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Ultrasonic absorptive coatings, consisting of regularly-spaced arrays of

micro-cavities, have previously been shown to effectively damp second-mode

instability for the purpose of delaying transition in hypersonic boundary lay-

ers. However, previous simulations and stability analysis have used approx-

imate porous-wall boundary conditions. Here we investigate the feasibility

of using direct numerical simulation to directly compute the hypersonic

boundary layer including the micro-cavities. In order to keep the problem

computationally tractable, we restrict our attention to the two-dimensional

case (which is relevant since the second-mode is initially two dimensional),

and we show that temporally evolving layers display qualitatively similar be-

havior to spatially developing boundary layer and instabilities. We validate

the numerical method by comparing the simulation results to temporal lin-

ear stability analysis of the (frozen) velocity and temperature profiles from

the direct numerical simulation. Two-dimensional linear simulations of the

boundary layer on a flat plate and over a porous coating are performed,

and it is shown that the presence of the cavities attenuates the instability

waves, as expected from theory.
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Ar Cavity aspect ratio

a Speed of sound

b Cavity half-width

f Frequency

H Cavity depth

M Mach number

Pr Prandtl number

Reδ∗ Reynolds number

s Cavity spacing

T Temperature

t Time

U Freestream streamwise velocity

u Streamwise velocity

v Normal velocity

x Streamwise direction

y Normal direction

α̃ complex streamwise wavenumber

α streamwise wavenumber

β̃ complex spanwise wavenumber

γ Specific heat ratio

δ Boundary layer thickness

δ∗ Boundary layer displacement thickness

λ Streamwise wavelength

µ Viscosity

ρ Density

σ growth rate

φ Porosity

Ω Complex Angular frequency

ω Angular frequency

Subscript

∞ freestream quantity

w Property at the wall

S Spatial analysis property

T Temporal analysis property

Superscript

¯ Mean (frozen) flow quantity
′ Perturbed quantity

I. Introduction

For the next-generation of hypersonic vehicles, efficient laminar flow control (LFC) tech-

nologies that delay laminar-turbulent transition are required to reduce heat transfer rates

and in turn, reduce the weight and complexity of thermal protection systems (TPS). Because

of the high local Mach numbers and low wall temperature ratios on the vehicle surface, the

second mode (or Mack mode) is the dominant instability causing laminar-turbulent transi-

tion (rather than the first mode associated with Tollmien-Schlichting waves). As the second

mode represents high-frequency (ultrasonic) acoustic waves trapped in the boundary layer,

a passive ultrasonic absorptive coating (UAC), which consists of a thin perforated layer of

regular microstructure, has been shown to stabilize the second mode and dramatically in-

crease laminar run.1,2 Additional experimental and theoretical studies3–6 have confirmed

the robustness of the UAC stabilization concept and motived our present numerical effort

to mature this LFC methodology and improve the UAC designs.

In order to perform direct numerical simulations (DNS)of the UAC, some tradeoffs are

required in order to deduce a set of computationally tractable model problems, since a
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realistic surface would have as many as 20 pores per wavelength of the most unstable wave.3

In this work, we show that a simplified configuration that considers a temporally evolving

boundary layer on an infinite porous plate retains enough of the relevant flow physics in order

to meet the overall modeling objectives of this task. The temporally evolving boundary layer

neglects the spatial growth of the boundary layer, and instead diffuses slowly with time. Over

short time-scales associated with acoustic energy attenuation in UAC, the laminar boundary

layer is essentially frozen, consistent with either a spatial or temporal description of the

mean flow field, and consistent with parallel flow approximations that are typically made in

instability calculations.

The temporal transformation is depicted in Figure 1. Spatial evolution (at left) would

require that a large number of pores be considered in order to resolve the many wavelengths

of instability wave that would be required to avoid entrance and downstream boundary-

condition effects in typical computations. On the other hand, the detailed physics associ-

ated with UAC all occur over a single wavelength of the instability wave; in the temporal

approximation at most 20 pores need be directly resolved with the computational mesh.

UAC

Instability Wave

δ = δ(x) δ = δ(t)

λ

(a) (b)

(c)

Figure 1. Schematic diagram for DNS of UAC (not to scale). (a) the spatial problem with
many wavelengths of the spatially growing instability wave; (b) the temporal problem with a
single wavelength of the temporally growing instability wave; (c) a portion of the computational
grid around a single pore.

