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ABSTRACT 

Deformation associated with normal fault propagation and displacement places controls 

on the distribution and flow of sub-surface fluids. With a better understanding of how 

sedimentary units deform in response to a propagating fault, I can better predict how fluids might 

flow through the system at initial stages of displacement. To elucidate the role of sedimentary 

layering on fault tip propagation, I use ABAQUS/Standard to conduct a finite element analysis 

of a propagating normal fault to identify patterns of stress distribution and accumulation. While 

holding material properties constant (e.g., Young’s Modulus, Poisson’s Ratio, dilation angle, and 

the internal angle of friction), I simulate the initial stages of plastic failure in front of a normal 

fault tip propagating at 60° through bedded sandstone at low levels ( < 0.09 m displacement). I 

test the effects of incrementally increasing the number of mechanical layers from a single 20-m 

thick layer to five 4-m thick layers.  

I find that the presence of layering allows for simultaneous, but discontinuous, plastic 

failure in multiple locations ahead of a propagating fault tip. Additionally, although inter-layer 

stress accumulation is hindered by an increased number of layers, elevated regions of maximum 

stress occur further ahead of the propagating fault tip with an increased number of layers. 

Additionally, I show that the coefficient of friction between beds controls the angle at which off-

fault-plane stress develops.  

My results show that mechanical layering systematically re-distributes stress ahead of a 

propagating fault tip so that a section of sandstone with multiple layers will fracture differently 

than a single massive bed. This predictable mechanical behavior is likely to influence the 

development of fluid conduits associated with fracturing during the early stages of normal fault 

propagation, a finding that has implications for the evolution of permeability structure of real-

world fault zones in the subsurface. 
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INTRODUCTION 

Normal faults, and the deformation associated with their propagation, are important 

structural controls on the flow of subsurface fluids and the propagation of slip during an 

earthquake, so understanding initial controls on fault tip propagation through bedded 

sedimentary strata may aid resource exploration and the mitigation of seismic hazard. Though 

previous researchers have acknowledged the effects of sedimentary layering as barriers to fault 

propagation (e.g. Cooke and Pollard, 1997; Cooke et al., 2001; Peacock, 2002; Hayano and Ishii, 

2016), previous research has failed to produce a systematic analysis on the role of mechanical 

layering on fault tip propagation. Therefore, building upon previous geomechanical modeling 

techniques (Smart et al., 2004, 2009, 2010b, 2010a, 2012; Doff, 2015; Sattari and Eaton, 2015), I 

develop an experimental finite element model that permits me to analyze the influence of 

stratigraphic discontinuities upon stress and strain ahead of a propagating fault tip. I use this 

model to address two primary research goals: 1. To systematically analyze the influence of 

planar bedding upon stress and strain fields ahead of a propagating normal fault and; 2. To 

develop a predictive model of fracture distribution during the propagation of a normal fault 

through well-bedded stratigraphy.      

 In order to conduct an empirical analysis, I use ABAQUS/Standard finite element 

modeling software (Dassault Systèmes, 2018) to create a 2D model that permits me to 

systematically assess the role of bedding upon stress and strain distribution during normal fault 

propagation. I use this approach to control a large number of important physical variables (such 

as bedding thickness, fault displacement, physical properties of the strata, and friction between 

beds), and the software permits me to efficiently test different factors (e.g. the coefficient of 

friction between beds) across a range of values. Because this model simulates propagation of a 
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fault through bedded sandstone, these results can be applied by other scientists to similar 

geologic settings. 

BACKGROUND 

Finite Element Analysis as a Geomechanical Modeling Technique 

Geomechanical modeling is a method for simplifying physical geologic processes into 

replicable, testable models; geomechanical modeling permits me to conduct an analysis of stress 

and strain while maintaining control of the geometry and kinematics of the model pieces. Smart 

et al (2012) note that there are multiple methods of numerical geomechanical analysis, including 

finite element, boundary element, and discrete element analysis—each of which rely on pre-

defined physical material properties as inputs and are thus potentially useful for an empirical 

study of fault propagation through strata defined by physical properties. Yet only finite element 

analysis can model the spatial distribution of stress and strain throughout each layer in a manner 

that allows prediction of fracture formation in elastic-plastic materials while remaining 

computationally efficient (Smart et al., 2012).  

 I use finite element analysis (FEA), a method for calculating specific output quantities, 

(i.e. stress and strain fields) as a solution to a given mathematical problem, within a multi-piece 

model (Cook, 1995). By dividing my model into “elements”, across which displacement, stress, 

and strain can be interpolated, I can analyze the spatial distribution of stress and strain (Cook, 

1995). Mathematically, FEA is a means of interpolation of the output quantity through piecewise 

polynomial calculations, whereby a quantity, such as displacement, stress, or strain can be 

interpolated across the surface of the element (Cook, 1995). The interpolation calculation uses 

the values expressed at the element corners, commonly called “nodes” (Cook, 1995). This 

process may be iterated over a finite number of nodes in order to solve for a field quantity (such 
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as displacement) over a large, multi-piece system (Smart, 2019). Because this process requires 

simultaneously solving a large number of algebraic equilibrium equations, a computer is required 

(Cook, 1995).  

When applied to stress analysis, FEA uses a matrix of equations, which may be 

symbolized as: 

 KD=R.         (1) 

Cook (1995, p. 1), where K is the “stiffness matrix” [a vector of known constants], D is a vector 

of unknowns, and R is a vector of known or applied loads. Because loads are supplied within 

their own matrix, FEA is versatile, and can be used for nearly any load over any finite area 

(Cook, 1995). The stiffness matrix (K) is a summation of the stiffness of each individual element 

within the model, where each individual element’s stiffness is a function of the size and shape of 

the element, the elastic properties, and the displacement occurring on the individual element 

(e.g., Dietrich and Decker, 1975). Using this formulation, ABAQUS/Standard can solve for the 

vector of unknowns (D) and provide a stress and strain analysis for each element in a model.  

