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Abstract 
 

Biomacromolecules play a key role in protecting human biointerfaces from friction and wear, and thus 

enable painless motion. Biomacromolecules give rise to remarkable tribological properties that 

researchers have been eager to emulate. In this review, we examine how molecules such as mucins, 

lubricin, hyaluronic acid and other components of biotribological interfaces provide a unique set of 

rheological and surface properties that leads to low friction and wear. We then highlight how 

researchers have used some of the features of biotribological contacts to create biomimetic systems. 

While the brush architecture of the glycosylated molecules present at biotribological interfaces has 

inspired some promising polymer brush systems, it is the recent advance in the understanding of 

synergistic interaction between biomacromolecules that is showing the most potential in producing 

surfaces with a high lubricating ability. Research currently suggests that no single biomacromolecule 

or artificial polymer successfully reproduces the tribological properties of biological contacts.  

However, by combining molecules, one can enhance their anchoring and lubricating capacity, thus 

enabling the design of surfaces for use in biomedical applications requiring low friction and wear. 
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Introduction 
 

Biolubrication is an essential and ubiquitous function in the human body; it occurs during 

movements associated with the joints, eyes, oral cavity as well as in the digestive, respiratory, 

genitourinary and circulatory tracts. Impaired lubrication, as encountered in osteoarthritis, dry-eye or 

dry-mouth (xerostomia) syndrome, has a major impact on quality of life 1-3. Biomacromolecules play a 

key role in protecting human biointerfaces from rubbing contacts and enable motion. Their 

multifaceted role involves creating optimal rheological conditions and surface film properties to 

ensure that a fluid layer is maintained between two surfaces in relative motion.  

The biotribological mechanisms must be able to instantaneously respond to sudden changes in 

loads and speeds sometimes thousands of times each day, to enable painless motion and limit wear 

of the surfaces. Some examples of these situations include the sudden loading to 400-760 % 

bodyweight of the knee articular cartilage when jumping 4 or the rapid transition of the eyelid from 

immobility to 40 cm/s during a blink 5. Additionally, the surfaces involved in biotribological contacts 

have very diverse mechanical, topographic and biochemical properties, which all influence how the 

lubricating fluids interact with the surface. The most extreme examples are found in the oral cavity: 

the soft, rough and epithelial nature of the tongue contrasts with the hard, smooth and mineral 

character of the teeth yet biolubrication operates seamlessly between these two surfaces, highlighting 

the requirement for versatile biolubrication mechanisms. The friction coefficients at biological 

interfaces are exceptionally low, even lower than some common “slippery” contacts such as sliding on 

ice 6:  The friction coefficient of articular cartilage against glass or cartilage lubricated by buffer or 

synovial fluid has been found to be in the range of 0.002-0.03 7-12 and saliva-coated 

polydimethylsiloxane surfaces yield a boundary friction coefficient of order 0.01, which is two orders 

of magnitude lower than that of water or buffer in the same conditions 13-15. Even more remarkably, 

these friction coefficients must be maintained over millions of sliding cycles during the lifetime of an 

individual, showing a high wear resistance through a combination of strongly anchored and 

replenishable lubricating layers. 

The main protagonists in biolubrication are a family of large glycoproteins (0.5-20 MDa) called 

mucins. Mucins are present on all mucosal tissues including those lining the airways, oral cavity, 

digestive tract and genitourinary tracts and are also present in mucosal fluids such as saliva, nasal 

mucus or tears 16-17. Although this review is limited to human/mammalian physiology, mucins or 

mucin-like molecules are also present in other animals and organisms such as frogs, fish, snails or even 

protozoan organisms 18-20 . Mucins are remarkable molecules that form films that enable the exchange 

of nutrients, water, and gases while being impermeable to many pathogens 17. Mucins are considered 
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to be essential components in the lubrication process 21-22 and it was recently found that mucin 

production increases when epithelial corneal cells are subjected to friction forces 23. Mucins are 

comprised of a heavily glycosylated protein core flanked by end groups with few glycosylation sites 

and containing von Willebrand assemblies and cysteine-rich globular domains, which are responsible 

for mucin polymerization through hydrogen bond interactions and the formation of disulfide bridges 
24. While mucins are absent from synovial fluid, this fluid contains the protein lubricin, which is a 

glycoprotein that presents a very similar structure to that of mucins (although of a smaller size), with 

a heavily glycosylated bottle-brush like core flanked by non-glycosylated termini containing cysteines 

(Figure 2B) 25-26. Lubricin is recognised as one of the main protagonists in articular cartilage lubrication 
26 and has been found to have a protective role on chondrocytes thanks to its ability to decrease 

boundary friction 27. Additionally, the synovial fluid of patients with osteoarthritis was found to 

contain less lubricin and have a lower lubricating ability than the synovial fluid of healthy patients 28. 