In this paper, we conduct numerical simulations with a standard no-slip wall in order to

validate the use of the temporally-evolving assumption on both the mean hypersonic bound-

ary layer and instability wave development. The existing spatially-evolving linear stability

theory is reformulated to enable comparison with the present linear results and assess pos-

sible discrepancies in wave phase-speeds and growth rate. The numerical simulations are

performed with constant fluid properties, while theoretical stability calculations are con-
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ducted with both constant and temperature-dependent properties. An additional benefit of

the temporal simulation is that shocks are avoided during boundary layer growth, and lin-

ear and early nonlinear stages of instability growth, thus allowing us to use non-dissipative,

high-order numerics. The simulations presented here, along with the simulations of the

acoustic scattering of porous coatings presented in Ref. 7, bracket the flow physics for the

full problem, and are sufficiently simple to allow a parametric study of the geometrical factors

(pore size, aspect ratio, spacing) and flow conditions (free-stream velocity and temperature,

boundary layer thickness, Reynolds number) relevant to UAC design.

II. Temporal Stability of Compressible Boundary Layer

A. Linear Stability Theory

The existing spatially-evolving linear stability theory for hypersonic boundary layer1 over flat

plates is reformulated to enable comparison with the present temporally-evolving instability

results. We assume that the flow field q = [ρu, ρv, ρw, ρ, e]T can be decomposed into q =

q̄ + q′, where q̄ is a mean flow and the perturbation field q′ verifies q′ ≪ q̄. The Navier–

Stokes equations are then linearized about q̄ by neglecting higher-order terms in q′ to give a

first-order approximation. Here, the mean flow is characterized by q̄(y), based on the locally

parallel approximation, and the three-dimensional perturbation field q′ is written as follow:

q′(x, y, z, t) = Re(q̂(y)exp[i(α̃x + β̃z − Ωt)]), (1)

where α̃ and β̃ are the nondimensionalized wavenumbers, and Ω is the angular frequency.

Since the second mode is the dominant instability in two-dimensional and quasi-two-dimensional

supersonic boundary layers, the parameter β̃ is set to 0.

For spatial stability, Ω is taken to be a real and prescribed frequency ωS, and the eigen-

value problem is solved for the complex eigenvalue α̃. If Im(α̃) < 0, then the flow is unstable

with spatial growth rate σS = −Im(α̃) and streamwise wavenumber αS = Re(α̃).

In our case, we are interested in the temporal stability: α̃ is a real and prescribed stream-

wise wavenumber αT , and Ω is the complex eigenvalue. If Im(Ω) > 0, then the flow is

unstable with temporal growth rate σT = Im(Ω) and frequency ωT = Re(Ω). Eventually,

the determination of the least damped (or most unstable) modes for a given wavelength

αT amounts to finding the eigenvalue Ω and corresponding eigenvector q̂ by integrating the

governing equations directly in the time domain.

To a first approximation (valid for weakly unstable modes), the spatial and temporal

formulation can be related using Gaster transformation. In this approximation, Ω is assumed

to be an analytic function of α̃, and the following equations are obtained by integration of
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the Cauchy-Riemann relations, and neglecting higher order terms:

αS = αT = α, ωS = ωT = ω, σS = σT /Cg,

where Cg = ∂ωT /∂αT is the group velocity. The transformation requires that the (numerical)

data for the eigenvalues be differentiated.

B. Spatial versus temporal stability

First, we start with the typical linear analysis of a spatially developing compressible boundary

layer, and show that the temporal formulation leads to similar results. The mean-flow

compressible Blasius solutions are calculated in the locally parallel approximation for a flat

plate at Mach M = U/a∞ = 6, for an ideal gas with γ = 1.4 and Pr = 0.7. The temperature-

viscosity dependences are Sutherland law (with constant S = 110.4 K and T∞ = 330 K)

and power-law µ/µ∞ = (T/T∞)m, with m = 1. The chosen length scale for the flow is

the displacement thickness δ∗. The Blasius profiles are self-similar, and do not depend on

the Reynolds number. Comparison of these profiles is shown in figure 2 and show little

variation for the different temperature-viscosity dependences considered. Therefore, the

stability analysis is conducted only for the mean flow with the power-law for viscosity.
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Figure 2. Comparison of the compressible boundary layer profiles from temporal DNS at
Reδ∗ = 4200 with constant viscosity ( ), and from Blasius solution with temperature-
viscosity dependence in Sutherland law ( ◦ ), and in power-law ( ). The parameters are
M = 6, Tw/T∞ = 1.4. (a) streamwise velocity; (b) temperature.

