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Abstract. Solving inverse problems without the use of derivatives or
adjoints of the forward model is highly desirable in many applications
arising in science and engineering. In this paper we study a number of
variants on Ensemble Kalman Inversion (EKI) algorithms, with goal
being the construction of methods which generate approximate sam-
ples from the Bayesian posterior distribution that solves the inverse
problem. Furthermore we establish a mathematical framework within
which to study this question. Our starting point is the continuous time
limit of EKI. We introduce a specific form of additive noise to the de-
terministic flow, leading to a stochastic differential equation (SDE),
and consider an associated SDE which approximates the original SDE
by replacing function evaluation differences with exact gradients. We
demonstrate that the nonlinear Fokker-Planck equation defined by the
mean-field limit of the associated SDE has a novel gradient flow struc-
ture, built on the Wasserstein metric and the covariance matrix of the
noisy flow. Using this structure, we investigate large time properties
of the SDE in the case of a linear observation map, and convergence
to an invariant measure which coincides with the Bayesian posterior
distribution for the underlying inverse problem. We numerically study
the effect of the noisy perturbation of the original derivative-free EKI
algorithm, illustrating that it gives good approximate samples from the
posterior distribution.
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2 GARBUNO-INIGO, HOFFMANN, LI & STUART

1. PROBLEM SETTING
1.1 Background

Consider the inverse problem of finding u € R? from y € RX where
y=G(u)+mn, (1.1)

G : RY — RX is a possibly non-linear forward operator and 7 is the unknown observational
noise; we do assume, however, that the distribution of 7 is known and that it is a centered
Gaussian: n ~ N(0,T') for a known covariance matrix I' € RE*X_ The objective of the inverse
problem is to find information about the truth u! underlying the data y; the forward map G,
the covariance I' and the data y are all viewed as given.

A key role in any optimization scheme to solve (1.1) is played by a loss function £(y, G(u)).
For additive Gaussian noise the natural loss function is !

1
(. y) = 5lly =iz,
leading to the least squares loss functional
1 2
O(u) = Slly - Gl (1.2)

In the Bayesian approach to inversion (Kaipio and Somersalo, 2006) we place a prior dis-
tribution on the unknown u, with Lebesgue density my(u), then the posterior density on uly,
denoted 7(u), is given by

m(u) o< exp(—P(u))mo(w). (1.3)

In this paper we will concentrate on the case where the prior is a centred Gaussian N(0,T),
assuming throughout that I'y is strictly positive-definite and hence invertible. If we define

R(w) = llul}, (14)
and
DOpr(u) = P(u) + R(u), (1.5)
then
m(u) o exp(—Pg(u)). (1.6)
Note that the regularization R is of Tikhonov-Phillips form (Engl, Hanke and Neubauer,
1996).

Our focus throughout is on Ensemble Kalman Inversion (EKI), and variants of it, for
the Bayesian approach to inversion for u given y. These methods play an important role in

'For any positive-definite symmetric matrix A we define (a,a’)a = (a, A7 a) = (Aféa, Aiéa'> and ||a||a =
1
[A™=all.
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large-scale scientific and engineering applications in which it is undesirable, or impossible, to
compute derivatives and adjoints defined by the forward map. Our goal is to introduce a frame-
work for the analysis of a noisy version of EKI which may be used to generate approximate
samples from (1.6) based only on evaluations of G(u).

1.2 Literature Review

The Ensemble Kalman filter was originally introduced as a method for state estimation,
and later extended as the EKI to the solution of general inverse problems and parameter
estimation problems. For a historical development of the subject, the reader may consult the
books (Evensen, 2009; Oliver, Reynolds and Liu, 2008; Majda and Harlim, 2012; Law, Stuart
and Zygalakis, 2015; Reich and Cotter, 2015) and the recent review (Carrassi et al., 2018).

The Kalman filter itself was derived for linear Gaussian state estimation problems (Kalman,
1960; Kalman and Bucy, 1961). In the linear setting ensemble Kalman based methods may be
viewed as Monte Carlo approximations of the Kalman filter; in the nonlinear case ensemble
Kalman based methods do not converge to the filtering or posterior distribution in the large
particle limit (Ernst, Sprungk and Starkloff, 2015). Related interacting particle based method-
ologies of current interest include Stein variational gradient descent (Lu, Lu and Nolen, 2018;
Liu and Wang, 2016; Detommaso et al., 2018), the Fokker-Planck particle dynamics of Reich
(Reich, 2018; Pathiraja and Reich, 2019) and the consensus-based optimization techniques
given a rigorous setting in (Carrillo et al., 2018). There are also other approaches in which op-
timal transport is used to evolve a sequence of particles through a transportation map (Reich,
2013; Marzouk et al., 2016) to solve probabilistic state estimation or inversion problems as
well as interacting particle systems designed to reproduce the solution of the filtering problem
(Crisan and Xiong, 2010; Reich, 2011; Yang, Mehta and Meyn, 2013).

