to this evidence, these TDRL events could be considered 473 

progressive evolutionary innovations because they lead to formation of 474 

stable gene orders that have persisted within widely distributed and diverse 475 

clades for ~150-200 Ma. As for the mitogenome gene order, our ancestral 476 

state analyses suggest UF1 (in the Unionidae) as the ancestral gene order, 477 

which is maintained in the subfamilies Ambleminae and Unioninae sensu 478 

lato (Fig. 6). Additionally, it indicates that the evolution of F-type mtDNA 479 
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gene orders is characterized by two independent events of TDRL (Moritz et 480 

al. 1987; Boore 2000). One resulted in the evolution of UF2, present in the 481 

Gonideinae, and the other in UF3, within Gonideinae but restricted to 482 

Chamberlainia hainesiana. In contrast, all sequenced M-type Unionidae 483 

mitogenomes to date present the same gene order, i.e. UM1 (Lopes-Lima 484 

et al. 2017b) (Fig.2). Possibly this could be explained by the higher natural 485 

selection pressure and/or due to the tight control of the DUI system on the 486 

paternal mitochondrial inheritance. In summary, our results reveal that each 487 

TDRL event was followed by the stable long-term persistence of a 488 

mitochondrial gene order through evolving lineages (or even a single 489 

lineage, although the Chamberlainia clade may actually be under-sampled) 490 

and corresponds to the first reliable mitogenomic evidence supporting the 491 

evolutionary stasis in molecular traits of freshwater bivalves. However, this 492 

should be further explored using an expanded data set of mitochondrial 493 

genomes that may facilitate the understanding of how evolutionary rates 494 

have shifted across multiple genetic loci and how that corresponds to 495 

ecologically relevant traits. 496 

 497 

Diversification and Biogeography 498 

Combining our new fossil-calibrated mitogenomic analyseswith robust 499 

ancestral area reconstruction provides new insights into early diversification 500 

patterns and biogeography of the Unionidae. According to our results, the 501 

Ambleminae + (Gonideinae + Unioninae) clade originated in the late 502 

Jurassic, with their MRCA distributed across Laurentia and Eurasia of the 503 
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supercontinent of Laurasia. The split between the Ambleminae and 504 

Gonideinae + Unioninae clades was likely associated with a vicariance 505 

event driven by plate tectonics, i.e., the formation of the early Jurassic 506 

Transcontinental Laurasian Seaway (Bjerrum et al. 2001). The Ambleminae 507 

is an entirely Laurentian subfamily, which diversified primarily through 508 

radiation within the Mississippi drainage basin from the Early Cretaceous 509 

(Bolotov et al. 2017a). In this context, a peculiar Unionidae fauna from the 510 

Late Jurassic of western North America (Watters 2001) appears to be 511 

ancestral lineages and stem groups of the Ambleminae + (Gonideinae + 512 

Unioninae) clade. The Gonideinae and the Unioninae (Unionini, Anodontini, 513 

Lanceolariini, and Lepidodesmini) (Fig. 6) originated in East Asia, most 514 

likely via intra-area radiation within the paleo-Yangtze River system during 515 

the Cretaceous (Fang et al. 2009; Wang et al. 2018). The Southeast Asian 516 

Gonideinae taxa (Mekong basin) were separated via several vicariance 517 

events in the Albian - Cenomanian, which may indicate the drainage 518 

rearrangement of paleo-river systems of the Indochina Peninsula and 519 

surrounding terrains during this period (Wang et al. 2018). The 520 

mitogenomic results suggest ancient connections between freshwater 521 

basins of East Asia and Europe near the Cretaceous – Paleogene 522 

boundary, probably via a continuous paleo-river system or along the Tethys 523 

coastal line (Hou and Li 2017), and this is also depicted in the 524 

Margaritiferinae subfamily within Margaritiferidae (Lopes-Lima et al. 2018b). 525 