The theoretical stability calculation are computed for the two-dimensional second-mode

waves at Reδ∗ = ρ∞Uδ∗/µ∞ = 4200, following the method described in Ref. 1. These cal-

culations can be conducted for any locally parallel profile. Here, both spatial and temporal
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analysis are performed using the Blasius profile in figure 2. The comparison is shown in figure

3, using the Gaster transformation. The results are in excellent agreement and demonstrate

that the development of the second-mode instability is similar for spatially and temporally

evolving boundary layer. Therefore, we argue here that the temporal formulation is appro-

priate to study UAC performance, and that results for practical applications with spatially

developing boundary layer and instabilities can be obtained from our temporal DNS with

the Gaster transformation.
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Figure 3. Comparison of the temporal ( ◦ ) and spatial ( ) linear stability analysis for
the flow conditions and Blasius boundary layer profile in figure 2; (a) streamwise wavenumber;
(b) spatial growth rate. Here the Gaster transform of the temporal analysis is used

Additionally, the mode with the largest temporal growth rate is identified, for compar-

ison with the DNS results in the next section. For the compressible Blasius profile with

temperature-dependent viscosity at Reδ∗ = 4200, this most unstable mode has a wavelength

λ/δ∗ = 2π/αδ∗ = 4.70, a frequency ωδ∗/U = 1.21 and a growth rate σT δ∗/U = 0.0272 (see

figure 4 and 3(a))

III. Direct numerical simulations

A. Numerical methods

To perform simulations, we use our existing high fidelity computational aeroacoustic code

that solves the fully two- and three-dimensional Navier–Stokes (NS) equations in Cartesian

block-structured geometries. The method utilizes 6th-order-accurate compact finite differ-

ence schemes in the streamwise (x-) and normal (y-) directions, and explicitly 4th-order

Runge-Kutta time advancement. When present, the spanwise (z-) direction is supposed
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Figure 4. Growth rate from the theoretical temporal analysis, for the flow conditions and
Blasius boundary layer profile in figure 2.

homogeneous, and the derivatives are computed using Fourier-spectral differentiation. Op-

tional boundary conditions include accurate inflow/outflow, nonreflecting, isothermal and

adiabatic walls, as well as periodic and symmetry conditions. The code is fully parallelized

using MPI, and a linearized version of the NS equations is also implemented. The algo-

rithm introduces very little numerical dissipation and is able to efficiently resolve complex,

unsteady flow physics, including acoustic wave generation and propagation. The algorithm

and code has been developed, validated, and successfully implemented in studies of sound

radiation from mixing layers, jets, vortex rings, and flow/acoustic instabilities in flows over

open cavities (see Refs. 8–10 for details).

The equations are solved for a perfect gas, with constant specific heat capacities, γ = 1.4

and constant Prandtl number Pr = 0.7. The wall temperature ratio Tw is assumed to

be uniform and constant, in general different from the freestream temperature. In this

preliminary work, we consider constant viscosity (µ/µ∞ = 1) and conductivity. Temperature

variation in these properties will be included in future work. Nevertheless, we show that

the present results are qualitatively similar to measurements with temperature-dependent

properties, and therefore relevant for UAC design.

B. Boundary layer stability

First we consider the temporal linear stability of supersonic boundary layers, to identify the

streamwise wavelength of the most unstable second mode. The flow parameters are again

chosen to match the conditions used in the previous section and in Ref.1, apart from the
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temperature dependence of viscosity. The Mach number is M = 6, and the wall temperature

is constant Tw/T∞ = 1.4. Since there are no cavities, the characteristic length scale is the

displacement thickness δ∗ of the mean flow, rather than a cavity depth H.