There has been significant activity devoted to the gradient flow structure associated with
the Kalman filter itself. A well-known result is that for a constant state process, Kalman
Filtering is the gradient flow with respect to the Fisher-Rao metric (Laugesen et al., 2015;
Halder and Georgiou, 2017; Ollivier, 2017). It is worth noting that the Fisher-Rao metric
connects to the covariance matrix, see details in Ay et al. (2017). On the other hand, op-
timal transport (Villani, 2009) demonstrates the importance of the L?-Wasserstein metric
in probability density space. The space of densities equipped with this metric introduces an
infinite-dimensional Riemannian manifold, called the density manifold (Lafferty, 1988; Otto,
2001; Li, 2018). Solutions to the Fokker-Planck equation are gradient flows of the relative
entropy in the density manifold (Otto, 2001; Jordan, Kinderlehrer and Otto, 1998). Design-
ing time-stepping methods which preserve gradient structure is also of current interest: see
(Pathiraja and Reich, 2019) and, within the context of Wasserstein gradient flows, (Li and
Montufar, 2018; Tong Lin et al., 2018; Li, Lin and Montufar, 2019). The subject of discrete
gradients for time-integration of gradient and Hamiltonian systems is developed in Humphries
and Stuart (1994); Gonzalez (1996); McLachlan, Quispel and Robidoux (1999); Hairer and
Lubich (2013). Furthermore, the papers (Schillings and Stuart, 2017; Schillings and Stuart)
study continuous time limits of EKI algorithms and, in the case of linear inverse problems,
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exhibit a gradient flow structure for the standard least squares loss function, preconditioned
by the empirical covariance of the particles; a related structure was highlighted in Bergemann
and Reich (2010). Recent interesting work, which has partially inspired this paper, has built
on the work in Schillings and Stuart (2017) to study the same problem in the mean-field limit
(Herty and Visconti, 2018); their mean-field perspective brings considerable insight which we
build upon in this paper.

In this paper, we study a new noisy version of EKI, and related mean-field limits, the aim
being the construction of methods which lead to approximate posterior samples, without the
use of adjoints, and overcoming the issue that the standard noisy EKI does not reproduce
the posterior distribution, as highlighted in Ernst, Sprungk and Starkloff (2015). We em-
phasize that the practical derivative-free algorithm that we propose rests on a particle-based
approximation of a specific preconditioned gradient flow, as described in section 4.3 of the
paper (Kovachki and Stuart, 2018); we add a judiciously chosen noise to this setting and it
is this additional noise which enables approximate posterior sampling. Related approxima-
tions are also studied in the paper (Pathiraja and Reich, 2019) in which the effect of both
time-discretization and particle approximation are discussed when applied to various deter-
ministic interacting particle systems with gradient structure. In order to frame the analysis
of our methods, we introduce a new metric, named the Kalman-Wasserstein metric, defined
through both the covariance matrix of the mean field limit and the Wasserstein metric. The
work builds on the novel perspectives introduced in Herty and Visconti (2018) and leads
to new algorithms that will be useful within large-scale parameter learning and uncertainty
quantification studies, such as those proposed in Schneider et al. (2017).

1.3 Our Contribution
The contribution of this paper is summarized as follows:

e We introduce a new noisy perturbation of the continuous time ensemble Kalman inver-
sion algorithm, leading to a stochastic differential equation (SDE); we also introduce a
related SDE, in which ensemble differences are approximated by gradients.

e We introduce a mean-field limit of the related SDE, and exhibit a novel Kalman—
Wasserstein gradient flow structure in the associated nonlinear Fokker-Planck equation.

e Using this Kalman—Wasserstein structure we characterize the steady states of the non-
linear Fokker-Planck equation, and show that one of them is the posterior density (1.6).

e By explicitly solving the nonlinear Fokker-Planck equation in the case of linear G, we
demonstrate that the posterior density is a global attractor for all initial densities of
finite energy which are not a Dirac measure.

e Motivated by this analysis we numerically study our new noisy perturbation of the
continuous time EKI algorithm, showing that it gives good approximate samples from
the posterior distribution.

In Section 2 we recap the EKI methodology, and describe the SDE arising in the case when
the data is perturbed with noise. Section 3 introduces the new noisy EKI algorithm, which
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arises from perturbing the particles with noise, rather than perturbing the data. In Section
4 we discuss the theoretical properties underpinning the proposed new methodology and in
Section 5 we describe numerical results which demonstrate the value of the proposed new
methodology. We conclude in Section 6.