This pattern is well supported by at least three independent but almost 526 

synchronous divergence events: Potomida vs. Lamprotula and 527 
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Pronodularia, Microcondylaea vs. Solenaia, and Unio vs. Nodularia and its 528 

relatives. During the same period, faunal exchange via the Beringian Land 529 

Bridge with subsequent vicariance events may also have started. The 530 

question of the origin of the family-clade, i.e. Unionidae, remains 531 

unanswered due to the lack of available mitogenomes of Parreysiinae and 532 

Rectidentinae, although combined COI, 28S and 16S data indicated that 533 

this family most likely originated within East or Southeast Asia (Bolotov et 534 

al. 2017a). 535 

The new results presented herein support the hypothesis that several of the 536 

largest river basins on Earth may represent so-called ancient (long-lived) 537 

rivers, the Unionida faunas of which have existed throughout long-term 538 

periods comparable with geological epochs (Bolotov et al. 2017a; Lopes-539 

Lima et al. 2018b). The mitogenomic results suggest that the MRCA of the 540 

entire Gonideinae + Unioninae clade may have originated within the paleo-541 

Yangtze drainage basin. This indicates that the modern Yangtze may be a 542 

system of at least Late Jurassic origin and a stable refugium for very 543 

ancient, relic lineages that have existed for approximately 150 Ma. The 544 

unionid fauna of the paleo-Mississippi system seems to be of Early 545 

Cretaceous origin (mean age of the crown group in our model) that has 546 

diversified for at least 120 Ma. The paleo-Mekong fauna appears to be 547 

younger as it likely separated from the paleo-Yangtze fauna in the Albian - 548 

Cenomanian, and its two largest monophyletic unionid radiations may have 549 

had a Late Cretaceous or Paleocene origin (Bolotov et al. 2017a, b). These 550 

results agree with the dating of divergence between two primary clades of 551 
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the Southeast Asian cave spitting spiders that were separated at ∼55 Ma 552 

by the paleo-Mekong River, which served as a biogeographic barrier (Luo 553 

and Li 2017). 554 

 555 

Systematics 556 

Based on the morphological evidence, we propose the putative MRCA of 557 

the Unionidae and Margaritiferidae as a new fossil family-level taxon in the 558 

Unionoidea. 559 

 560 

Superfamily Unionoidea Rafinesque, 1820 561 

Family †Shifangellidae Bolotov, Bogan, Lopes-Lima & Froufe fam. nov. 562 

Type genus: †Shifangella Liu & Luo in Liu (1981) 563 

Diagnosis: The Margaritiferidae and Unionidae are the most 564 

conchologically similar families to the †Shifangellidae. However, 565 

†Shifangellidae can be distinguished from the Margaritiferidae by having a 566 

weakly developed, narrow hinge plate (vs. typically well-developed and 567 

rather thick) and a shallow, smooth anterior adductor scar (vs. deep with 568 

arborescent-like striations), and from the Unionidae by an elongated 569 

Margaritifera-like shell with strongly concave ventral margin (vs. typically 570 

straight, rounded or slightly concave). 571 

Distribution: Late Triassic, southwestern China (Sichuan). 572 

Biology: This ancestral family likely had parasitic glochidial larvae similar to 573 

its descendants (ancestral state reconstruction, probability 100%). 574 
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Comments: Synonymy of the genus †Palaeomargaritifera Ma, 1984 (Middle 575 

Jurassic, China) with †Shifangella suggested by Fang et al. (2009) most 576 

likely erroneous because †Palaeomargaritifera has a well-developed, thick 577 

hinge plate, strong pseudocardinal teeth and deep anterior adductor scar 578 

with arborescent-like striations supporting its original placement within the 579 