Periodic boundary conditions are used in the streamwise (x-) direction, and the nominally

laminar boundary layer spreads in time rather than streamwise position. Since there are no

variations in the x-direction in this case, that dimension of the computational domain can

be arbitrary and is chosen as small as possible (i.e., 6 points)

We initialize the computations with an error-function profile in streamwise velocity (i.e.,

the correct self-similar solution as M → 0), uniform pressure and use the Crocco–Busemann

relation to compute the initial temperature profile for the chosen wall temperature ratio.

By contrast with incompressible flow, there is no exact solution for the temporally-evolving

compressible boundary layer. However, the initialization we choose minimizes sharp initial

transients due to viscous dissipation in the boundary layer and the concurrent generation of

a small positive normal velocity. This feature is important in hypersonic flow computations

since sharp initial transients can quickly develop into shocks.

The nonlinear simulations are then advanced in time until the boundary layer thickness

satisfies δ/H = 2, and the corresponding displacement thickness is computed. The resulting

boundary layer profile is then frozen and used as the mean flow, q̄(y), in linear simulations.

As initial condition, an acoustic perturbation of given streamwise wavelength, λ, is added to

q̄ and the linearized Navier–Stokes equations are solved. The least damped (or most unsta-

ble) eigenmode and the corresponding eigenvalue Ω = ω + iσT are then determined from the

long-time linear response of the boundary layer. The nondimensionalized growth/damping

rate σT δ∗/U and frequency ωδ∗/U are computed in each case for a set a discrete spanwise

wavelength.

Table 1. Parameters and linear stability for the numerical simulations of a temporally-evolving
boundary layer over a flat plate. Only the most unstable mode (largest growth rate) is re-
ported.

Run Parameter Linear Stability

δ∗/δ M Tw/T∞ Reδ∗ λ/δ σT δ∗/U ωδ∗/U c/U

case 1 0.60 6 1.4 2380 2.5 5.02e-4 1.34 0.898 DNS

2.5 4.80e-4 1.34 0.898 ARPACK

case 2 0.60 6 1.4 4200 2.5 7.95e-3 1.36 0.900 DNS

2.5 7.95e-3 1.36 0.900 ARPACK

The parameters considered are reported in table 1 and the linear stability of the com-
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pressible boundary layer with constant viscosity is shown is figure 5. For both Reynolds

numbers considered, Reδ∗ = 2380 and Reδ∗ = 4200, the streamwise wavelength of the dom-

inant mode is λ/δ = 2.5, which is consistent with the typical assumption that the most

amplified second-mode wavelength is approximately twice the boundary-layer thickness.1,3

Similarly to the spatial stability analysis, the temporal growth rate increases with Reynolds

number. In contrast, the frequency is independent of Reδ∗ . The phase velocity of the most

amplified mode is c/U ≈ 0.9, again consistent with the experimental and numerical obser-

vations that the phase velocity tends to the boundary-layer edge velocity of the mean flow.

Fedorov et al.3 reported similar phase velocity values in both experiment (c/U = 0.896) and

theoretical model (0.916).
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Figure 5. Temporal linear stability of the DNS boundary layer over a flat plate as a function of
the streamwise wavelength of the disturbance, from DNS (symbols) and theoretical calculations
(solid lines). Parameters: M = 6, Tw/T∞ = 1.4, Reδ∗ = 2380 ( ◦ ), Reδ∗ = 4200 ( � ) ; (a) temporal
growth rate; (b) frequency. The thick black line represents the stability transition σT = 0

To validate the linear stability results, a direct approach is also considered, where the

eigenmodes are directly searched for using an Arnoldi method developed in the ARPACK

software,11 rather then isolated through long-time integration. As expected, the dominant

eigenvalue computed with ARPACK is in excellent agreement with the results of the linear

stability analysis (see table 1). Computations with ARPACK also confirmed that there is

only one mode of positive growth rate at the considered wavelength.

The theoretical stability calculation are recomputed using the DNS velocity and tem-

perature profiles (rather than the previous Blasius profiles). Here, the temporal analysis is

conducted with constant viscosity, and the results are in excellent agreement with the DNS

estimates, as shown in figure 5. For these conditions and Reδ∗ = 4200, the most unsta-

ble mode predicted from theory has a wavelength λ/δ = 2.52 (i.e., λ/δ∗ = 4.21), with a
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frequency ωδ∗/U = 1.34 and a growth rate σT δ∗/U = 0.00824.