Interestingly, lubricin has also been detected on the ocular surface where it has been shown to play a 

role in reducing friction and protecting the cornea from damage 29-31. Mucins and lubricin do not act 

alone in the biolubrication process and recent research has highlighted the role of complex synergistic 

interactions between these glycoproteins and other components of mucosal or synovial fluids 15, 32-35. 

The scope of this review is to describe the mechanisms by which mucin, lubricin and other 

biomacromolecules provide superior lubrication and to highlight biomimetic strategies that harness 

these mechanisms. 
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Figure 1 – Schematic representation (a) Mucin and (b) Lubricin, two main protagonists in 
biolubrication that share a similar structure. Adapted with permission from 36. Copyright 2017 

Elsevier. 

Mechanisms of lubrication by biomacromolecules 
 

Importance of rheology in maintaining a fluid film between the surfaces. 
 

The most efficient way to limit friction and wear damage between surfaces is to keep the surfaces 

well separated.  This is achieved by either operating at lubricant entrainment speeds that produce 

sufficient hydrodynamic lift forces to support the load, and/or using lubricants of sufficient viscosity 

to provide resistance to squeeze flow forces so that there is a so-called ‘full-film’ between the 

substrates.  In engineering tribology involving deformable (soft) substrates, this regime is referred to 

as elasto-hydrodynamic (EHL) lubrication, with the lubricant rheology being a key design factor.   

Rheology plays a key role in biotribological contacts and it is observed that biological lubricants usually 

possess a very complex set of rheological properties due to the presence of biomacromolecules. Saliva 

is an example of biolubricating fluid whose functional properties have a mucosal origin. Saliva is shear-

thinning with a viscosity decreasing from around 10 mPa.s at low shear rates to 1 mPa.s at high shear 

rates ( >100 s-1) 37-39, has a high extensional viscosity 40-41 and exhibits a remarkably high normal stress 

ratio (ratio of primary normal stress differences and shear stress), which is ca. 10 and 100 for 

mechanical and acid-stimulated stimulated saliva, respectively (Figure 2). Collectively, these 

properties indicate that elastic stresses dominate over viscous stresses during salivary flow 37, 42. Mucin 

glycoproteins are the main actor in the rheology of mucosal fluids.  In saliva, high molecular weight 

mucins are thought to form super-macromolecules by aggregating end-to-end, which uniquely leads 

to its low viscosity yet extremely high elasticity 24, 37, 43. Gastric and intestinal mucins have been shown 

to form gels at low pH through a combination of disulphide bridges, hydrogen bonding and Ca2+ 

mediated links between mucins and other non-mucin proteins 44-46. Reduction of the disulphide bonds 

with dithiothreitol, disruption of the hydrogen bonds with chaotropic agents and addition of calcium 

chelating agents cause the mucin network to disassemble 45-46. Conversely, oxidation of airway mucus 

leads to an increase in elasticity due to the formation of disulphide bridges between mucins, which 

could be a cause for the high elasticity found in the mucus of patients suffering from cystic fibrosis 47. 

Different mucins are thought to be playing specific roles in the viscoelastic properties of lubricating 

biofluids: saliva samples with higher levels of MUC5B have been linked to more viscous saliva while 

higher levels of MUC7 have been linked to saliva samples with higher extensional viscosity 48. These 

findings suggest that mucosal cells can modulate the nature of mucus by varying the relative 

concentrations of individual mucins, perhaps in response to changing environmental conditions.  
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Figure 2 – Rheology of human whole mouth saliva obtained following stimulation using 0.25% 
citric acid.   (a) Steady-state shear rheological properties where lines represent predictions using the 
FENE-P dumbbell model.   (b) Dynamic rheological properties as a function of frequency at a strain of 

5, where the lines indicate a fit to the data using a multi-mode Maxwell model. Reproduced with 
permission from 37. Copyright 2007 IOS Press. 