Previous researchers modeling of faulting and folding mechanisms have used Dassault 

Systèmes’ ABAQUS software (e.g. Smart et al., 2012; Doff, 2015; Sattari and Eaton, 2015), 

which is appropriate for geomechanical modeling on various scales in both 2D and 3D (Smart et 

al., 2004, 2009, 2010a, 2010b, 2012). Furthermore, ABAQUS includes Lagrangian mechanics 

(i.e., it can model output variables in any specified location throughout the model) and the ability 

to handle non-linear mathematical modeling, it is well suited to model high strain values as well 

as large displacements along frictional contacts (Smart et al., 2012). Thus, ABAQUS provides 

suitable capabilities for modeling fault movement and incurred strains on frictionally-interfaced 

strata. ABAQUS also contains both preset and adjustable inputs, such as Mohr-Coulomb 
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plasticity and frictional sliding contacts, that are suitable for modeling rock materials as well as 

fault contacts (Smart et al., 2012). Therefore, I can use ABAQUS to perform static stress 

analysis on a diverse range of fault movement scenarios.  

Model Building Theory in ABAQUS 

2D Modeling 

For the purpose of modeling fault tip propagation within layered strata, the 

simplifications provided by a 2D model allow efficient computation and effective stress and 

strain analysis. Smart et al. (2012) used a 2D model to examine yield stress on elastic-plastic 

layers, and Melosh and Williams (1989) used 2D finite element analysis to assess stress near a 

normal fault. Thus, 2D analyses are can be used to study stress and strain fields within a 

geomechanical model. 

Meshing and Element Assignment 

The shape and number of elements that compose a model directly influence the way the 

model is able to deform. Therefore, the element type used within a model must allow appropriate 

distortion while remaining computationally efficient. Moreover, the choice of how many 

elements to use in order to describe a system is a potential source of model error (Cook, 1995); if 

a model piece expected to undergo stress or strain displacements is composed of too few 

elements (i.e., is coarsely meshed), regardless of element type, results are likely to be inaccurate 

(Dassault Systèmes, 2008). Element choice errors and meshing errors can be correspondingly 

minimized by choosing appropriate elements and providing a sufficiently dense mesh.  

Material Properties 

The results of a finite element analysis strongly depend upon material properties specified 

within a model (Smart et al. 2012). Smart et al. (2012) note that within geomechanical finite 
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element models, for an analysis of permanent deformation, elastic-plastic material descriptions 

are preferable to other material definitions, since permanent deformation may be captured with 

elastic-plastic behavior. Although a simple approach, I use a Mohr-Coulomb elastic-plastic 

material model to generalize rocks within the upper crust (e.g., Ord, 1991; Vermeer and DeBorst, 

1984; Zienkiewicz and Mroz, 1984; Jaeger and Cook, 1979; Rudnicki and Rice, 1975; Smart et 

al., 2010a). Following the material definitions used by Smart et al. (2010a) for an analysis in 

ABAQUS software, Hooke’s law characterizes the elastic properties of the rock such that: 

𝜎 = 𝐸𝜀        (2) 

in which stress (𝜎) is a tensor, strain (𝜀) is a tensor, and 𝐸 is a matrix describing the stiffness of a 

material. The plastic component, then, follows the Mohr-Coulomb criterion such that: 

𝜏 = 𝑐 + 𝜎 tan 𝜙        (3) 

where 𝜏 is the shear stress, 𝜎 is the normal stress, 𝜙 is the angle of internal friction, and cohesion 

is defined as 𝑐 (e.g. Smart et al., 2010a). Smart et al., (2010a) in their model, incorporate 

Menétrey and William’s (1995) formulation that allows for plastic flow under loads greater than 

the Mohr-Coulomb criterion; this is achieved by including a dilation angle (ψ) into the material 

model, which allows for disassociation when 𝜙 ≠ 𝜓 (Smart et al., 2010a); Smart et al., (2012) 

simply define the dilation angle as half of the internal angle of friction, though dilation angle for 

generalized sandstone may be estimated at 10% the internal angle of friction (Smart, 2018). 
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Contact Properties 

ABAQUS/Standard allows the user to define contact properties within the model. Smart 

et al. (2010a) employ a Coulomb model to define sliding behavior: 

𝜏𝑐𝑟𝑖𝑡 = 𝜇𝜎              (4) 

such that initial slip along the contact occurs when shear stress exceeds a critical value ( crit) as 

defined by the coefficient of friction (𝜇) and the stress normal to the contact plane (𝜎) in Abaqus 

(e.g. Smart et al., 2010a). 

Boundary Conditions and Applied Forces  

 Because the virtual model space provided by ABAQUS implies no inherent conditions, 

all boundary conditions used within a modeled system must be described. In addition to 

restricting movement of various model pieces, forces/loads applied to model pieces must also be 

prescribed. Ultimately, these loads and boundary conditions are the primary input 

ABAQUS/Standard uses to solve for output. Thus, proper constraints on a model (boundary 

conditions) as well as appropriate forces and loads, are essential for an efficient, effective 

analysis. Still, over-constraint of elements may lead to computational issues as well (Smart, 

2018). Thus, trial-and-error techniques must be employed in order to select boundary conditions.   