2. ENSEMBLE KALMAN INVERSION AND RELATED FLOWS

Ensemble Kalman Inversion (EKI) can be interpreted as a derivative-free algorithm to

J

invert G. It operates by evolving an interacting set of particles {uq(f ) -

The updates are given by

1 in discrete time n.

ul)y =) + CP(U,) (CP(U) + ) T () - 9u)), (2.1)
where ng)rl =y+ 57(121 with 57(121 ~ N(0,h71%) for ¥ € REXE "and U, = {uﬁf)}ﬁzl denotes
the collection of all ensemble members at iteration n. The scaling of the covariances I' and ¥

by h~! enables natural passage to a continuous time limit as » — 0. The operators C*” and
CPP are defined as follows

Cr(Uy) = < S () — a) @ (G(ul)) - G, ) € RIK, (2.2a)

J
>
k=1
J
CP(U,) = % > (9 = Ga) @ (9(u) - G, ) € R, (2.2b)
k=1
J
> (@l — ) @ (ulP) - a,) € R, (2.2¢)

where 4,, and G,, denote the sample means given by

1< 1<
iy = < > ulf), Gu==> Gul). (2.3)
k=1 k=1

<

Taking limits as h — 0 in equation (2.1) leads to the following continuous time version of the
algorithm:

J .
Wl — _§ S (G®) - G, 0u) — gru® + cru)rLVE W, (2.4)
k=1

where the {W(j )} are a collection of i.i.d. standard Brownian motions in the data space R .2

Here U(t) denotes {ul)(t)})_,, the collection of all ensemble members, and the operator

2In this SDE, and all that follow, the rigorous interpretation is through the It6 integral formulation of the
problem.
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C"P denotes the empirical cross covariance matrix of the ensemble members, as in (2.2), but
evaluated at U(t) rather than U,. We extend use of C(-) in the same way in what follows
below. The sample means of {u()(t)} and {G(u¥)(t))} are defined analogously to (2.3) but
in continuous time. We refer to (2.4) as an Ensemble Kalman Flow (EKF). In the case of a
linear forward model where G(u) = Au and with the choice ¥ =T this flow has mean m and
covariance € which satisfy the closed equations

%m(t) = —¢(t)(ATT ' Am(t) — 1) (2.5a)
%C(t} = —¢()ATT 1 Ae(1), (2.5b)

where r := ATT'"!y € R% These results may be established by similar techniques to those
used below in Subsection 4.2. It follows that

d

_ . [(d
70 L= ¢! (

—¢(t))e)yt=AT1""4
e e
and therefore €(¢)~! grows linearly in time. The resulting equations for the mean and covari-
ance are simply those which arise from applying the Kalman-Bucy filter (Kalman and Bucy,
1961) to the model

d

Cu=0
at”

gz =y = Au+ VITW,

dt
where W denotes a standard unit Brownian motion in the data space RX. The exact closed
form of equations for the first two moments, in the setting of the Kalman-Bucy filter, was
established in section 4 of the paper (Reich, 2011) for finite particle approximations, and
transfers verbatim to this mean-field setting.

The equations (2.5a), (2.5b) are not consistent with having (1.6) as an invariant measure
in the linear setting G(u) = Au. Even if prior information is added via the initial condition
on the mean and covariance, the dynamics show that the limiting covariance shrinks to zero:
€(t) - 0 as t — oco. A key point to appreciate is that the noise introduced in (2.4) arises from
the observation y being perturbed with additional noise. In what follows we instead directly
perturb the particles themselves. The benefits of introducing noise on the particles, rather
than the data, was demonstrated in Kovachki and Stuart (2018), although in that setting
only optimization, and not Bayesian inversion, is considered.

3. NOISY PARTICLE ENSEMBLE KALMAN FLOW

In this section we develop a sequence of continuous time problems, motivated by the EKF
above, with the goal of identifying interacting particle systems of stochastic differential equa-
tions which capture the posterior distribution (1.6). We will identify the system (3.2) which
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has exactly this property, but requires the evaluation of gradients of ®, something which is
undesirable in many applications. We also identify system (3.1) which may be viewed as a
derivative-free approximation of (3.2) and which, in the case of linear G, coincides with (3.2).
We then take the mean-field limit of (3.2) and identify the corresponding Fokker-Planck
equation (3.6).

To this end we modify (2.4) by adding a prior related damping term, as in Chada, Stuart
and Tong (2019), and changing the noise covariance structure to obtain

G.G(ut) — y)ru® — COTF + VIE@W . @)

<l
Ma

k=1

Here the {W } are a collection of i.i.d. standard Brownian motions in the space R? of the
unknown parameter u. This is another EKF. Related to this system of interacting SDEs we
will consider the system

WD) = —CU)Ve D) + /2CU) W (3.2)

This equation may be re-written as

J .
—= 3" dg — ), 6wy —y)ru® — cU)TgTD + 2CO) WY (3.3)

k=1

%\*—‘

(We used the fact that it is possible to replace u® by u) — @ after the I'—weighted inner-
product in (3.1) and (3.3) without changing the equation.) From this it is clear that in the
linear case where

G(u) = Au (3.4)

the two systems (3.1) and (3.2) are identical. It is also natural to conjecture that if the particles
are close to one another then (3.1) and (3.2) will generate similar particle distributions. Based
on this exact (in the linear case) and conjectured (in the nonlinear case) relationship we
propose (3.1) as a derivative-free algorithm to approximately sample the Bayesian posterior
distribution, and we propose (3.2) as a natural object of analysis in order to understand this
sampling algorithm.