Synovial fluid does not have a mucosal origin and is a plasma dialysate modified by constituents 

secreted by the joint tissues. It is highly shear thinning compared to saliva with a viscosity decreasing 

from about 10,000 mPa.s at low shear rates to 10 mPa.s at high shear rates 49-50 , and displays a 

viscoelastic behaviour 51-52 (Figure 3). The viscosity of synovial fluid is observed to be lower in patients 

with osteoarthritis or rheumatoid arthritis 49, 53.   This loss of viscosity may decrease the ability of the 

joint to maintain a fluid film and thus cause the cartilage surfaces to come into contact more easily, 

which increases the potential for surface wear. The viscoelasticity of synovial fluid is highly dependent 

on the concentration and molecular weight of hyaluronic acid (HA), an anionic glycosaminoglycan 

present at high concentrations in synovial fluid.  HA forms entangled networks that are thought to be 

responsible for the viscoelastic behaviour of synovial fluid 49, 54-55. Additionally, entanglements 

between HA and lubricin have also been shown to contribute to the elastic response of synovial fluid 
51.  
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Figure 3 – (a) Viscosity ranges for healthy, degenerative, and inflammatory synovial fluids. The 
two lines of squares, circles and triangles show the upper and lower viscosity boundaries of healthy, 
degenerative, and inflammatory synovial fluids, respectively. Reproduced with permission from 49. 
Copyright 2007 IOS Press. (b) Storage (G’) and loss (G”) moduli of bovine synovial fluid as a function of 
frequency measured by multiple particle-tracking micro-rheology (circles) and macro-rheology 
(triangles). Reproduced with permission from 51. Copyright 2007 National Academy of Sciences. 

 

The shared characteristics observed in lubricating fluids such as the shear thinning behaviour and 

elasticity play an important role in keeping opposing surfaces separated. The shear thinning behaviour 

of the lubricating fluids is an advantageous feature in the EHL regime because it dampens the increase 

of friction due to viscous losses normally observed at high entrainment speeds. The synovial fluid of 

rheumatoid arthritis patients has been found to lose its shear thinning behaviour and therefore may 

lose its EHL friction dampening property 49, 53, 56. Fluid elasticity is observed as an anisotropic response 

under shear flow that is characterised as non-zero normal stress differences, and an added resistance 

within extensional flows (i.e. extensional viscosity) that goes beyond that expected from shear-

viscosity.  Elasticity is suggested as contributing to the shock absorbing properties of synovial fluid 57 

and it has been observed that the pathological synovial fluid or synovial fluid from elderly people tends 

to lose its elastic character 49, 58-59. The elasticity of saliva has been speculated to contribute to the 

adhesion of the salivary film to the surfaces of the mouth and the food bolus 40-41. The saliva of dry 

mouth patients has been found to have a lower extensional viscosity than normal saliva, which may 

be linked to changes in the glycosylation pattern of the salivary mucins 60. These changes could impact 

the ability of saliva to coat the oral surfaces.  It is also predicted that a large normal stress ratio 

contributes to load-bearing properties of the lubricant 37, 61-62. All these properties participate in the 

maintenance of a fluid film at the interface. 
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The rheological properties of synovial fluid are also very important for a lubrication 

mechanism thought to be specific to cartilage, called weeping lubrication, which participates in 

maintaining a fluid film. In weeping lubrication, the pores of the cartilage, which has a poroelastic 

nature, are filled with interstitial fluid that can be released to the cartilage surface under the action of 

a load.  The release of this fluid helps to enhance the EHL by maintaining a layer of fluid at the 

cartilage/cartilage contact point 63-64. Recently, a mechanism called “tribological rehydration”, 

whereby the cartilage rehydrates during the unloaded sliding motion has been proposed to explain 

the fluid recovery of cartilage 9, 65. Both the weeping and rehydration mechanisms heavily depend on 

the rheological properties of the fluid, therefore it is likely that any disease or age related rheological 

change will affect these aspects of joint lubrication although this effect has not been specifically 

studied.  