Margaritiferidae. The genus †Dianoconcha Guo, 1988 (Middle Jurassic, 580 

China), another synonym of †Shifangella proposed by Fang et al. (2009), 581 

differs by a subtrapezoid, elongate-elliptical or rhomboid shell. This feature 582 

together with a narrow hinge plate and an observable but shallow anterior 583 

adductor scar suggest that it most likely belongs to the Unionidae. With 584 

respect to their age and diagnostic features mentioned above, 585 

†Palaeomargaritifera and †Dianoconcha appear to be the MRCAs of the 586 

crown groups of the Margaritiferidae and Unionidae, respectively. The 587 

family-level placement of several unionoid genera described from the Early 588 

Jurassic of China (e.g., †Pseudomargaritifera Ma, 1996 and †Solenoides 589 

Ma, 1996) is unclear and is in need of further revision; some of them might 590 

actually be members of the †Shifangellidae. 591 

 592 

Conclusions 593 

 594 

All the phylogenies inferred in this study using, for the first time, both the M 595 

and F mitogenomes individually and combined support the monophyly of 596 

the so called “problematic” Gonideinae taxa. Moreover, the new 597 

mitogenomic results place the Pseudodontinae, as previously described by 598 
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Bolotov et al. (2017a), as a subclade within the monophyletic Gonideinae in 599 

both M- and F-type phylogenies. Additionally, the present work supports the 600 

hypothesis of an ancient Mesozoic origin and diversification of the 601 

Unionoidea and reveals that each TDRL event was followed by the stable, 602 

long-term persistence of a mitochondrial gene order through evolving 603 

lineages and corresponds to the first reliable mitogenomic evidence 604 

supporting the evolutionary stasis in molecular traits of freshwater mussels. 605 

Finally, we propose a new systematics framework with three infrafamilial 606 

levels (i.e. subfamilies, tribes, and subtribes) that better explains the 607 

evolutionary patterns within the Unionidae. Future application of the 608 

phylogenetic mitogenome-based approach outlined here to Parreysiinae, 609 

Rectidentinae and Modellnaiinae will be an important step to further resolve 610 

current taxonomic classification uncertainties within the Unionidae. 611 

Moreover, this study demonstrates the considerable potential for using 612 

comparative genomic techniques for unravelling patterns in the tempo, 613 

timing and mode of evolutionary processes. 614 

 615 
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 959 

Figure legends: 960 

 961 

Fig. 1 Gene maps of the F- and M-type mitochondrial genomes of 962 

Chamberlainia hainesiana, Microcondylaea bonellii, Pilsbryoconcha exilis 963 

and Monodontina vondembuschiana. Genes positioned inside the circle are 964 

encoded on the heavy strand, and genes outside the circle are encoded on 965 

the light strand. Color codes: Small and large ribosomal RNAs (red), 966 

transfer RNAs (purple); FORF, F-specific open reading frame (yellow) and 967 

MORF, M-specific open reading frame (yellow); PCGs genes (green). 968 

 969 

Fig. 2 Diagrams of the four distinct gene orders known in Unionidae to 970 

date. In the F-type, three gene orders are depicted: UF1, UF2 and UF3. In 971 

the male M-type lineage, the only Unionidae gene arrangement is shown: 972 

M-type 1 (UM1). Blue boxes highlight gene rearrangement region from UF1 973 

to UF2 (Box A) and from UF2 to UF3 (Box B). Small and large ribosomal 974 

RNAs and transfer RNAs are depicted by one letter of the amino acid code; 975 

Arrow colour codes, follow Fig 1. 976 
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 977 