In order to write down the mean field limit of (3.2), we define the macroscopic mean and
covariance:

m(p) = / vpdv,  Clp) = / (v—m(p) ® (v — m(p)) p(v) o
Taking the large particle limit leads to the mean field equation

i=—C(p)VPr(u)+/2C(p) W, (3.5)
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with corresponding nonlinear Fokker-Planck equation
dip =V - (pC(p)VPr(u)) + C(p) : D*p. (3.6)

Here A; : As denotes the Frobenius inner-product between matrices Ay and As. The rigorous
derivation of the mean-field equations (3.5) and (3.6) is left for future work; for foundational
work relating to mean field limits, see (Carrillo et al., 2010; Ha and Tadmor, 2008; Pareschi
and Toscani, 2013; Toscani, 2006) and the references therein. The following lemma states the
intuitive fact that the covariance, which plays a central role in equation (3.6), vanishes only
for Dirac measures.

LEMMA 1. The only probability densities p € P(R?) at which C(p) vanishes are Diracs,
p(u) = 6,(u) for somev €R? & C(p)=0.

ProoF. That C(d,) = 0 follows by direct substitution. For the converse, note that C(p) = 0
implies [ lul?pdu = ( Jup du)2, which is the equality case of Jensen’s inequality, and therefore
only holds if p is the law of a constant random variable. O

4. THEORETICAL PROPERTIES

In this section we discuss theoretical properties of (3.6) which motivate the use of (3.1)
and (3.2) as particle systems to generate approximate samples from the posterior distribution
(1.6). In Subsection 4.1 we exhibit a gradient flow structure for (3.6) which shows that solu-
tions evolve towards the posterior distribution (1.6) unless they collapse to a Dirac measure.
In Subsection 4.2 we show that in the linear case, collapse to a Dirac does not occur if the
initial condition is a Gaussian with non-zero covariance, and instead convergence to the pos-
terior distribution is obtained. In Subsection 4.3 we introduce a novel metric structure which
underpins the results in the two preceding sections, and will allow for a rigorous analysis of
the long-term behavior of the nonlinear Fokker-Planck equation in future work.

4.1 Nonlinear Problem

Because C(p) is independent of u, we may write equation (3.6) in divergence form, which
facilitates the revelation of a gradient structure:

Op =V (pC(p)Ver(u) + pC(p)V(Inp)), (4.1)

where we use the fact pVInp = Vp. Thank to the divergence form, it follows that (4.1)
conserves mass along the flow, and so we may assume [ p(¢,u)du = 1 for all ¢ > 0. Defining
the energy

E(e) = [ (p)n(u) + p(u) Inp(w)) du. (42)



solutions to (4.1) can be written as a gradient flow:
OFE
Op=V- <PC(P)V5P> ) (4.3)

where % denotes the L? first variation. This will be made more explicit in Section 4.3, see
Proposition 7. Thanks to the gradient flow structure (4.3), stationary states of (3.6) are given
either by critical points of the energy E, or by choices of p such that C(p) = 0 as characterized
in Lemma 1. Critical points of F solve the corresponding Euler-Lagrange condition

55 _
Sp

for some constant c¢. The unique solution to (4.4) with unit mass is given by the Gibbs measure

Qr(u)+Inp(u) =c on supp (p) (4.4)

Poc(u) == m- (4.5)

Then, up to an additive normalization constant, the energy F(p) is exactly the relative entropy
of p with respect to poo, also known as the Kullback-Leibler divergence KL(p(t)|poo),

E(p) = / (©r + In p(t)) pdu

_ / i)(:ln <‘;t)> poo du + In </e—%<“> du>
— KL(p(t)]|poc) + In ( / e~ Pr(w) du> .

Thanks to the gradient flow structure (4.3), we can compute the dissipation of the energy

d oF
B0} = <5p’ ‘3’”>L2(W)

= —/p<Vf£,C(p)Vf£> du (4.6)

—~ [ole)t 9@+ 1np) du.

As a consequence, the energy E decreases along trajectories until either C(p) approaches zero
(collapse to a Dirac measure by Lemma 1) or p becomes the Gibbs measure with density poo.

The dissipation of the energy along the evolution of the classical Fokker-Planck equation
is known as the Fisher information (Villani, 2009). We reformulate equation (4.6) by defining
the following generalized Fisher information for any covariance matrix A,

Ta(p(t)||pos) == /p <v1n (p’;) , AVIn <pio>> du.
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One may also refer to Zy as a Dirichlet form as it is known in the theory of large particle
systems, since we can write

T (p(t)lpse) =4 [ poc <v\/Z, Av\/Z> du.