   

Maintaining hydration in boundary films through glycosylated brushes and 
multilayered architecture  
 

When the relative speed between the surfaces decreases and/or when the load increases, it is not 

always possible to maintain a fluid film between the surfaces.   To avoid a damaging increase in the 

friction caused by the contact between the surfaces, intricate boundary films composed mainly of 

glycosylated molecules enable the surfaces to remain separated by a highly hydrated layer that can 

withstand high contact pressures while maintaining a low friction coefficient. Glycosylation is a key 

element in the boundary lubrication process and glycosylated molecules are ubiquitous in 

biotribological contacts: mucins are found in mucosal fluids such as saliva, nasal mucus or tears and 

the surface of all mucosal epithelial cells is highly decorated with membrane bound mucins. Synovial 

fluid contains other heavily glycosylated molecules such as lubricin and aggrecan. Crouzier et al. have 

shown that partial and complete deglycosylation of pig gastric mucins resulted in an increase in their 

boundary friction by two orders of magnitude compared to the native mucins 66.  Similarly, de-

glycosylation of lubricin yielded a significant increase in its boundary friction coefficient 67. The effect 

of glycosylation on boundary lubrication is two-fold. Glycosylation enables a high level of hydration 

thanks to the presence of numerous hydroxyl groups that engage in hydrogen bonding with water. 

The strong interactions between the sugar moieties and the water molecules enable the water to 

remain “trapped” in the contact, rather than be squeezed out when the surfaces are pushed towards 

each other, thus ensuring that a hydrated layer is maintained in the contact. Additionally, glycosylated 

molecules have a brush-like architecture, where the protein backbone is decorated with sugar chains. 

Brushes are a very powerful way to reduce friction in the boundary regime: when two surfaces covered 
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with neutral polymer brushes come in contact at low to moderate compression, it is entropically more 

favourable for the brushes to compress within themselves than to interpenetrate with the brushes on 

the opposite surface, thus decreasing the interaction between the surfaces 68 . When the brushes are 

charged, the additional effects of the osmotic pressure created by trapped counterions and the 

lubricating effect of the hydration shells around the charged monomers, called the hydration 

lubrication effect, improve the lubrication properties of the brushes at high loads 69-71. This effect is 

applicable to mucins, lubricin and aggrecan which possess negatively charged brushes thanks to the 

presence of sialic acid and sulphates on the oligosaccharide side chains.  

The positive effect of the glycosylated molecules on lubrication can only occur if they remain in 

the contact and adopt a conformation that maximises their lubricating ability. Synergies between the 

components of the boundary films give rise to a multilayered architecture that ensures that the 

surface layer is well anchored and that the brush-like domains of the glycosylated molecules protrude 

away from the surface to create a thick hydrated layer. The salivary and synovial films are good 

illustrations of this process. Saliva forms a supramolecular film on the various surfaces of the mouth. 

Although the composition of the salivary pellicle varies substantially depending on the location in the 

oral cavity, the nature of the substrate as well as environmental effects 72 the general structure of the 

salivary film is made up of two layers:  a dense base layer formed by small proteins such as proline 

rich proteins (PRPs), cystatin, statherin, histatin, mucin MUC7 or immunoglobulin A 73-75 and a sparser 

top layer composed mainly of the larger mucin MUC5B 76 (Figure 4A). The assembly is reinforced by 

interactions of MUC5B with membrane bound mucin MUC1 73, 77 as well as crosslinking of the base 

layer by transglutaminase 78-79. Tribology and adsorption studies have given rise to the hypothesis that 