Fig. 3 Phylogenetic (BI-NUC) tree of Unionida estimated from 14 978 

concatenated individual mtDNA gene sequences (12 protein-coding and 2 979 

rRNA genes). Values for branch support are represented in the following 980 

order: (1) Bayesian posterior probabilities (PP) for BI-NUC tree, (2) 981 

Bayesian PP for BI-AA tree, (3) ML bootstrap support (BS) values for ML-982 

NUC and (4) ML BS values for ML-AA tree. Maximum support values (PP = 983 

1, BS = 100) are represented by asterisks. Gonideinae subfamily and tribes 984 

are highlighted. For details see text. Codes in Table 1. 985 

 986 

Fig. 4 Phylogenetic (BI-NUC) tree of Unionida estimated from 28 987 

concatenated individual mtDNA gene sequences (24 protein-coding and 4 988 

rRNA genes) of the first combined Female+Male concatenated data set. 989 

Maximum branch support values (BI-NUC/BI-AA PP = 1; ML-NUC/ML-AA 990 

BS = 100) are represented by asterisks, while # represents the only non-991 

supported branch by ML-AA tree. Gonideinae subfamily and tribes are 992 

highlighted. Codes in Table 1. 993 

 994 

Fig. 5 Unionidae F-haplotype phylogenetic sub-tree (BI-NUC) used to infer 995 

the most parsimonious putative ancestral gene orders and gene 996 

rearrangements, mapped as MF1, UF1, UF2 and UF3 (see text for details). 997 

Margaritiferidae and all subfamily nodes were collapsed for visual 998 

purposes. 999 

 1000 
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Fig. 6 Time-calibrated mitogenomic phylogeny, an example of three-level 1001 

classification scheme (subfamilies, tribes and subtribes) and evolution of 1002 

the mitochondrial gene order in the Unionoidea. Fossil-calibrated 1003 

ultrametric chronogram of the Unionoidea calculated under a lognormal 1004 

relaxed clock model and a Yule process speciation implemented in BEAST 1005 

and obtained for the complete mitogenome data set. The outgroup sample 1006 

is not shown. Bars indicate 95% confidence intervals of the estimated 1007 

divergence times between lineages (Ma). Black numbers near nodes are 1008 

mean ages (Ma). Color labels indicate the mitochondrial gene order (MF1, 1009 

UF1, UF2, and UF3). Red asterisks indicate fossil calibrations 1010 

(Supplementary Table 1). Stratigraphic chart according to the International 1011 

Commission on Stratigraphy, 2015. 1012 

 1013 

Fig. 7 Historical biogeography of the Unionidae. This combined scenario 1014 

has been inferred from three different statistical modeling approaches (S-1015 

DIVA, DEC and S-DEC) based on the time-calibrated mitogenomic 1016 

phylogeny (Fig. 6A). Pie charts near nodes indicate probabilities of certain 1017 

ancestral areas. Color circles on the tip nodes indicate the range of each 1018 

species. Color labels indicate the mitochondrial gene order (UF1, UF2, and 1019 

UF3). 1020 

 1021 

















 

 

Table 1. List of specimens analysed (based on Lopes-Lima et al. 2017), GenBank references, and 

country. *original identification. 

TAXON CODE 
F-TYPE 
GenBank 

M-TYPE 
GenBank 

COUNTRY 

UNIONIDA  

UNIONIDAE     

AMBLEMINAE     

Lampsilis ornata LamOrn NC_005335 - USA 

Leptodea leptodon LepLeo NC_028522 - China (Introduced) 

Potamilus alatus PotAla KU559011 KU559010 China (Introduced) 

Quadrula quadrula QuaQua NC_013658 FJ809751 USA 

Toxolasma parvum TaxPar NC_015483 - USA 

Venustaconcha ellipsiformis VenEll FJ809753 NC_013659 USA 

GONIDEINAE     

CHAMBERLAINIINI     

Chamberlainia hainesiana ChaHai Submitted Submitted Thailand 

Sinohyriopsis cumingii SinCum NC_011763 KC150028 China 

Sinohyriopsis schlegelii SinSch NC_015110 - China (Introduced) 