For A = C(p), we name functional Z¢ the relative Kalman-Fisher information. We conclude
that the following energy dissipation equality holds,

d

7 KL(P(D)lps) = =Ze(p(t)lpso) -

To derive a rate of decay to equilibrium in entropy, we aim to identify conditions on ®z such
that the following logarithmic Sobolev inequality holds: there exists A > 0 such that

1
KL(p®)llpso) = 5321, (p(t)llpc) V. (4.7)
By (Bakry and Emery, 1985), it is enough to impose sufficient convexity on ®g, i.e. D?®p >
Mg, where D?® denotes the Hessian of ® . This allows us to deduce convergence to equilib-
rium as long as C(p) is uniformly bounded from below following standard arguments for the
classical Fokker-Planck equation as presented for example in Markowich and Villani (2000).

PROPOSITION 2. Assume there exists o« > 0 and A > 0 such that
Clp(t)) > aly,  D*®g>Ay.

Then any solution p(t) to (4.1) with initial condition py satisfying KL(po|lpso) < o0 decays
exponentially fast to equilibrium: there ezists a constant ¢ = c(po, Pr) > 0 such that for any

t>0,
alt

[p(t) = pooll 1 (ray < ce™
This rate of convergence can most likely be improved using the correct logarithmic Sobolev
inequality weighted by the covariance matrix C. However, the above estimate already indicates
the effect of having the covariance matrix C present in the Fokker-Planck equation (4.1). The
properties of such inequalities in a more general setting is an interesting future avenue to
explore. The weighted logarithmic Sobolev inequality that is well adapted to the setting here
depends on the geometric structure of the Kalman-Wasserstein metric, see related studies in
Li (2018).

PROOF. Thanks to the assumptions, and using the logarithmic Sobolev inequality (4.7),
we obtain decay in entropy,

d

SKL(p(1)920) < —0T1,(p(1) psc) < —20NKL(p(0)]poc)
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We conclude using the Csiszar-Kullback inequality as it is mainly known to analysts, also
referred to as Pinsker inequality in probability (see (Arnold et al., 2001) for more details):

1 —2a
S10(0) = pocl2s gty < KL(p()llpoc) < KL (pullpc)e 2.

4.2 Linear Problem

Here we show that, in the case of a linear forward operator G, the Fokker-Planck equation
(which is still nonlinear) has exact Gaussian solutions. This property holds because the mean
field equation (3.5) leads to exact closed equations for the mean and covariance. Once the
covariance is known the nonlinear Fokker-Planck equation (3.6) becomes linear, and is explic-
itly solvable if G is linear and the initial condition is Gaussian. Consider equation (3.5) in the
context of a linear observation map (3.4). In this case, the misfit equals

1 o Ly 1o

D) = 5 Au— gl + 5 ull?,. (43)

The corresponding gradient can be written as
Vop(u) =B tu—r, (4.9)

-1
ri= ATy eRY, Bi= (ATTTA4TS) e R

Note that since we assume that the covariance matrix I'y is invertible, it is then also strictly
positive-definite. Thus it follows that B is strictly positive-definite and hence invertible too.
We define ug := Br noting that this is the solution of the regularized normal equations defining

the minimizer of ® in this linear case; equivalently 1y maximizes the posterior density. Indeed
by completing the square we see that we may write

o) ox exp (3 u — oll3,). (4.10)

LEMMA 3. Let p(t) be a solution of (3.6) with ®r(-) given by (4.8). Then the mean
m(p) and covariance matriz C(p) are determined by m(t) and €(t) which satisfy the evolution
equations

d

™) = —€(t)(B m(t) - ) (4.11a)
%(’:(t) = —2¢(t)Be(t) + 2€(1). (4.11b)

In addition, for any €(t) satisfying (4.11b), its determinant and inverse solve

%det C(t) = —2(det €(t)) Tr [B~1€(t) — 14] , (4.12)
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%(Qﬁ(t)_l) =2B"1 —2¢(t)". (4.13)

As a consequence €(t) — B and m(t) — ug exponentially ast — oo.

In fact, solving the ODE (4.13) explicitly and using (4.11a), exponential decay immediately
follows:

¢ty = () ' -B e +B, (4.14)
and
[m(t) = uolleqry = [m(0) — uolleye™ - (4.15)

PRrROOF. We begin by deriving the evolution of the first and second moments. This is most
easily accomplished by working with the mean-field flow SDE (3.5), using the regularized
linear misfit written in (4.8). This yields the update

i=—C(p) (B 'u—7)++/2C(p) W,

where W denotes a zero mean random variable. Identical results can be obtained by working
directly with the PDE for the density, namely (3.6) with the regularized linear misfit given in
(4.8). Taking expectations with respect to p results in

1i(p) = —C(p) (B~ 'm(p) - 7).

Let us use the following auxiliary variable e = u —m(p). By linearity of differentiation we can
write

é¢=—C(p)B e+ /2C(p)W.

By definition of the covariance operator, C(p) = Ele ® e], its derivative with respect to time
can be written as

Clp)=Ele®@e+e®éd.