Using ABAQUS Output to Predict Plastic Failure 

 Inherent in the mathematics of finite element analysis is an issue with modeling 

discontinuities; because finite element analysis is based upon the assumption that the elements 

that make up a model are linked at nodes, it is computationally problematic to try to force 

elements apart into a discontinuous mesh. Though it can be done, Moes et al. (1999) note that, in 

order to model discontinuities, the mesh of a model must be adaptive (changing) throughout the 

modeling steps; such an adaptive system would drastically increase computational requirements 
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and is not well-supported by ABAQUS. However, Bourne et al. (2000) point out that an 

examination of the pre-plastic failure stress field can act as a proxy for predicting discontinuous 

behavior. As such, the limitation of modeling discontinuities can be overcome by assuming that 

the elements which yield under their specified failure criterion would become discontinuous if 

modeling behavior permitted. 

 Following that line of logic, an analysis of stress and strain vectors as output variables is 

sufficient for modeling simple fault propagation (e.g., Smart et al., 2012). In particular, analyzing 

the directional component of maximum principal stress and strain allows for a reasonable spatial 

prediction of fracture formation. Additionally, a flag (Boolean output value), indicating that 

plastic failure has occurred, is available for elastic-plastic elements. This output, combined with 

an examination of maximum displacement, is a quick method to identify localized fracture 

formation within a model. 

METHODS 

Building a Model of a Normal Fault System 

Model Geometry 

The model I developed replicates a planar, dip-slip normal fault with a 60° dip. This 

geometry represents normal fault systems at depths shallower than about 10 km (e.g., Jackson 

and McKenzie, 1983). The model captures the initial stages of propagation of a pre-existing fault 

into undeformed sandstone beds with thicknesses of several meters; the model is not intended to 

recreate initial fault formation but rather to show initial stages of propagation through bedding 

after initial fault formation.  

I use a model geometry similar to the geometry used by Smart et al. (2010a). The 

underlying fault block of the footwall (B1, Fig. 1) imposes displacement on the model. The 
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overlying fault block of the footwall (B3, Fig. 1), provides an overburden load and is not 

restrained. Pinned fault blocks in the hanging wall (B2 and B3, Fig. 1) cannot move horizontally 

nor vertically, ensuring displacement occurs along the fault plane. Figure 1 includes the stress 

tensor I use to describe a pre-existing stress field within the test strata (ABAQUS uses 

engineering sign conventions for stress, so that positive stress is tensile and negative stress is 

compressive); this pre-described stress field applied to the elements within the test strata is 

paired with inward pressure applied to the top and sides of the model (Fig. 1). Describing pre-

existing stresses using both pre-defined stresses applied to the elements as well as pressure 

applied to the boundary helps ensure computational efficiency and simulates stresses due to a 

slight overburden (Smart, 2018). This pre-defined overburden represents near-surface conditions.  

The overlying fault blocks (B3 and B4 in figure 1) are pre-faulted, which prevents the 

overlying strata from interfering with the model. If the overlying blocks were modeled as a 

single rectangular block (i.e., had no pre-defined fault surface) the deformation of the overlying 

block would affect the deformation of the underlying test beds, but since my analysis is intended 

to examine stress and strain imparted by the propagating fault (between B1 and B2), I pre-fault 

the B3 and B4 to minimize the influence of these overlying blocks. The 20 meters of test strata, 

sandwiched between the fault blocks, is allowed to deform (Fig. 1). I vary the number of beds 

throughout the analysis, while keeping the entire test section 20 meters thick. The test beds are 

initially homogeneous, with no pre-existing deformation or preferred planes of weakness. This 

ensures that my results show only the effect of bedding planes on the early stages of stress and 

strain development throughout the strata. 
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Figure 1. Example of model geometry showing three test beds (T1-T3). The stress tensor indicates the pre-defined stress state 

within the test beds. Displacement (up and to the left) simulates propagation of a normal fault with 60° dip. Note that the scale in 

the 2-direction has been exaggerated for illustration (total vertical thickness of the test strata is 20 m; the fault plane is kept at a 

60° dip for illustration). 

 

Within my model, I define the fault surface and orientation as a planar, non-frictional 

contact. Similarly, I define contacts between the test beds and the fault blocks as planar, non-

frictional contacts (green contacts in Fig. 2). I do not analyze the role of these outer contacts. The 

contacts between test strata (red contacts in Fig. 2) are frictional, planar contacts; I vary the 

coefficient of friction between test beds from 0.15 μ to 0.9 μ. 

 

Figure 2. Blown-apart example of model with three test beds (T1-T3) showing contact definitions. Contacts between beds (red 

lines) are frictional. Contacts between fault blocks (green lines) are frictionless. Note that the scale in the y-direction is 

exaggerated; the fault plane is kept at a 60° dip for illustration.  
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Material Properties and Mesh 

Following Smart et al.’s (2010a) modeling protocol, I employ elastic-plastic material 

behavior for the deformable beds and an elastic material with a high Young’s Modulus (30 GPa) 

for the fault blocks (B1 through B4, Fig. 1); the material properties displayed in Table 1 are held 

constant for all models.  

Table 1. Geomechanical model material properties. 

Material 

Properties 

Density 

(kg/m3) 

Young’s 

Modulus 

(GPa) 

Poisson’s 

Ratio 

Friction 

Angle (°) 

Dilation 

Angle (°) 

Cohesion 

(MPa) 

Test Beds 

(sandstone) 
2328 19.73 0.22 44 4.4 21.15 

Fault 

Blocks 
N/A 30 0.5 N/A N/A N/A 

 

 Following guidelines for stress and strain analysis suggested by the makers of ABAQUS, 

my model makes use of linear quadrilateral plane strain elements with five points of integration 

(CPE4R), since ABAQUS provides both stress and strain output for CPE4R elements. 

This choice of element type is consistent with the assumption that the displacement step of the 

analysis may produce bending within the test beds (Dassault Systèmes, 2008). Yet, such an 

element type is susceptible to “hourglassing”, or more-than-reasonable bending, so “hourglass 

control” is enabled to add rigidity to the elements (Dassault Systèmes, 2008).  