MUC5B is in a loop conformation, whereby the non-glycosylated domains of MUC5B interact with the 

surface and the other proteins in the base layer, while its central glycosylated domain interacts with 

the liquid layer, thus forming “hairy” hydrated loops that protrude away from the surface and can 

support high loads 14,80. Removal of mucin end groups prevents its adsorption onto hydrophobic 

surfaces and increases the boundary friction coefficient by two orders of magnitude 81. Although 

mucins have been put forward as the key element in salivary boundary lubrication, most studies using 

purified mucins have not managed to reproduce the friction coefficient of saliva, especially at high 

contact pressures 21-22, 82. Recent studies that have obtained a friction coefficient comparable to saliva 

using non-denatured purified human salivary mucins and purified pig gastric mucins 66, 81, 83. These 

studies may highlight the important role of mucin glycosylation, meaning that different methods of 

purification could lead to isolating mucin fractions with different glycosylation types 84 with varying 

lubrication enhancement properties. In addition, it is important to note the possibility of the presence 

of small mucin-bound proteins that may have remained associated with mucins during the non-
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denaturing purification steps 45. These small proteins could alter the lubrication performance of the 

mucins by changing their adsorption or assembly properties 15, 45. The difficulty to reproduce saliva’s 

lubricating properties using mucins alone indicates that both the base layer and the mucin layer are 

critical in enabling the low friction properties of saliva. To prove this, Yakubov et al. separated salivary 

proteins in several fractions and showed that individual fractions could not reproduce the lubricating 

properties of saliva but the synergistic combination of the mucin rich fraction with the PRP rich fraction 

did lead to friction coefficients comparable to those of saliva 15. This indicates that the small salivary 

proteins are necessary to anchor the mucin layer and “force” the mucin molecules to adopt a 

lubricating loop conformation.  

On the articular surface, a complex arrangement of polysaccharides, proteins and phospholipids 

coexists.  Although the exact structure is not fully understood, it is thought that HA molecules protrude 

from the cartilage surface, where they interact with aggrecan or lubricin to form a highly hydrated, 

glycosylated brush-like structure (Figure 4B) 85-86. This structure is strikingly similar to the one 

proposed for saliva and yields a highly hydrated layer of “hairy” loops and brushes. To account for the 

presence of HA at the surface at high pressures and despite the fact that HA is not covalently attached 

to the surface, Greene et al. have proposed a “trapping” mechanism for HA molecules whereby they 

become entangled in the collagen network (present in the cartilage) as it is compressed 87. This 

mechanism could explain cartilage resilience to wear and the remarkable lubrication properties of the 

articular surface even at high loads. In a similar fashion to saliva, synergies between the individual 

components of synovial fluid are necessary to create the friction and wear properties of the articular 

cartilage contact and the individual components are insufficient to explain the exceptional properties 

of articular cartilage 32.  Synergistic interactions of HA grafted on mica surfaces with lubricin provide 

both a lower friction coefficient (down from 0.5 to 0.09) and a better resistance to wear, with the 

pressure at which wear initiates increasing from 2 MPa for HA alone to 4 MPa when lubricin is present 
33, 88. Proposed mechanisms suggest that the combination of lubricin and HA helps anchor the 

lubricating film on the surface as well as creating a viscous layer that shifts the surfaces away from 

boundary lubrication 34-35, 87. Proteins found in synovial fluid have also been shown to participate in 

synergistic interactions with lubricin. Fibronectin 89, collagen type II 34, 90, cartilage oligomeric matrix 

protein 91 or the galectin-3 protein 92  have all been shown to enhance the lubrication and/or the wear 

resistance of lubricin.  It is likely that HA and these proteins are to lubricin as what the small salivary 

proteins are for mucin: they mediate the anchoring of lubricin in a favourable lubricating 

conformation. Finally, surface active phospholipids, mostly composed of zwitterionic 

phosphatidylcholines have also been put forward as a key element in cartilage boundary lubrication, 

in synergy with HA and lubricin 93. Although the mechanisms are still not fully understood, it is thought 
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that hydration lubrication involving the charges on the phosphatidylcholine groups participates in 

reducing the friction 94. 

 

Figure 4 - Structure similarities of aqueous lubricating films in the body. (a) Proposed structure of 
the salivary film. Blue: small proteins (PRP, statherin, histatins, cystatins…) forming the tight 

baselayer. Red: membrane bound mucins forming the anchor for secreted mucins. Green: Secreted 
mucins forming a highly hydrated loose layer, either by forming loops or linear structures. Adapted 
from 72. (b) Proposed structure for the articular lubricating film. Blue: Hyaluronic acid forming the 

baselayer. Green: Lubricin and Red: Aggrecan, forming a highly hydrated loose layer. Adapted from 
86. 