However we must also include the It6 correction, using It6’s formula, and we can write the
evolution equation of the covariance operator as

C(p) = —2C(p) B~ C(p) +2C(p).
This concludes the proof of (4.11b). For the evolution of the determinant and inverse, note
that
d B 1 d d 1 4 (d 1
4 96tClo) =T deecp)Clo) )| L e = et (Ge0) el

and so (4.12), (4.13) directly follow. Finally, exponential decay is a consequence of the explicit
expressions (4.14) and (4.15). O
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Thanks to the evolution of the covariance matrix and its determinant, we can deduce that
there is a family of Gaussian initial conditions that stay Gaussian along the flow and converge
to the equilibrium po.

PROPOSITION 4. Fiz a vector mo € R%, a matriz Cy € R and take as initial density
the Gaussian distribution

1 _ 1
po(u) := W(det Co)~ Y2 exp <—2||u - m0||(2;0>

with mean mqg and covariance Cy. Then the Gaussian profile

1 _ 1
oz (det (1)) 2 exp <_2H“ - m(ﬂ”i(t))

p(t,u) == (27)

solves evolution equation (3.6) with initial condition p(0,u) = po(u), and where m(t) and €(t)
evolve according to (4.11a) and (4.11b) with initial conditions mo and Cy. As a consequence,
for such initial conditions po(u), the solution of the Fokker-Planck equation (3.6) converges
to poo(u) given by (4.10) as t — oo.

PRrROOF. It is straightforward to see that, for m(p) and C(p) given by Lemma 3,

Vp=—C(p)~(u—m(p))p,

since both m(p) and C(p) are independent of u. Therefore, substituting the Gaussian ansatz
p(t,u) into the first term in the right hand side of (3.6), we have

V- (pCp)(B™ u—1)) = (Vp)-C(p)(B'u—7) + pV - (C(p) B~ "w)
(—C(p) " (u=m(p)) - C(p)(B~ u—1) + Tx[C(p)B~]) p

(—Hu — m(p)‘|%+<u —m(p),uy — m(p)>B—|— Tr[C(p)B_1]> P,
(4.16)

where B~1 = A4 + Fal, r = AT 'y and ug = Br. Recall that B! is invertible. The
second term on the right hand side of (3.6) can be simplified, as follows

Clp) : D*p=Clp) : (=Cp) ™"+ (Cp) ™ (= mlp)) @ (CLp) ™ (w = m(p)) ) p
= (- T[T + llu = m(p)l ) o (4.17)

Thus, combining the previous two equations, the right hand side of (3.6) is given by the
following expression

ﬂw*am—@wwwwmm%+HWﬂmmm@+@—m@ww—m@»4n (4.18)
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For the left-hand side of (3.6), note that by (4.11a) and (4.11b),

Gl o3, =2 (= m). o) = me))

(= mlo) . (€)= mio))

= —2(u—m(p), uo — m(p)) 2 lu — m(p)| % — 2| [u— m(p)|%,
and therefore, combining with (4.12),

1 _1 d 1 d 2
op = [—2((161: C(p)) (dt det C(P)) gl “0||C(p)] P

TY[B~'C(p) — L] ~ Ilu = m(p)l % + |[u = m(p)| |3, +(w = m(p), uo - m(p)>B] P
(4.19)

which concludes the first part of the proof. The second part concerning the large time asymp-
totics is a straightforward consequence of the asymptotic behaviour of m and € detailed in
Lemma 3. 0

In the case of the classical Fokker-Planck equation €(t) = I; with a quadratic confining
potential, the result in Proposition 4 follows from the fact that the fundamental solution of
(3.6) is a Gaussian, see (Carrillo and Toscani, 1998).

COROLLARY 5. Let pg be a non-Gaussian initial condition for (3.6) in the case where
Or is given by (4.8). Assume that py satisfies KL(po||pso) < 00. Then any solution of (3.6)
converges exponentially fast to psy given by (4.5) as t — oo both in entropy, and in L'(R?).

PRrROOF. Let a € R? have Euclidean norm 1 and define ¢(t) := (a, €(t)"'a). From equation
(4.13) it follows that
¢§<2\—2q

where )\ is the maximum eigenvalue of B~!. Hence it follows that ¢ is bounded above, inde-
pendently of a, and that hence € is bounded from below as an operator. Together with the fact
that the Hessian D?® = B~ is bounded from below, we conclude using Proposition 2. [

4.3 Kalman-Wasserstein Gradient Flow

We introduce an infinite-dimensional Riemannian metric structure, which we name the
Kalman-Wasserstein metric, in density space. It allows the interpretation of solutions to
equation (3.6) as gradient flows in density space. To this end we denote by P the space
of probability measures on a convex set  C R%:

P = {pELl(Q) :p>0ae. ,/p(x)dx:l}.
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The probability simplex P is a manifold with boundary. For simplicity, we focus on the subset
Pr={peP:p>0ae. ,pecC?Q)}.

The tangent space of Py at a point p € Py is given by

d
T,Py = {dt'o(t) i : p(t) is a curve in P4, p(0) = p}

- {aecoom); /ad:c:()} .