The mesh density, as defined by the size of “elements,” which each model piece is 

divided into for mathematical interpolation of stress and strain, controls the permissible 

deformation of each model piece and the resolution of the results. Because I do not intend to 

deform the four bounding blocks of the model (B1 through B4), I define a coarse mesh for the 

four bounding blocks. Mesh resolution of the test beds is fine near the center of the beds and 

coarse near the edges of the model, ensuring higher-resolution analysis near the propagating 

fault. The vertical mesh resolution is constant; each element is 1 meter in the vertical dimension. 
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Because the four fault blocks surrounding the test beds only deform minimally, the mesh 

resolution should not affect the results; coarser mesh in the fault blocks aids computational 

efficiency. 

Analysis Procedure 

In the modeling presented here, I perform a three-step analysis. In the initial step, I apply 

boundary conditions. In the second step, I apply forces to the model, allowing the model to 

achieve equilibrium and begin displacement. Total displacement is incremented non-uniformly 

based upon the computational complexity of the model. Finally, once the displacement is 

complete, I review the results in the output step. I apply this procedure to one 20-meter-thick 

bed, two 10-meter-thick beds, three 6.67-meter-thick beds, four 5-meter-thick beds, and five 4-

meter-thick beds, which permits me to analyze the influence of planar bedding upon the stress 

and strain fields within the beds. Additionally, I vary the coefficient of friction between the beds, 

which permits me to assess the influence of inter-layer friction upon stress and strain field 

development.  

Initial Step. The initial analysis describes position constraints, contacts, and material 

properties of the model. Within my analysis, boundary conditions as well as material properties 

are defined within the initial step are propagated throughout the subsequent analysis steps. 

Following the strategy Dietrich and Decker (1975) used, fixed boundaries are placed far from the 

area of deformation analysis, so that the restrained nodes do not affect the analysis.  

 Displacement Step. During the displacement step, I apply an inward force to the 

unpinned (left) side of the model. Using a pre-defined stress of 29.88 Pa, this inward force acts to 

simulate low horizontal (𝜎3) tectonic stress. Similarly, I use an inward (downward) force, applied 

to the top of the model, to simulate 𝜎1 (vertical force in Fig. 1). This force is pre-defined as 
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105.92 Pa. Along with these forces, I apply a matching (𝜎1 = −105.92 𝑃𝑎; 𝜎3 = −29.88 Pa) 

pre-defined stress tensor to the elements of the entire model. This ensures that the model does 

not encounter computational issues arising from under-constrained boundary conditions.  

Total displacement occurs through a series of increments, which add up to the prescribed 

total displacement magnitude of 0.125 meters (this displacement ensures that the test strata 

experience through-going plastic failure). I allow ABAQUS to choose how many increments are 

used for computational efficiency. Since I describe total displacement as a vector (magnitude and 

direction) rather than a true force, the number of increments used to apply the displacement does 

not affect the overall analysis in this discrete, quasi-static analysis.  

Analysis of Output Variables 

 For each model iteration, I analyze the location at which the test beds exhibit initial 

plastic failure. Additionally, I consider the amount of displacement necessary to cause initial 

plastic failure. Then, I analyze the distribution of maximum principal in-plane stress within the 

test beds at the level of displacement, measured at the point where the corner of the footwall fault 

block (B1) contacts the test strata and first plastic failure occurs. These output variables allow me 

to identify spatial patters of stress accumulation. Additionally, I analyze the maximum principal 

in-plane stress vectors before and after initial plastic failure. These vector values allow me to 

characterize the development of stress during initial phases of displacement.  

 Finally, I analyze the spatial distribution of maximum principal in-plane stress and strain 

at the level of displacement that causes through-going failure to occur through the entire section 

of test strata. Identifying the moment of through-going failure is not straightforward, as the 

spatial distribution of failure throughout the test strata may not form a continuous line. So, I 

define through-going failure as the “moment” when a line of direct contact between failed 
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elements forms through the entire package of test strata. At this point, the fault tip has 

propagated through the entire test section. 

DATA AND RESULTS 

Initial Plastic Failure 

For each iteration of the model, initial plastic failure occurred at displacements between 

0.030 meters and 0.040 meters (Fig. 3; additional results can be found in Appendix). Models 

failed at one or two regions within the model, (Fig. 4), with failure restricted to the lowermost 

and uppermost layers of the test package (Fig. 4). This pattern of localized failure occurred in all 

models. This means that, where simultaneous initial failure occurred, initial plastic failure 

occurred close to the propagating fault tip (1-4 meters from the fault tip) as well as up to 19 

meters from the propagating tip. The distribution of simultaneous initial failure, where three or 

more beds were deformed, is symmetrical about the center of the test strata (Fig.4). Increasing 

the number of beds generally increases the total area that fails during initial plastic failure. For 

example, when friction was held constant, the total area that initially failed in the model with one 

bed was less than 1 m2, while the total area that failed in the model with five beds was more than 

5 m2 (Fig. 4). Varying the coefficient of friction between test beds did alters the distribution of 

initial plastic failure; generally, models with lower friction between beds had a larger total area 

of plastic failure (Figs. A1-A4 in Appendix). For the models with two test beds, varying the 

coefficient of friction between test beds alters the displacement necessary to cause initial plastic 

failure, but this effect does not hold true for other models (Fig. 3). 
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Figure 2. Amount of displacement necessary to cause plastic failure in each model. The models are clustered along the x-axis by 

the number of beds present and color-coded by the friction between beds (increasing friction is a darker hue). Note that friction 

does not affect the amount of displacement required to cause plastic failure. Note that all models failed within 0.01 m from one 

another, at three to four cm of displacement. 
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Figure 3. Initial plastic failure (A-E) and stress gradients (F-J) at low levels of displacement, with constant friction between beds 

(0.15 μ). Dashed lines indicate bedding planes. Note that the presence of three or more beds (C-E) results in multiple locations of 

simultaneous plastic failure and that initial failure is confined to the lowermost and uppermost mechanical layers in each model (A-

E). Also note that mechanical layering (G through J) distorts the smooth gradient seen when no layering is present (F). Finally, note 

that by increasing the number of mechanical layers, higher stress concentrations are focused near the center of the test strata (G-J). 