 

The various mechanisms described here contribute to creating a tribological environment where 

the substrate, surface and fluid act in synergy to respond to varied and demanding ranges of motion 

and ensure that a low friction coefficient is maintained under all conditions. A common feature in 

biotribological contacts is the presence of a fluid that has the following features:  (i) complex rheology 

(including viscoelasticity) that contributes to the maintenance of a fluid film between biosurfaces over 

a wide range of movements and loads; and (ii) contains macromolecules that strongly adsorb or bind 

to biological substrates to form a highly hydrated surface layer that is resistant to wear and/or is 

naturally replenished. 
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Biomimetic strategies  
 

Mimicking the rheological properties of biolubricating fluids: an incomplete solution 
 

Current formulations for dry eye syndrome, dry mouth syndrome or synovial fluid replacement 

mostly focus on matching the rheological properties and therefore the EHL properties of the biological 

fluid they aim to replace. HA has been the prime candidate for visco-supplementation in osteoarthritis 

and has shown good results for pain reduction in clinical trials 95. In vitro, high molecular weight and 

crosslinked HA is more efficient at restoring the rheological properties of osteoarthritic synovial fluid 
96-98, however no consensus has been reached about the effect of molecular weight or crosslinked 

status of HA in vivo 99-100 showing that creating an effective lubricant is not as simple as emulating the 

rheological properties of healthy synovial fluid.  

Mimicking the rheology of saliva is an admirable challenge, but clever strategies are needed to 

replicate saliva’s very unusual rheology when compared to standard polymer solutions. To put in 

perspective, Newtonian fluids are inelastic such that they have normal stress ratio of zero, while values 

of < 10 are typically found for high molecular weight (> 1 million) polymer solutions that are considered 

to be highly elastic. With normal stress ratios ranging between 10 and 100, saliva substantially 

surpasses the elasticity of polymer solutions of comparable viscosity. Mucin solutions are an obvious 

candidate in attempting to replicate the rheological properties of saliva, however, the viscoelastic 

properties of aqueous solutions containing extracted mucin are highly dependent on the purification 

method used.  Commercial preparations of pig gastric mucin (Sigma) or other purified mucins 

(“Orthana” mucin, similar to human MUC6) have been partially denatured and the non-mucin proteins 

have at least partially been removed, thus lowering the viscosity compared to native mucus and 

disrupting the formation of gels 45, 101-102. Such solutions are found to be viscous with no apparent 

elasticity, and thus it has not been possible to replicate saliva’s unique rheology using purified mucins. 

Other formulations based on carboxymethylcellulose, hydroxyethylcellulose, polyethylene oxide or 

xanthan gum have been investigated but failed to reproduce saliva’s rheology 103-105.  The low elasticity 

and surface tension of commercial artificial formulations prevents them from forming films on the oral 

surfaces.  In some cases, formulations can even interact with and disrupt the salivary film already 

present in the mouth, which  causes them to fail to produce a lasting beneficial effect to dry mouth 

symptoms 103, 106.   
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Polymer brushes and other glycoprotein mimics 
 

Solely mimicking the rheological properties of biological fluids is insufficient to emulate the 

lubricating behaviour of biotribological contacts. The main challenge lies in mimicking their boundary 

lubrication and wear resistance properties. Owing to the glycosylated nature of the molecules present 

in biotribological contacts, research has mostly focused on using polymer brushes to reproduce the 

boundary lubrication properties observed in vivo. When choosing polymer brush systems, several 

options are available. First, brushes can be either adsorbed or covalently grafted onto the surface. 

Generally, covalently grafted brushes present the advantage of withstanding repeated or higher loads 

than adsorbed layers. However, adsorbed films can more readily “heal” after being worn away, 

provided that the desorbed molecules are still available near the surface and that the kinetics of 

adsorption are adequate for the tribological conditions tested 107.  Additionally, grafted brushes are 

only suitable for applications where material synthesis and coating can be made ex vivo (e.g. hip 

implants or contact lenses) whereas adsorbed polymers can be useful for applications where they are 

injected or applied in vivo (e.g. saliva or tear replacements).  Another important property for polymer 

brushes is their charge. In general, charged polymers provide better lubrication thanks to the 

hydration lubrication phenomenon. An example of an adsorbed polymer that forms uncharged 