The second equality follows since for all ¢ € T,P; we have [o(z)dz = 0 as the mass
along all curves in P, remains constant. For the set P, the tangent space T),P; is therefore
independent of the point p € P,. Cotangent vectors are elements of the topological dual TP,
and can be identified with tangent vectors via the action of the Onsager operator (Mielke,
Peletier and Renger, 2016; Onsager, 1931a,b; Machlup and Onsager, 1953; Ottinger, 2005)

Voe: T; Pr—T,Py.
In this paper, we introduce the following new choice of Onsager operator:
Voc(9) = =V - (pC(p)Ve) =t (—Apc) ¢. (4.20)

By Lemma 1, the weighted elliptic operator A, becomes degenerate if p is a Dirac. For
points p in the set P, that are bounded away from zero, the operator A, ¢ is well-defined,
non-singular and invertible since pC(p) > 0. So we can write

ijcl TPy = TPy, o (—A,e) lo.

This provides a 1-to-1 correspondence between elements ¢ € TP and o € T,,P+. For general

p € Py, we can instead use the pseudo-inverse (—Apyc)T, see (Li, 2018). With the above choice
of Onsager operator, we can define a generalized Wasserstein metric tensor:

DEFINITION 6 (Kalman-Wasserstein metric tensor). Define
goC TpP+ X Tpp+ —-R

as follows:

gpc(o1,02) = /Q (V1. C(p)Véa) pdz,

where 0; = (=A,c) ¢i = =V - (pC(p)V ;) € T, Py fori=1,2.
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With this metric tensor, the Kalman-Wasserstein metric We: Py x Py — R can be repre-
sented by the geometric action function. Given two densities p°, p! € P, consider

We (%, p") lnf/ / (Vor, Clpt)Vr) prda
subject to  dypr + V- (piC(pe) Vo) =0, po = p°, p1=p',

where the infimum is taken among all continuous density paths p; := p(¢,x) and potential
functions ¢; := ¢(t, ). The Kalman-Wasserstein metric has several interesting mathematical
properties, which will be the focus of future work. In this paper, working in (Py,g,c), we
derive the gradient flow formulation that underpins the formal calculations given in Subsec-
tion 4.1 for the energy functional F defined in (4.2).

PROPOSITION 7. Given a finite functional F : Py — R, the gradient flow of F(p) in

(P+,9pc) satisfies
oF
Op=V- (pC( )V5p> .

ProoF. The Riemannian gradient operator gradF(p) is defined via the metric tensor g, ¢
as follows:

0
doc(oradF(p) = [ S Fp)otwdu, Vo € TPy

a 0p(u)
Thus, for ¢ := (=A,c) lo € TP+, we have

gpcl(o,gradF(p /gb YgradF(p) /V (pC(p Vqﬁ) F(p)du

=/<v¢chffw>pm
—— [ 4V ()Y 5 F (o) du.

Hence
yMﬂmz—v«wwvif@»

Thus we derive the gradient flow by

Oup = —gradF(p) = V - (1) 5 F(p).
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REMARK 8.  Our derivation concerns the gradient flow on the subset Py of P for simplicity
of exposition. However, a rigorous analysis of the evolution of the gradient flow (4.3) requires
to extend the above arguments to the full set of probabilities P, especially as we want to study
Dirac measures in view of Lemma 1. If p is an element of the boundary of P, one may consider
instead the pseudo inverse of the operator A, c. This will be the focus of future work, also see
the more general analysis in Ambrosio, Gigli and Savaré (2005), e.g. Theorem 11.1.6.

5. NUMERICAL EXPERIMENTS

In this section we demonstrate that the intuition developed in the previous two sections does
indeed translate into useful algorithms for generating approximate posterior samples without
computing derivatives of the forward map G. We do this by considering a non-Gaussian inverse
problem, defined through a nonlinear forward operator G, showing how numerical solutions
of (3.1) are distributed after large time, and comparing them with exact posterior samples
found from MCMC, and with the method employed in Herty and Visconti (2018).

The numerical experiment considered here is the example originally presented in Ernst,
Sprungk and Starkloff (2015) and also used in Herty and Visconti (2018). We start by defining
the forward map which is given by the one-dimensional elliptic boundary value problem

_% (exp(ul) (i};;(@) =1, zel0,1], (5.1)

with boundary conditions p(0) = 0 and p(1) = uy. The explicit solution for this problem, (see
Herty and Visconti, 2018), is given by

X

p(x) = upz + exp(—us) (—:‘; + 2) . (5.2)

The forward model operator G is then defined by

6w = (). (53)

p(w2)

Here u = (u1,u2) " is a constant vector that we want to find and we assume that we are given

noisy measurements y of p(-) at locations x1 = 0.25 and 2o = 0.75. The precise Bayesian
inverse problem considered here is to find the distribution of the unknown w conditioned on
the observed data y, assuming additive Gaussian noise 7 ~ N(0,T"), where I' = 0.12 Iy and
I € R?*2 is the identity matrix. We use as prior distribution N(0,T'g), I'g = 0I5 with o = 10.
The resulting Bayesian inverse problem is then solved, approximately, by the algorithms we
now outline and with with observed data y = (27.5,79.7)T.
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5.1 Derivative-Free

In this subsection we apply (3.1) for the solution of the inverse problem (1.1). We use a
linearly implicit split-step discretization scheme given by

G, Gy — yyrul® — At, C(U) TG ul)  (5.4a)

where 57(13 )~ N(0,1), Tg = o%I is the prior covariance and At, is an adaptive timestep
computed as in Kovachki and Stuart (2018). Following Herty and Visconti (2018), we consider
an initial ensemble drawn from N(0,1) x U(90,110). The proposed algorithm was run for 30
iterations with an ensemble size of J = 103.