Positive stress values are tensional, negative values are compressional. Each model is shown at displacement causing initial plastic 

failure; thus, each model is of similar, but not equal, displacement. 
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Initial Stress Distribution 

At displacements causing initial 

plastic failure, maximum tensile in-plane 

principal stress is highest in the uppermost 

and lowermost mechanical layers, reaching 

values ranging from 11.4 MPa to 14.2 MPa 

(Fig. 4). Furthermore, the total area of 

elevated (> 6 MPa) tensile stress is greater in 

the hanging wall of the projected fault plane 

than in the footwall at constant (0.15μ) 

friction (Fig. 4). In all models at low levels of 

displacement and constant (0.15) coefficient 

of friction (μ), the ratio of area of elevated (> 

6 MPa) tensile stress in the hanging wall to 

the footwall was ranged from 1.4:1 (five 

beds) to 9.8:1 (1 bed) (Table 2).  

When only one bed is present, in-

plane principal tensile stress is highest in the 

base of the hanging wall of the bed, where 

the model contact the lower right bounding 

block (Fig. 4). The model with one bed 

exhibits a smooth stress gradient ahead of the 

propagating fault tip that reaches a localized 

Figure 4. Comparison of maximum in-plane principal stress distributions 

through three beds at low levels of displacement. Note that as the 

coefficient of friction between beds is increased, a more continuous 

gradient of stress develops through the strata. Positive stress values are 

tensional, negative values are compressional. Each model is shown at 

displacement causing initial plastic failure; thus, each model is of similar, 

but not equal, displacement. 
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maximum tensile in-plane principal stress of 13.2 MPa (Fig. 4). The total area of elevated (> 6 

MPa) tensile stress, in the model with only one bed, reached 47.7 m2 (Table 2). 

When mechanical layering is present, the smooth in-plane stress gradient becomes 

discontinuous, strongly affected by boundaries between mechanical layers (Fig. 4).  In-plane 

principal tensile stress near the center of the multi-bed package of test strata (in the center of the 

model) is elevated relative to the level of stress in the center of the single bed model. However, 

increasing the number of beds does not affect the total area of elevated (> 6 MPa) tensile stress 

under low levels of displacement (Table 2). Increased friction between mechanical layers results 

in the development of a more continuous gradient of in-plane principal stress from one 

mechanical boundary to the next, but increased friction does not increase the maximum value of 

localized in-plane principal tensile stress achieved (Fig. 5). 

 

Table 2. Area of elevated tensile stress at low displacement with constant (0.15) coefficient of friction (). 

Model 

Area of (>6 MPa) Stress 

in Hanging Wall 

(m2) 

Area of (>6 MPa) 

Stress in Footwall 

(m2) 

Ratio of Stress in 

Hanging Wall to 

Footwall 

Total Area of 

(>6 MPa) 

Stress 

(m2) 

1 Bed 43.3 4.4 9.8:1 47.7 

2 Beds 22.6 13.8 1.6:1 36.4 

3 Beds 39.7 23.5 1.7:1 63.2 

4 Beds 37.0 20.4 1.8:1 57.4 

5 Beds 20.9 14.5 1.4:1 35.4 
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Initial Plastic Strain Distribution and Development 

When only one mechanical layer is deformed in 

the model, increased displacement leads to a smooth, 

along-fault-plane accumulation of in-plane principal 

strain ahead of the fault tip. Low levels (between 5E-5 

and 1.1E-3) of strain preferentially accumulate along the 

lower boundary of the hanging wall and the upper 

boundary of the footwall, where the beds contact the 

bounding blocks (Fig. 6). Additionally, low levels of 

strain accumulate over a greater area in the hanging wall 

(off the fault plane) than in the footwall (Fig. 6). This 

accumulation of strain matches the spatial distribution of 

stress that occurs under the same conditions (Fig. 4), but 

elevated (> 1.1E-3) strain is confined to a smaller area 

than elevated stress (Fig. 6).  

 At displacement levels causing initial plastic 

failure, the presence of mechanical layering discretizes 

strain at the mechanical boundaries (Fig. 6). In every 

model with mechanical layering, in-plane principal strain 

is maximized in the uppermost and lowermost 

mechanical layers as well as along contacts between 

beds (similarly indicated by the location of initial plastic 

failure) (Fig. 6). However, the development of strain 

Figure 5. Maximum in-plane principal logarithmic strain 

distribution at low levels of displacement and constant 

(0.15) coefficient of friction (μ  )between beds. Dashed 

line indicates bedding plane. Note that where three or 

more layers are present (C-E), maximum values of strain 

are localized to the outer most beds. Additionally, 

elevated strain is confined to a relatively small area. Each 

model is shown at the displacement causing initial plastic 

failure; thus, each model is of similar, but not equal, 

displacement.  
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across layer boundaries is generally more continuous than the accumulation of stress (Fig 6; Fig. 

4). At low levels of displacement (0.03-0.04 m), the maximum in-plane strain ranged from 1.3E-

3 to 2.7E-3 (Table 2). With increased displacement (0.07-0.09 m), maximum in-plane strain 

ranged from 1.2E-2 to 2.6E-2 (Table 2). 