We observe that the growth rate is underestimated compared to analysis for the Blasius

profile with temperature-dependent viscosity reported in the previous section, as well as

slight variation in wavelength and frequency. We identify the different mean flow (see figure

2) used in the two methods as the primary source of these discrepancies, rather the difference

in viscosity. However, for the temporal stability of supersonic boundary layers over porous

surface, the compressible Blasius solution cannot be used directly as mean flow for the linear

analysis. In this case, DNS data is required to accurately capture the mean flow features in

the vicinity of the pores. As our overall objective is to quantify the stabilizing effect of the

UAC on the second-mode instability using a temporal analysis, our approach is the use DNS

profiles consistently and quantify the differences introduced by these simplifications.

The temporal stability analysis also recovers the presence of the first and second modes

identified by Fedorov and Tumin12 (also referred as mode F and S by Fedorov13). In their

figure 7, the numerical evaluation of the temporal eigenvalues for the first and second modes

are presented as a function of the streamwise wavenumber, for a compressible boundary

layer over an adiabatic wall at M = 5.6 and Re = 1219.5. The length scale in their work

is L∗ such that the boundary layer thickness verifies δ/L∗ ≈ 10. The first mode (or F for

Fast) has a phase speed of 1 + 1/M as α goes to zero, while the second mode (or S for

Slow) phase speed tends to 1 − 1/M . As the streamwise wavenumber of the instability is

increased, they report that the temporal growth rate of the first mode decays, while the

second mode becomes unstable. The most amplified wavenumber is αL∗ ≈ 0.25, which leads

to λ/δ ≈ 2.51, compare to λ/δ ≈ 2.5 for our temporal stability analysis. As shown in figure

6, the frequency and most unstable wavenumber again agree between the two analyses.

C. Linear computations demonstrating the stabilizing effect of the UAC

Now that the streamwise wavelength of the most unstable second mode (i.e., λ/δ = 2.5) is

identified for the chosen flow conditions, we perform two-dimensional DNS of the boundary

layer with and without the UAC for a periodic domain of streamwise extent equal to an

integer number of that wavelength.

The porous coating considered here corresponds to the 2-D micro-cavities used in Ref.

7 to study the acoustic scattering properties of UAC. That is, the pores have a constant

length to depth ratio Ar = 2b/H = 0.12 and the porosity is φ = 2b/s = 0.48, where s is the

spacing between cavities. For this configuration with the pores, the mesh contains about two

hundred thousand grid points, with 12 and 100 points across each cavity length and depth,

respectively.

All the simulations are performed following the same procedure that the boundary layer

computations, and on the same Cartesian grid, with the pores extending to y/H = −1 under
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Figure 6. Frequency as a function of the streamwise wavenumber for comparison with figure
7 in article by Fedorov and Tumin12 ( ): M = 6, Tw/T∞ = 1.4, ( ◦ ) Reδ∗ = 2380, ( � )
Reδ∗ = 4200. Only the most unstable mode is shown. The 1st and 2nd mode identified by
Fedorov and Tumin12 are reported.

to solid surface at y = 0. The dimension of the computational domain in the streamwise

(periodic) direction is Λ = 5H. As the nonlinear simulations are again advanced in time

until δ/H = 2, The streamwise extent of the domain is Λ/δ = 2.5, equal to one time the

wavelength of the most unstable second-mode. Typical UAC are designed with many pores

per instability wavelength, N = λ/s, to avoid resonant interactions between the boundary

layer disturbance and near-wall perturbations induced by the coating structure as well as

roughness effect. For the aforementioned parameters and porosity, this condition is satisfied,

since N = 20. For the boundary layer over the porous coating, the layer properties are

computed over the top solid wall, rather than above a cavity, and the displacement thickness

is again δ∗/δ ≈ 0.60

While the boundary layer profile is unchanged for the flat plate and only a function of the

normal direction, the mean (frozen) flow field with UAC is two-dimensional, as the flow at

the cavity mouths is accounted for (see figure 7). We then perform linear simulation about

these mean flow, with a circular acoustic pulse of Gaussian shape is added as initial condition.