brushes is a copolymer composed of a poly(L-lysine) (PLL) backbone and poly(ethylene glycol) (PEG) 

or dextran side chains. Thanks to its positive charge, PLL adsorbs on negatively charged surfaces, such 

as silicon dioxide, with a high enough chain density to force the hydrophilic PEG or dextran chains into 

a brush conformation (Figure 5A) 108-114. Adsorption has also been shown to occur on non-polar 

hydrophobic PDMS surfaces through hydrophobic interactions 108. Although the lubricating properties 

of this system do not match the ones of biological contacts, it enabled the elucidation of the effect of 

chain length and density, pH, salts and solvent viscosity on the lubrication properties of PEG brushes. 

Charged polymer brushes made of grafted polyzwitterion poly[2-(methacryloyloxy)ethyl 

phosphorylcholine)] (PMPC) have shown promising results, yielding a friction coefficient of μ ∼ 10-4 up 

to 15 MPa pressure 115-116 (Figure 5B). These brushes have been shown to have a high amount of 

strongly associated water, which gives rise to the hydration lubrication mechanism 70, and are a good 

candidate for artificial biolubrication.  
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Figure 5 – Examples of polymer brushes that have been used as boundary lubricants. (a) The 
poly(L-lysine) (PLL)  - poly(ethylene glycol) (PEG) system, where the PLL backbone adsorbs onto 
surfaces and forces the PEG side chains into a brush conformation. Reproduced with permission 

from 108. Copyright 2008 American Chemical Society. (b) Brushes made of Poly[2-
(methacryloyloxy)ethyl phosphorylcholine)] (PMPC). From 115. Reprinted with permission from AAAS. 

 

Architectures other than brushes have been used to emulate biolubrication. A recent study has 

investigated the lubrication of polyethylene glycol loops anchored to the surface via catechol groups, 

which provide a strong adhesion between the polymer and the surface (Figure 6A) 117. The loop 

architecture, which mimics the proposed loop architecture of mucins in a biolubricating film 14, 80, 

resulted in better lubrication than brushes and the use of anchoring groups with a strong adhesion to 

the surface enabled better resistance to wear upon exposure to high contact pressures.   

Inspired by the structure of lubricin, several bottle brush mimics have been designed as artificial 

boundary lubricants. Lubricin mimics are usually designed to have a branched core flanked by end 

groups that show affinity for the substrate. In a series of experiments, a bottle brush composed of 

PMPC side chains with or without cationic end groups was used (Figure 6B) 118-121. It was shown that 

having cationic end groups on both ends of the polymer does not change the friction coefficient but 

enables the bottle brushes to withstand higher contact pressures before wear initiation than when 

only one or no end groups are present 120. Other mimics composed of PEG brushes on a polyacrylic 

acid backbone 122-123 or using HA binding peptides on a chondroitin sulfate backbone 124. However, 

despite showing some lubrication ability, none of these systems matches the superior lubricating 

properties of articular cartilage, highlighting the need for a more comprehensive approach. 
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Figure 6 – Examples of biomimetic lubricating systems. (a) Polymer loops that mimic the loop 
conformation of mucins on surfaces. The graphs show the tribological testing of the triblock and 

diblock polymers and the impact of the conformation on polymer performance. The triblock with the 
strong anchoring groups has the lowest friction and withstands the highest loads. Reproduced with 

permission from 117. Copyright 2016 American Chemical Society. (b) Bottle brush polymers with 
various architectures.  The B-block provides adhesion to the substrate. Having two adhesive blocks 

increases the resistance to wear of the bottlebrush.  Reproduced with permission from 120. Copyright 
2018 American Chemical Society. 
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Harnessing synergistic interactions 
 

As described earlier, biotribological research has recently uncovered numerous synergistic 

interactions between biomacromolecules that contribute to lowering the friction coefficient or 

enhancing the wear properties of biological contacts. With this new knowledge, researchers are 

turning their efforts towards designing biomimetic lubricants that harness these synergistic effects. 