 

Table 2. Maximum stress and strain achieved in each model 

 

Maximum Value 

Across Entire 

Test Section 

 

Max. Log. In-

Plane Principal 

Strain 

 

Max. In-Plane 

Principal Stress 

(MPa) 

 

Maximum Log. 

In-Plane 

Principal Strain 

 

Max. In-Plane 

Principal Stress 

(MPa) 

1 Bed (No 

Layering) 
1.70E-3 13.2 2.61E-2 18.1 

 

2 Beds (0.15μ) 
1.26E-3 11.4 2.18E-2 18.0 

2 Beds (0.3μ) 
1.73E-3 12.5 1.91E-2 18.0 

2 Beds (0.6μ) 
2.43E-3 14.2 1.20E-2 18.0 

2 Beds (0.9μ) 
2.44E-3 14.2 N/A N/A 

 

3 Beds (0.15μ) 
2.49E-3 13.8 2.54E-2 18.0 

3 Beds (0.3μ) 
1.26E-3 12.8 1.96E-2 18.0 

3 Beds (0.6μ) 
1.36E-3 12.5 1.43E-2 18.0 

3 Beds (0.9μ) 
1.34E-3 11.8 1.14E-2 18.0 

 

4 Beds (0.15μ) 
2.71E-3 13.8 3.41E-2 18.0 

4 Beds (0.3μ) 
1.55E-3 13.2 2.28E-2 18.0 

4 Beds (0.6μ) 
1.29E-3 13.2 1.65E-2 18.0 

4 Beds (0.9μ) 
1.65E-3 12.3 1.29E-2 18.0 

 

5 Beds (0.15μ) 
1.96E-3 13.2 2.52E-2 18.0 

5 Beds (0.3μ) 
1.90E-3 13.0 2.20E-2 18.0 

5 Beds (0.6μ) 
1.49E-3 13.0 1.65E-2 18.0 

5 Beds (0.9μ) 
1.30E-3 12.9 1.33E-2 18.0 

Low (0.03-0.04 m) Displacement Increased (0.07-0.09 m) Displacement 
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Through-going Plastic Failure 

With continued displacement (0.07 to 0.09 m), through-going plastic failure occurred 

throughout the entire 20 m test section (Fig. 7). In all models, at these levels of displacement, 

plastic failure occurs laterally along the base of the test strata in the hanging wall, where the test 

strata contacts bounding block B2 (Fig. 7). Where only one bed was present, failure is synthetic 

to the fault plane, and with a strain distribution that widens moderately up-section from the 

propagating fault (Fig. 7; e.g. Seog et al., 2004). In models with more than two beds, additional 

failure occurs off-fault-plane along mechanical layer boundaries in the hanging wall of test strata 

(Fig. 7; e.g., Seog et al. 2004). 

Through-going Stress Distribution 

At displacement causing through-going failure (0.07 to 0.09 m), stress gradients ahead of 

the propagating fault tip become less discontinuous than in the earliest stages of propagation 

(Fig. 7), with stress relatively concentrated along the plane of the propagating fault. At this level 

of displacement, regions of elevated (> 6 MPa) tensile stress occur more frequently in the 

hanging wall than in the footwall (Fig. 7); off-fault-plane distributions of elevated tensile stress 

occur within 5 meters of the fault plane in the lowermost beds and occur further from the fault 

plane in the uppermost beds, where they occur more than 10 meters from the fault plane, 

measured parallel to bedding (Fig. 8). With increasing friction between layers, the center of off-

fault-plane stress concentrations are farther from the fault plane; this is best quantified by 

specifying the angle between the fault plane and a line running through the center of the off-

fault-plane stress concentration (Fig. 8). All models with mechanical layering reached a localized 

maximum tensile in-plane principal stress of 18 MPa. In the model with no layering, the 

maximum tensile in-plane principal stress achieved was slightly higher, at 18.1 MPa (Table 2).  
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Figure 6. Plastic failure (A-E) and stress gradients (F-J) at levels of displacement that cause through-going plastic failure, 

with constant friction between layers (0.15 μ). Dashed line indicates bedding plane. Note that in a single bed (A), failure is 

fault-sub-parallel, but the presence of four or more beds (D & E) results in plastic failure along bedding planes. Note that 

failure accumulates where the hanging wall contacts the grey fault block (A-E). Note that mechanical layering (G-J) distorts 

the smooth stress gradient seen when no layering is present (F). Note how increasing mechanical layering allows for 

increased stress concentrations off-plane from the fault, in the hanging wall (F-J). Finally, note the gap opening in the top 

left of each model; I discuss this geometric artifact in the “Geometric Limitations” section. Positive stress values are 

tensional, negative values are compressional. Each model is shown at the displacement causing through-going plastic 

failure; thus, each model is of similar, but not equal, displacement. 
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Figure 7. Off-fault-plane maximum in-plane principal stress concentrations at increased displacement in 

models with four beds. Dashed line indicates bedding plane. Note that increasing friction between beds 

increases the angle between the fault plane and the center of off-fault-plane stress concentrations. Positive 

stress values are tensional, negative values are compressional. Each model is shown at the displacement 

causing through-going plastic failure; thus, each model is of similar, but not equal, displacement. 
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Limitations of Normal Fault Propagation Model Results 

I used finite modeling to examine the effect of mechanical layering (bedding planes) on 

normal fault propagation. ABAQUS/Standard provides a reasonable tool to model fault 

propagation, but modeling choices heavily affect the output variables as well as whether or not a 

model will run to completion. Based on my modeling geometry, material properties, and 

boundary conditions, I tested 17 models. The majority modeled both initial plastic failure as well 

as through-going failure; only 1 model did not model through-going failure but did model initial 

stages of plastic failure. The model may not have run to through-failure for a variety of reasons, 

but mathematical convergence issues seems to have caused the model to end prematurely. Since 

I am most interested in the initial stages of plastic failure during fault propagation, these 

computational limitations did not affect my analysis; but they would become an issue during 

modeling of large fault movements. 