Because of the general form of the perturbations, several modes are initially excited, leading

to some transient. Eventually, the least damped (or most unstable) eigenmode and the

corresponding eigenvalue is determined from the long-time linear behavior of the flow.

Figure 8 shows the time-history of the perturbation velocity u′/U for the boundary layer

at M = 6, Tw/T∞ = 1.4, and Reδ∗ = 4200, above the flat plate and over the porous

coating. The probe is located at (x/H, y/H) = (1, 0.1), and similar results are obtained for

different locations and flow variables. As predicted by the linear analysis of the boundary

layer stability presented in the previous section, exponential growth of the perturbation
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Figure 7. Normal velocity contours for the mean (frozen) flow of the boundary layer profile
over the porous coating. Fifteen contours between v̄/U = −0.0025 and 0.0035 are shown.

is observed at large time. The wavelength of the instability is λ/δ = 2.5, the estimated

frequency ωδ∗/U = 1.36 and growth rate σT δ∗/U = 0.00793 match the previous results. In

contrast, the instability is completely stabilized by the porous coating.
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Figure 8. Time-history of the perturbation velocity u′/U with ( ) and without (
) the porous coating

To confirm this result, the theoretical stability calculation using the DNS velocity and

temperature profiles (and constant viscosity) are performed with an artificial boundary con-

dition to take into account the presence of the UAC. The boundary conditions on the porous

wall are calculated using the theoretical model from Ref. 1 and the solutions for the prop-

agation of acoustic disturbances within a slot.14 The model assumptions are discussed in

details in Ref. 7. The calculations were carried out for different porosity 0 ≤ φ ≤ 0.8, while
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the disturbance wavelength is fixed at λ/δ = 2.5. For these conditions, the growth rate of the

most unstable second mode decays rapidly with increasing porosity (see figure 9), such that

the instability is stable for φ > 0.06. At the porosity φ = 0.48 considered in the DNS, the

theoretical calculation predicts a decay rate σT δ∗/U = −0.06. Therefore, the perturbation

in the DNS should be damped quickly, which is what is observed in the simulations.
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Figure 9. Growth rate from the theoretical temporal analysis with artificial porous boundary
conditions, for the DNS profile in figure 2

IV. Conclusions

In this paper, we have attempted to define computationally tractable model problems that

account for the detailed flow physics associated with micro-cavities that attenuate second-

mode instabilities in hypersonic boundary layers. We have provided evidence that it is

sufficient for many purposes to consider temporally (rather than spatially) evolving boundary

layers and instabilities. This greatly reduces computational expense, since it allows the

computational domain to include a single wavelength of the instability (which still may

require about 20 micro-cavities in the simulation).

In order to verify that the physics are not substantially altered by the assumption of

streamwise periodicity, we revisited linear stability analysis and showed that second mode

instability has a sufficiently slow streamwise growth to allow spatial instability results to be

accurately recovered from the temporal ones via the Gaster transformation, provided the

mean velocity and temperature profiles are the same in both cases.

We then used the corresponding temporal instability calculations (for a flat plate with-

out UAC) to validate linearized DNS computations of the same problem. We used high-
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order-accurate non-dissipative numerics to resolve the hypersonic shock-free flow. DNS and

instability calculations are in excellent agreement. As compared to the spatial problem,

there are differences in the results not accounted for in the Gaster transformation, since the

mean velocity and temperature profiles are somewhat different for spatially and temporally

growing boundary layers. For simplicity, we also used constant viscosity in the DNS; profiles

associated with temperature-dependent properties differ and also lead to different stability

frequencies and growth rates. However, within the framework of these simplifications, linear

DNS of plates with UAC were successful at damping second-mode instabilities by an amount

consistent with approximate theory and experiments for the given Mach number, Reynolds

number, and UAC parameters.

In future work, we will relax the constant viscosity assumption, and perform detailed

analysis of linear and nonlinear second-mode attenuation by UAC within the temporally

evolving framework. In particular, we will investigate the details of instability-wave absorp-

tion by the micro-cavities, and validate (and perhaps suggest improvements to) approximate

porous-wall boundary conditions for engineering predictions of UAC performance.
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