5.2 Gold Standard: MCMC

In this subsection we describe the specific Random Walk Metropolis Hastings (RWMH)
algorithm used to solve the same Bayesian inverse problem as in the previous subsection; we
view the results as gold standard samples from the desired posterior distribution. The proposal
distribution is a Gaussian centered at the current state of the Markov chain with covariance
given by ¥ = 7 x C(U*), where C(U*) is the covariance computed from the last iteration of
the algorithm described in the preceding subsection, and 7 is a scaling factor tuned for an
acceptance rate of 25% (Roberts et al., 1997). In our case, 7 = 4. The RWMH was used to
get N = 10° samples with the Markov chain starting at an approximate solution given by the
mean of the last step of the algorithm from the previous subsection.

MM

ugl +‘71) =yl Atn

5.3 Numerical Results

Figure 1 shows the results for the solution of the Bayesian inverse problem considered
above. In addition to implementing the algorithms described in the previous two subsections,
we also employ a specific implementation of the EKI formulation introduced in the paper
of Herty and Visconti (2018), and defined by the numerical discretization shown in (5.4),
but with C(U) replaced by the identity matrix Io; this corresponds to the algorithm from
equation (20) of Herty and Visconti (2018), and in particular the last display of their Section
5, with & ~ N(0, I3). The blue dots correspond to the output of this algorithm at the last
iteration. The red dots correspond to the last ensemble of the EKI optimization algorithm
(EKI-OPT) as presented in Kovachki and Stuart (2018). The orange dots depict the RWMH
gold standard described above. Finally, the green dots shows the ensemble members at the
last iteration of the proposed new formulation (3.1) of EKI. All versions of EKI were run with
the same ensemble size, adaptive timestep scheme and iterations as in Subsection 5.1.

Consider first the top-left panel. The true distribution, computed by RWMH, is shown in
gold. Note that the algorithm of Kovachki and Stuart (2018) collapses to a point (shown in
red), unable to escape overfitting, and relating to a form of consensus formation. In contrast,
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Fic 1. Results of applying different versions of EKI to the non-linear elliptic boundary problem. For compari-
son, a Random Walk Metropolis Hastings algorithm is also displayed to provide a gold standard. The proposed
formulation and subsequent algorithm captures approzimately the true distribution, effectively escaping overfit-
ting or overdispersion shown in the other two implementations. Overfitting is clearly shown from the red line
in the lower subfigure. The line in blue, shows the overdispersion effect exhibited by the algorithm proposed
in Herty and Visconti (2018). The upper right subfigure illustrates the approzimation to the posterior. Color
coding is consistent among the subfigures.
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the proposed algorithm of Herty and Visconti (2018), while avoiding overfitting, overestimates
the spread of the ensemble members, relative to the gold standard RWMH; this is exhibited in
blue over-dispersed points. The proposed formulation of EKI (green points) gives results close
to the RWMH gold standard. These issues are further demonstrated in the lower panel which
shows the misfit (loss) function as a function of iterations for the three algorithms (excluding
RWMH); the red line demonstrates overfitting as the misfit value falls below the noise level,
whereas the other two algorithms avoid overfitting.

The mismatch between the RWMH and our formulation can be understood from the fact
that the use of the ensemble introduces a linear approximation to the curvature of the reg-
ularized misfit. This effect is demonstrated in the figure top-right which shows the samples
from our proposed algorithm against a background of the level sets of the posterior. However
despite this slight mismatch, the key point is that the relatively good set of approximate
samples in green is computed without use of the derivative of the forward model G; it thus
holds promise as a method for large-scale inverse problems.

6. CONCLUSIONS

In this paper, our goal is to determine how to add noise to the basic EKI algorithm so that
it generates approximate samples from the Bayesian posterior distribution. To this end, we
propose a new mean-field Fokker-Planck equation which has the desired distribution as an
invariant measure. Also, we show how to compute approximate samples from this model by
using a particle approximation based on using ensemble difference in place of gradients. Intro-
ducing the new Kalman-Wasserstein metric, we propose an appropriate setting for the analysis
of such problems. In the future, we will study the properties of the Kalman-Wasserstein metric
including its duality, geodesics, and geometric structures. We will investigate the analytical
properties of the new metric within Gaussian families. We expect these studies will bring
insights to design new numerical algorithms for the approximate solution of inverse problems.
Moreover, we will apply the methodology derived here to large-scale inverse problems in which
derivative and adjoint computations are not possible.
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