Geometric Limitations 

 Because the boundary conditions of any given model must be specified and controlled in 

ABAQUS/Standard, my 2D model geometry allows for the reasonable displacements to be 

applied to the test strata but does not replicate real-world geometries. For example, for each 

model tested, after small displacements, the upper fault block of the footwall (fault block B3) 

begins to separate from the test strata near the fault. Such an opening would not happen in the 

real-world. The opening likely occurs because the four fault blocks (B1 through B4) were given 

perfectly elastic behaviors for modeling efficiency, as opposed to elastic-plastic behaviors of 

rocks in the real world; additionally, the low values I apply in the initial stress state permit the 

opening between the test strata and the bounding blocks. Although my results are not made 

irrelevant by this model behavior, my results may be influenced by this modeling artifact. For 
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example, it is possible that the observed occurrence of initial plastic failure far ahead of the 

propagating fault tip may be a result of flexure of the beds permitted by the separation of the test 

strata from the bounding blocks. Additionally, the opening occurs because my model is unable to 

obtain true geostatic equilibrium before displacement. The tectonic and overburden force applied 

to the top and sides of the model is six orders of magnitude less than what might be expected in a 

real-world system at depth. This modeling simplification was made in order to allow the 

elements in the test beds, the focus of modeling presented here, to behave as expected (behaving 

as coherent sandstone bedding as described by the material properties); when I attempted to 

achieve true geostatic equilibrium before displacement, computational issues and unrealistic 

material behavior resulted (Smart, 2018).  However, although low, these boundary stress values 

are consistent with those expected near the Earth’s surface. 

Resolution of Results 

Since I let Abaqus determine the displacement incrementation relative to the total 

displacement throughout each model, the displacement increments are not constant across all 

models. However, I limited the maximum amount of displacement applied from one increment 

of a model to the next increment at 0.0125 meters (10% of the total displacement), which means 

that the resolution of displacement available for any given model is 10% of displacement.   

Additionally, the size and distribution of the mesh I applied to the test strata limits the 

resolution at which plastic failure, stress, and strain can be interpreted. My mesh, near the 

propagating fault, gives 1-meter vertical resolution and sub-meter horizontal resolution. The 

mesh distribution also affects my ability to identify through-going failure. When mesh resolution 

is combined with the low displacement increment resolution, it is difficult to determine the 

precise displacement and location where through-going failure occurs. Yet, since the location 
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and fault displacement at which through-going failure occurs is not the focus of my analysis (I 

focus on initial plastic failure), my analysis is not dependent upon a precise determination of the 

through-going failure. 

DISCUSSION 

 I used 2D finite element modeling to assess the role of mechanical layering in the initial 

stages of normal fault tip propagation. By varying the number of mechanical layers present (one 

layer to five layers), I found that the presence of layers inhibits the development of a smooth 

stress gradient ahead of the propagating fault tip. This leads to simultaneous, discontinuous 

plastic failure at multiple locations ahead of the fault tip during the initial stages of propagation, 

where the presence of fewer beds results in plastic failure over a smaller area than with a greater 

number of beds.  With the material properties defined to represent a 20 m thick test section of 

sandstone, I find that a displacement of 0.03 to 0.04 meters is sufficient to cause plastic failure. 

With continued displacement (0.07 to 0.09 m), through-going plastic failure occurred 

throughout the entire 20 m test section for all models (sans the one model that ran into 

computational errors before through-failure occurred). This increased displacement caused stress 

gradients ahead of the propagating fault tips to become more continuous than in the earliest 

stages of propagation. As such, by the time through-going failure occurred, elevated tensile stress 

began concentrating in-plane with the propagating fault. At all levels of displacement tested, the 

greatest concentrations of stress occurred off-fault-plane along bedding contacts.   

I find that varying the coefficient of friction of the contacts between mechanical layers 

has minimal effect on the development of plastic failure; however, varying friction does affect 

the distribution of stress within the test strata. Increasing friction leads to a smoother stress 

gradient and minimizes the discontinuous localization of strain at mechanical layer boundaries.  
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Under 0.07 m to 0.09 m displacement, increasing friction causes off-fault-plane stress 

accumulations in the hanging wall to occur further from the fault plane, so that the angle between 

the fault plane and the elevated regions of stress increases with increasing friction; this means 

that at low levels of friction, off-fault-plane stress tends to accumulate a meter or two closer to 

the fault plane than at high levels of friction. 

Using a finite element approach, Smart et al. (2009) show that interlayer slip constrains 

the development of strain within bedded strata; Comparing models in which slip between 

bedding was permitted to models in which beds were not allowed to slip, they found that the 

presence of interlayer slip permits the development of more localized strain patterns (Smart et 

al., 2009). Although I did not examine slip along bedding planes, it is likely that slip acts as a 

control for the stress and strain patters that developed within each of my models. Yet I found that 

varying the coefficient of friction between beds had minimal effect on the development of strain. 

I hypothesize that my results indicate that, at the magnitude of stress causing failure, small 

changes in the coefficient of friction between the beds have little effect, although increasing 

friction to the point where interlayer slip is essentially prevented would have an effect. 

Additionally, my results show that where more beds are present, friction between beds plays a 

greater role, such that both interlayer slip and the number of bedding planes present control the 

spatial development of strain in a bedded system.   