Faivre et al. have designed wear resistant surfaces comprised of HA and a synthetic bottle brush 

polymer that acts as a lubricin mimic 119. They found that films formed by the combined polymers in 

water or saline solution could withstand higher pressures than HA-only films before the onset of wear 

damage. They attributed this effect to the trapping effect of HA by the bottlebrush polymer inside the 

contact through chain entanglement, which enables the polymer film to be maintained for higher 

contact pressures (Figure 7A). In follow up work, adhesive end groups were added to the bottle 

brushes, which improved their wear properties, in particular, in the presence of HA the bottle brush/ 

HA films yielded a friction coefficient of ∼ 0.02 and could withstand pressures up to 14 MPa before 

sustaining wear 120.  

Utilising the interactions between surface active phospholipids and HA, Seror et al. recently 

obtained low friction coefficients (μ ∼ 10-3), even at high pressure (10 MPa) between mica surfaces 

functionalised with HA and interacting with phosphatidylcholines 125. In comparison, in the absence of 

phosphatidylcholines, the friction coefficient between the HA modified surfaces was around 0.3. It 

was hypothesised that the lipids interact with HA in a way that exposes their zwitterionic head groups 

to the surrounding environment, thus allowing water to interact with the charged groups and 

enhancing the hydration lubrication effect.  

Biomimetic systems can also be designed to enhance synergies between the substrate and 

biomacromolecules present in the fluid. Singh et al. designed a system that comprises a PEG chain 

with a collagen binding peptide on one end to bind onto cartilage and a HA binding peptide to attract 

HA molecules from the surrounding media and trap them in the contact 126.  They found that HA bound 

to cartilage through the PEG/peptide system in the absence of an exogenous lubricant could 

reproduce the friction coefficients of lubricants containing high concentrations of HA on unmodified 

cartilage. Morgese et al. proposed a biolubricating system composed of three polymeric elements  

that are combined to provide interactions with the cartilage surface and lubrication: a polyglutamic 

acid backbone (PGA) is coupled to brush-forming, charged poly-2-methyl-2-oxazoline (PMOXA) side 

chains to provide lubricity to the surface, and to aldehyde-bearing groups, that can anchor on 

damaged cartilage via Schiff bases (Figure 7B) 127. These polymers could restore the friction coefficient 

of damaged cartilage in synovial fluid and in some cases surpass the friction properties of native 
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cartilage tested in the same experimental conditions. A further improvement to the polymer design 

was recently proposed whereby the PMOXA moieties formed loops rather than linear chains. For most 

values of side chain densities, the loops provided better lubrication than the linear polymers, possibly 

thanks to less polymer interpenetrations between opposing sides 128. The systems described above 

focus on finding synergies that enhance the boundary friction and/or wear resistance of the surfaces. 

Future improvements could include finding synergies that also result in enhanced rheological 

behaviour of the fluid and the surface film in order to provide a biotribological system able to function 

at a wide range of speeds and loads. 

 

Figure 7 – (a) Synergistic interactions between a bottle brush (BB) polymer (lubricin mimic) and HA 
prevent HA from being squeezed out of the contact area during loading. Reproduced with 

permission from 119. Copyright 2017 American Chemical Society. (b) Copolymer with charged 
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lubricating side chains and anchoring groups that interact with damaged cartilage. Reproduced with 
permission from 127. Copyright 2017 American Chemical Society. 

Conclusion 
 

Biomacromolecules are essential ingredients in the maintenance of healthy biological interfaces by 

preventing direct rubbing between surfaces.  Mucins, lubricin and other biomolecules such as 

hyaluronic acid or small salivary proteins act in synergy to provide a unique set of rheological and 

surface properties that ensures the presence of a full fluid film or of a highly hydrated boundary film 

between the two opposing surfaces.  As the knowledge about the biomacromolecules and 

mechanisms involved in lubrication increases, better biomimetic solutions are being developed. 

Polymer brushes, molecules that enhance the hydration lubrication phenomenon or glycoprotein 

mimics have shown promising results despite the complexities of the natural fluids. However, it is the 

recent advances in the understanding of synergies between biomacromolecules that may hold the key 

to the development of highly lubricating and wear resistant biotribological contacts. By combining 

molecules, one can enhance their anchoring capacity and lubricating ability. Further improvement 

could come from more comprehensive system approaches that combine and optimise the properties 

of the fluid, surface film and substrate to provide tribological solutions able to operate under the 

demanding conditions encountered in the body. 
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