GONIDEINI     

Microcondylaea bonellii MicBon Submitted Submitted Italy 

Ptychorhynchus pfisteri PtyPfi KY067440 - China 

Solenaia carinata SolCar NC_023250 KC848655 China 

Solenaia oleivora SolOle NC_022701 - China 

LAMPROTULINI     

Lamprotula leai LamLea NC_023346 - China 

Lamprotula scripta LamScr NC_030258 - China 

Potomida littoralis PotLit NC_030073 KT247375 Portugal 

Pronodularia japanensis ProJap AB055625 AB055624 Japan 

PILSBRYOCONCHINI    

Pilsbryoconcha exilis PilExi Submitted Submitted Malaysia 

Monodontina vondembuschiana PseVon Submitted Submitted Malaysia 

UNIONINAE     

Aculamprotula tientsinensis AcuTie NC_029210 - China 

Aculamprotula coreana AcuCor NC_026035 - South Korea 

Aculamprotula tortuosa AcuTor NC_021404 - China 

Anemina arcaeformis AneArc NC_026674 - China 

Anemina euscaphys AneEus NC_026792 - China 

Anodonta anatina AnoAna NC_022803 KF030962 Poland 

Cristaria plicata CriPli NC_012716 - China 

Cuneopsis pisciculus CunPis NC_026306 - China 

‘Lamprotula gottschei’* LamGot NC_023806 - China 

Lanceolaria grayana LanGra NC_026686 - China 

Lanceolaria lanceolata ArcLan NC_023955 - China 

Lasmigona compressa LasCom NC_015481 - USA 

Lepidodesma languilati LepLan NC_029491 - China 

Nodularia douglasiae NodDou NC_026111 - China 

Pyganodon grandis PygGra NC_013661 FJ809755 USA 



Sinanodonta lucida SinLuc NC_026673 - China 

Sinanodonta woodiana SinWoo HQ283348 KM434235 China 

Unio crassus UniCra KY290447 KY290450 Poland 

Unio delphinus UniDel KT326917 KT326918 Portugal 

Unio pictorum UniPic NC_015310 - Poland 

Unio tumidus UniTum KY021076 KY021073 Poland 

Utterbackia imbecillis UttImb NC_015479 - USA 

Utterbackia peninsularis UttPen HM856636 NC_015477 USA 

MARGARITIFERIDAE     

Margaritifera dahurica MarDah NC_023942 - China 

Margaritifera falcata MarFal NC_015476 - USA 

Pseudunio marocanus PseMrc KY131953 KY131954 Morocco 

MYTILIDA  

Mytilus galloprovincialis MytGal AY497292 AY363687 Greece 

  

 



Table 2. Main structural features of the female (above) and male (below) transmitted mitochondrial genomes of Gonideinae species. Newly sequenced species are 
presented in bold. 

 

 Chamberlainiini Gonideini Lamprotulini Pilsbryoconchini 

♀ C. hainesiana S. cumingii S. schlegelii M. bonellii P. pfisteri S. carinata S. oleivora L. leai L. scripta P. littoralis P. japanensis P. exilis M. vondembuschiana 

Tot. size (pb) 16,746 15,954 15,939 16,020 16,040 16,716 16,392 16,530 16,250 15,789 16,826 16,168 16,028 
A+T % 58.10 60.24 60.30 62.00 60.77 60.89 59.93 60.28 58.95 58.23 57.20 60.72 58.97 

GC (+) skew 0.37 0.36 0.35 0.35 0.36 0.39 0.37 0.37 0.36 0.36 0.36 0.37 0.38 
AT (+) skew -0.29 -0.23 -0.23 -0.20 -0.22 -0.22 -0.22 -0.21 -0.23 -0.23 -0.21 -0.22 -0.24 

♂ C. hainesiana S. cumingii  M. bonellii  S. carinata    P. littoralis P. japanensis P. exilis M. vondembuschiana 

Tot. size (pb) 17,465 17,100  16,737  17,102    16,451 16,967 16,267 16,364 
A+T % 62.35 59.71  59.79  61.01    58.93 57.12 61.90 59.55 

GC (+) skew 0.43 0.41  0.35  0.38    0.34 0.36 0.35 0.37 
AT (+) skew -0.24 -0.27  -0.26  -0.27    -0.24 -0.25 -0.25 -0.26 
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