Field and Subsurface Exploration Applications 

My models suggest that the initial stages of fault tip propagation of a normal fault within 

a layered system are not characterized by linear stress gradients leading to in-plane plastic 

failure. Rather, the initial stages of propagation are characterized by complex patterns of stress 

accumulation. The presence of discontinuous regions of increased stress along layer boundaries 
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leads to simultaneous plastic failure at multiple locations ahead of the propagating fault tip. This 

behavior has implications for predicting slip and geometry at fault tip damage zones. The 

presence of mechanical layering may permit the development of a structurally complex fault tip 

damage zone. Additionally, I found that increasing friction between bedding planes results in a 

greater angle between the fault plane and centers of increased off-fault-plane stress. This 

suggests that the friction between bedding planes is a structural control on the distance at which 

damage zone may develop perpendicular to the projected fault plane of a propagating fault tip 

(i.e., the angles I measured) because bedding controls the stress field ahead of a propagating fault 

(e.g., Seog et al., 2004). Based on my results, I would expect a higher coefficient of friction 

between bedding planes to result in the development of a broad damage zone ahead of a 

propagating tip, while I would expect a low coefficient of friction to result in a narrow damage 

zone. To test this, additional displacement could be applied to my models, to identify where 

plastic failure occurs in later stages of fault tip propagation. 

Within a field setting or in subsurface fault systems, I would expect fracturing and 

potential fluid conduits, associated with opening mode fracturing, to develop where the projected 

plane of a propagating fault tip intersects bedding planes. In my model, these stress 

accumulations occurred in the hanging wall, but I would expect differing boundary conditions 

may lead to similar accumulations in the footwall. My results suggest that off-fault-plane 

fractures are likely to occur under opening-mode (tensile) stresses, similar to the layer-parallel 

extension noted in Smart et al.’s (2009) models. As such, these off-fault-plane regions of 

concentrated stress predict the development of fractures along bedding planes several meters 

away from the fault trace.  
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As one of the first attempts to model the influence of planar bedding upon the stress and 

strain fields ahead of a propagating normal fault, these findings should be considered 

preliminary. However, these results reveal the power of finite element analysis to predict the 

distribution of fracture initiation relative to a fault propagating through bedding, which has 

implications for subsurface resource exploration.  This study reveals the power of FEA modeling 

to predict the distribution of stress and strain fields near propagating faults. 
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APPENDIX 
 

 Figure A1. Stress gradients (a-e) and plastic failure (f-j) at low levels of displacement, with increasing friction between one 

and two beds. Dashed line indicates bedding plane. Note that mechanical layering (b-e) distorts the smooth gradient seen when 

no layering is present (a); initial failure occurs near the outermost edges in each model (f-j). Note how increasing the friction 

between beds allows for larger stress concentrations near the center of the test strata (b-e). Positive stress values are 

tensional, negative values are compressional. Each model is shown at the displacement causing initial plastic failure; thus, 

each model is of similar, but not equal, displacement. 
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Figure A2.  Stress gradients (a-d) and plastic failure (e-h) at low levels of displacement, with increasing 

friction between three beds. Dashed line indicates bedding plane. Note how increasing the friction between 

beds allows for larger stress concentrations near the center of the test strata (a-d); initial failure is confined to 

the outermost beds in each model (e-h). Positive stress values are tensional, negative values are 

compressional. Each model is shown at the displacement causing initial plastic failure; thus, each model is of 

similar, but not equal, displacement. 
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Figure A3. Stress gradients (a-d) and plastic failure (e-h) at low levels of displacement, with increasing 

friction between four beds. Dashed line indicates bedding plane. Note how increasing the friction between 

beds allows for larger stress concentrations near the center of the test strata (a-d); initial failure is confined to 

the outermost beds in each model (e-h). Note the off-fault-plane accumulations of stress (a-d). Positive stress 

values are tensional, negative values are compressional. Each model is shown at the displacement causing 

initial plastic failure; thus, each model is of similar, but not equal, displacement. 
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 Figure A4.  Stress gradients (a-d) and plastic failure (e-h) at low levels of displacement, with increasing 

friction between five beds. Dashed line indicates bedding plane. Note how increasing the friction between beds 

allows for larger stress concentrations near the center of the test strata (a-d); initial failure is confined to the 

outermost beds in each model (e-h). Note the off-fault-plane accumulations of stress (a-d). Positive stress 

values are tensional, negative values are compressional. Each model is shown at the displacement causing 

initial plastic failure; thus, each model is of similar, but not equal, displacement. 
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Figure A5. Maximum in-plane principal logarithmic strain distribution at low levels of 

displacement with one (a) and two beds (b-e), with increasing friction between beds (b-e). 

Dashed line indicates bedding plane. Note that strain accumulates in-plane with the fault 

as well as along contacts. Each model is shown at the displacement causing initial plastic 

failure; thus, each model is of similar, but not equal, displacement. 
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Figure A6. Maximum in-plane principal logarithmic strain distribution at low levels of 

displacement with three beds, with increasing friction between beds (a-d). Dashed line 

indicates bedding plane. Note that strain accumulates in-plane with the fault as well as 

along contacts. Each model is shown at the displacement causing initial plastic failure; 

thus, each model is of similar, but not equal, displacement. 
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Figure A7. Maximum in-plane principal logarithmic strain distribution at low levels of 

displacement with four beds, with increasing friction between beds (a-d). Dashed line 

indicates bedding plane. Note that strain accumulates in-plane with the fault as well as 

along contacts. Each model is shown at the displacement causing initial plastic failure; 

thus, each model is of similar, but not equal, displacement. 
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Figure A8. Maximum in-plane principal logarithmic strain distribution at low levels of 

displacement with five beds, with increasing friction between beds (a-d). Dashed line 

indicates bedding plane. Note that strain accumulates in-plane with the fault as well as 

along contacts. Each model is shown at the displacement causing initial plastic failure; 

thus, each model is of similar, but not equal, displacement. 
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